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Abstract

Mineral depositions are basic sources for obtaining metal production. Increasing metal 
demand based on increasing world population and decreasing grade value of mineral 
deposition make the evaluation to mineral processing more important, so that all metal 
production stages must be economical. Because of this important requirement, many 
researchers and practitioners have focused to the optimization of all processes. The opti-
mization of metal production processes provide some advantages such as reducing the 
influence of experimental errors, statistical analysis, determining important parameters 
and trivial parameters, and measuring interactions between parameters. Although there 
are many design methods, choosing the most appropriate method is of great importance 
in terms of the results to be achieved. In this chapter, presumed experimental data about 
hydrometallurgical copper extraction accompanied by three parameters were applied to 
two different design models to compare the results.

Keywords: copper, mineral processing, hydrometallurgy, optimization, experimental 
design, statistically, leaching

1. Introduction

Different types of ore reservation are consumed away quickly depending on the growing popu-

lation. Metal production, which is effective in making tools used to meet basic vital needs (cars, 
tools, buildings, ships, etc.), must also increase along with the increasing population. The main 

source of all these metals is the ores, and all ores in earth are known as nonrenewable sources. 

For these reasons, all stages of metal production such as characterization, mining activities, 

mineral processing, pyrometallurgical/hydrometallurgical/electrometallurgical routes, and 

final production methods must be economical. In the world, more than 10 billion tons of mine 
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are produced. Seventy five percent of this production is derived from energy raw materials, 
10% is from metallic mines, and 15% is from industrial raw materials. On the other hand, some 
metals have been taken to the status of critical metals by the European Commission (Figure 1).

As shown in Figure 1, it is clear that some metals have high supply risk status such as beryl-

lium, cobalt, magnesium, germanium etc. These data show that the economy of metal produc-

tion is very important and these conditions are pushed to researchers and producers for the 

recovery of secondary sources [2–5].

• At that rate, how a metal producing process is economical?

• How we can benefit more effectively from existing ore grade and reserves?

• Will ore reserves meet future needs?

The answer to all these questions can be given as optimization.

The optimization, which may be numeric or nonnumeric (known as categorical), must be car-

ried out at every stage of the metal production process. Processes that need to be optimized 

from the beginning start with the ore detection, mineralization-mineralogy-petrography, geo-

graphical distributions and planning. The extraction of ore mining at optimum conditions, 
mining operations, transportation, marketing, and planning. Up on this stage, many steps 

such as truck tours, excavator cycling, casting distance (in open mines), reaching to ore with 
appropriate road, number of people and machines to work, and ore extraction period (under-

ground mines) can be optimized for priority. The next stage is mineral processing, which con-

tains ore crushing, grinding, sieving, handling, conditioning, enrichment (one or more of the 
appropriate methods such as magnetic-electrostatic enrichment, flotation, gravimetric meth-

ods, etc.), and dewatering. It is stated that 50–75% of total energy is consumed in crushing and 
grinding unit in a mineral processing plant [6]. This fact shows that the optimization of this 

Figure 1. European Commission critical metal graphics [1].
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stage (choosing of appropriate comminution and sieving machines, crushing-grinding time, 
treatment conditions, etc.) is quite important. The last stage is metal handling in which metal-

lurgical methods are used, for instance, pyrometallurgy, hydrometallurgy, electrometallurgy, 

and casting. This stage also has a lot of substages so that some of them can be sorted as: 

temperature level, acid-base choosing, treatment time, solution volume, stirring conditions, 

electrode choosing, current applications, and casting conditions. We can roughly classify the 

phases as follows: ore detection, characterization, mining, mineral processing, metallurgy, 

and usage. How to be optimized? Which method should be used?

There are many packet computer software for this aim. Among them, one of the prominent is 

response surface methodology (RSM) that is used successfully in many engineering applica-

tions and especially in scientific articles. The use of response surface methodology is popular 
because of having easy-to-use interface and application advantages. The main advantages 

can be sorted as an opportunity of easy optimization, reaching maximum information by less 
experimental data, an opportunity of changing significant parameters simultaneously, deter-

mination of interaction between parameters, and easy elimination of insignificant parameters.

2. Experimental approach

In any process involving the metal production process, parameters that have an effect on 
metal recovery are primarily estimated. Then, it is aimed to determine the most favorable con-

ditions by studying the parameters in a certain interval. However, while a single parameter 

is examined as a variable in traditional leaning studies, it is seen that other effective param-

eters are kept constant at a certain value. Furthermore, in such studies, it is only possible 

to define any model or model equation to represent the experimental method and only on 
special conditions. For example, in a hydrometallurgical study, it seems that the interaction 
of leaching parameters cannot be accounted, since the parameters investigated for activity on 

metal recovery are handled one by one. On the other hand, there is a need for a large number 
of experimental studies in a study in which all the parameters are examined.

2.1. RSM experimental design

Response surface methodology (RSM) was first defined and improved in 1951 by Box and 
Wilson. RSM is created with model regression analysis. Box and Wilson have setup experi-
ments with the aim of reaching the point where the answer variable has the maximum value 
on the answer surface with the smallest possible number of observations. For this purpose, 

they have compared some experimental schemes and identified composite experiments [7]. 

Response surface methods are created with the help of model regression analysis, and it is 
successfully used in many disciplines. Two or more factors use the response surface pattern; 
for example, time, temperature, and the effects of both on the result can be investigated and 
optimum values are found. The results can be expressed in three-dimensional graphics or as 
a contour graphics. Using a very small number of experimental combinations, it is possible to 
estimate factors and their combinations that are not actually tested [8, 9]. In this study, a Stat-

Ease software package (version 6.0.10 trial) is used for data analysis.
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RSM is a collection of mathematical and statistical techniques that are useful for the modeling 
and analysis of problems in which a response of interest is influenced by several variables 
and the objective is to optimize this response. For example, suppose that an engineer wishes 
to find the levels of temperature   ( X  

1
  )   and pressure   ( X  

2
  )   that maximize the yield   (y)   of a process. 

The process yield is a function of the levels of temperature and pressure,

  y = f ( X  1  ,  X  
2
  )  + ε  (1)

where  ε  represents the noise or error observed in the response  y . If we denote the excepted 
response by  E (y)  = f ( X  

1
  ,  X  

2
  )  = η , then the surface is represented by

  f ( X  1  ,  X  
2
  )  = η  (2)

In most RSM problems, the form of relationship between the response and the independent 
variables is unknown. Thus, the first step in RSM is to find a suitable approximation for the 
true functional relationship between  y  and the set of independent variables. If the response is 

well modeled by a linear function of the independent variables, then the approximating func-

tion is the first-order model,

  y =  β  0   +  β  1    X  1   +  β  
2
    X  

2
   + … + β  

k
    X  

k
   + ε  (3)

If there is a curvature in the system, then a polynomial of higher degree must be used, such 

as the second-order model,

  y =  β  0   +  ∑ 
i=1

  
k

     β  
i
    X  

i
   +  ∑ 

i=1
  

k

     β  
ii
    X  

i
  2  +  ∑ 

i<j
    ∑  β  

ij
    X  

i
    X  

j
   + ε  (4)

Almost all RSM problems use one or both of these models [10].

Statistical design, also known as experimental design, is the methodology of how to plan and 
conduct experiments to obtain maximum information with a minimum of experiments. The 
following questions should be answered before any design selection is made to investigate 

variable parameters. All of these questions will have to be answered satisfactorily before the 

experiment is performed.

• What method of data analysis should be used? How will the impact of factors and response 

value be measured? How many factors will be effective on the response value? How many 
factors will be considered simultaneously? How many experiments will be needed again?

All principles based on statistical evidence have been proven by a reliable method, supported 

by trial and error. The use of experimental design methods provides a number of advantages 
in designing such studies, if there are a large number of variables that are effective on the 
result in a study.

Engineering processes are complex systems that are influenced by many factors. Experimental 
design ensures that these systems are expressed by functions and that important interactions 
between a large number of active variables are revealed. Response variants (metal recovery in 
leaching, flotation yield in flotation process, etc.) are observed as experimental outputs, while 

Contributions to Mineralization170



independent variables in the design of experiments are checked. Simultaneous exchange of 
variables allows arriving at a result in less time and with less experimental effort compared 
to the conventional experimental method in which a single variable is changed. On the other 
hand, the most important advantage of experimental design is the simultaneous variation of 
several factors and the independent evaluation of each factor. There are several common steps 

compared to most experimental designs. The first step is to determine the problem to be solved. 
Determining the factors affecting the process is the second step. Thirdly, it is the study of factors 
in different combinations in an experimental study. Finally, the best combination is to choose.

3. Design types

There are many types of designs for use to design experimental works. These design types 
have become easy to understand with the improvement of appropriate computer software. 

It is important to which one design must be chosen so that it is related to the fact that the 

researcher dominates the work to be done. Because there are a variety of design methods, 

their design criteria and application areas exhibit variety. Some of these design types are 
listed below for design expert software [11],

√ Central composite design, √ Box–Behnken design, √ Three-level factorial design, √ Hybrid 
design, √ One-factor design, √ Pentagonal design, √ Hexagonal design, √ D-Optimal design, 
and √ User-defined design, etc.

Each design type has its own characteristics, which are usually related to the position of design 

points and the number of design points. Short information on some design types is given below.

3.1. Central composite design

Each numeric factor is varied over five levels: plus and minus alpha (axial points), plus and 
minus 1 (factorial points), and the center point (Figure 2). The biggest advantage of the central 

composite design (CCD) is that it allows experimental design outside the design points where 
the cube points are located. In addition, the presence of these points gives the rotational work-

ability, which is why it is highly preferred by researchers. CCD is divided into three sub-

divisions as central composite circumscribed (CCC), central composite inscribed (CCI), and 
central composite face-centered (CCF).

3.2. Box-Behnken design

Each numeric factor is varied over three levels. If categorical factors are added, the Box-Behnken 
design will be duplicated for every combination of the categorical factor levels (Figure 3).

3.3. Three-level factorial design

Each numeric factor is varied over three levels. If categorical factors are added, the three-

level factorial design will be duplicated for every combination of the categorical factor levels 

(Figure 4).
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Figure 3. Box-Behnken design layout.

Figure 4. Three-level factorial design layout.

Figure 2. Central composite (CCD) design layout.
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3.4. Hybrid design

A minimal point design for three, four, six, or seven factors with five levels each. Because there 
is no replication, the lack of fit test is not available. These rotatable or nearly rotatable designs 
are better than a small central composite, but are still highly sensitive outliers or missing data.

3.5. One-factor design

One-factor design is a design for one numerical factor using three levels for a linear model, 
five levels for a quadratic model, seven levels for cubic models plus some replicated points.

The design will be duplicated for every combination of the categorical factor levels.

3.6. Pentagonal design

Design for two factors where factor A can have four levels and factor B has five levels. This 
minimal point design is extremely sensitive to outliers or missing data. The design will be 
duplicated for every combination of the categorical factor levels (Figure 5).

Figure 5. Pentagonal design layout.

Figure 6. Hexagonal design layout.
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3.7. Hexagonal design

Design for two factors where factor A has five levels and factor B has three levels. The design 
will be duplicated for every combination of the categorical factor levels (Figure 6).

4. Optimization of comparative sample hydrometallurgy study

Hydrometallurgy is an important part of the metal production process; it is becoming more 
important because it has many advantages such as being eco-friendly, easy operation, low 

energy depletion, and low cost. Recently, the planning of hydrometallurgy studies with RSM 
increases to examine the effect of many effective parameters [12–18]. The advantages of using 

response surface methods in such studies can be listed as follows:

• Reduce the influence of experimental errors.

• Allows statistical analysis.

• Helps determine important parameters and trivial parameters that need to be checked.

• Helps to determine and measure interactions between parameters.

• Allows for the best results to be searched within the examined intervals of the test param-

eters and to extrapolate the data.

• Enables you to draw graphs describing how variables relate to each other and to determine 

the values of variables that give optimum results.

• Allows the creation of predictive model equations that reveal the mathematical relation-

ship between dependent variables and dependent response values.

• Ensures that results are displayed in three-dimensional or contour graphics.

• Allows simultaneous modification of the parameters that are active on the result during 
the experimental run.

In this section, a sample hydrometallurgy study is represented comparative by using two dif-

ferent response surface methods. For this purpose, determination of experimental conditions, 
examination of results, evaluation of statistical data, and optimization of results were studied 
with central composite design (CCD) and Box-Behnken Design (BBD) layout. Assuming that 
oxidized copper ore (CuO) will be leached in the presence of sulfuric acid (H

2
SO4). Suggested 

reaction is as follows and effective parameters are H
2
SO4 concentration, leaching temperature, 

and leaching time.

  CuO +  H  
2
    SO  4   →  CuSO  4   +  H  

2
   O  (5)

Experimental design will be considered as only one response value evaluation as copper 
extraction. Tables 1 and 2 show the interval of the examined parameters for CCD and BBD, 
respectively.
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As seen in Tables 1 and 2, CCD allows for experimental researching at extra points, which 
represents distance from center design points (alpha points). On the other hand, BBD has same 
design points with CCD except alpha values. Here, (−1), (0), and (+1) represent the design low 
value, design high level, and design center level, respectively. This fact points out that these 

alpha points give rotability to design layout. Also, interval of investigating parameters is (4–8 M) 
of H

2
SO4, (25–65°C) of leaching temperature, and (30–90 min) of leaching time. Assumed results 

are entered in the experimental conditions specified by the software. While CCD has 20 experi-
mental runs and 6 center points, BBD has 17 experimental runs and 5 center points. In Figure 7, 

experimental design model and its investigating interval of each parameter are seen.

4.1. Analysis of comparative experimental results

The experimental results mentioned above were obtained. Standard error of design graphics 
is shown for CCD and BBD in Figures 8 and 9. According to error distribution results, differ-

ent graphic trends exhibit for CCD and BBD, so that error values increase as it is approaching 
the low design points in CCD model.

Factor Unit −α −1 0 +1 +α

H
2
SO4 M 2.64 4 6 8 9.36

Temperature °C 11.36 25 45 65 78.64

Time Min 9.55 30 60 90 110.,45

Table 1. Interval of examined parameters for CCD.

Factor Unit −1 0 +1

H
2
SO4 M 4 6 8

Temperature °C 25 45 65

Time Min 30 60 90

Table 2. Interval of examined parameters for BBD.

Figure 7. Experimental design for CCD and BBD.
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On the other hand, Tables 3 and 4 show that sequential model sum of squares in which can be 

decided to fit what type source in design conditions. Practically, source can be chosen accord-

ing to the high value of sum of squares. Thus, it can be said that appropriate source for model 

can be chosen as linear and quadratic sources for CCD and quadratic source for BBD.

Figure 8. Standard error of central composite design model (Time: 60 min-constant).

Figure 9. Standard error of Box-Behnken design model (Time: 60 min constant).

Contributions to Mineralization176



Analysis of variance (ANOVA) may be used to provide assistance with the interpretation of results. 
Essentially, ANOVA tables have numerous benefit data about model design such as interaction of 
parameters, lack of fit, degrees of freedom, etc. The ANOVA data of CCD and BBD are shown in 
Tables 5 and 6, respectively. In these tables, leaching parameters are symbolizing A, B, and C as 

sulfuric acid concentration, leaching temperature, and leaching time, respectively. Because of the 

quadratic of models, there are exponential and interaction between parameters too. On the other 
hand, statistical information about residual, lack of fit, and pure error for each model is avail-
able. ANOVA values also represent effective parameters on the result according to “F value” or 
“Prob > F” columns in which Prob > F value of parameters less than 0.05 are significant parameters 
on the result. Values greater than 0.1000 indicate the model terms are not significant.

In this case, A, B, A2, and C2 are significant model terms for central composite design while B, 
C, A2, and B2 are significant model terms for Box-Behnken design. The meaning of these sig-

nificant models is that A and B parameters have linear effect on the results; also  exponential 

Source Sum of squares DF Mean square F value Prob > F

Mean 58644.45 1 58644.45

Linear 5950.16 3 1983.39 7.79 0.0020

2FI 543.37 3 181.12 0.67 0.5872

Quadratic 2324.65 3 774.88 6.42 0.0107

Cubic 1074.34 4 268.58 12.21 0.0048

Quartic 132.03 1 132.03 6.366E+007 <0.0001

Fifth 0.000 0

Sixth 0.000 0

Residual 0.000 5 0.000

Total 68669.00 20 3433.45

Table 3. Sequential model sum of squares for CCD [degrees of freedom (DF)].

Source Sum of squares DF Mean square F value Prob > F

Mean 55461.24 1 55461.24

Linear 620.75 3 206.92 1.72 0.2114

2FI 6.25 3 2.08 0.013 0.9977

Quadratic 1429.01 3 476.34 26.52 0.0003

Cubic 125.75 3 41.92 6.366E+007 < 0.0001

Quartic 0.000 0

Fifth 0.000 0

Sixth 0.000 0

Residual 0.000 4 0.000

Total 57643.00 17 3390.76

Table 4. Sequential model sum of squares for BBD [degrees of freedom (DF)].
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symbols (like A2, C2) have second-order effect on the results for central composite design 
model. For Box-Behnken design, B and C parameters have linear effect and A2 and B2 of 

parameters have exponential effect on the results. According to ANOVA of both models, 
interesting approaches are arising on the account of different parameters and their different 
exponential values are significant in each design model despite two models have been built 
in same experimental data.

Source Sum of squares DF Mean square F value Prob > F

Model 8818.19 9 979.80 8.12 0.0015

A 1734.48 1 1734.48 14.38 0.0035

B 3645.71 1 3645.71 30.22 0.0003

C 569.97 1 569.97 4.72 0.0548

A2 1023.62 1 1023.62 8.49 0.0155

B2 480.83 1 480.83 3.99 0.0738

C2 1249.58 1 1249.58 10.36 0.0092

AB 36.13 1 36.13 0.30 0.5962

AC 231.12 1 231.12 1.92 0.1964

BC 276.12 1 276.12 2.29 0.1612

Residual 1206.36 10 120.64

Lack of fit 1206.36 5 241.27

Pure error 0.000 5 0.000

Cor total 10024.55 19

Table 5. ANOVA for response surface quadratic model of CCD.

Source Sum of squares DF Mean square F value Prob > F

Model 2056.01 9 228.45 12.72 0.0015

A 55.13 1 55.13 3.07 0.1233

B 253.13 1 253.13 14.09 0.0071

C 312.50 1 312.50 17.40 0.0042

A2 931.64 1 931.64 51.86 0.0002

B2 331.64 1 331.64 18.46 0.0036

C2 55.33 1 55.33 3.08 0.1227

AB 6.25 1 6.25 0.35 0.5738

AC 0.000 1 0.000 0.000 1.0000

BC 0.000 1 0.000 0.000 1.0000

Residual 125.75 7 17.96

Lack of fit 125.75 3 41.92

Pure error 0.000 4 0.000

Cor total 2181.76 16

Table 6. ANOVA for response surface quadratic model of BBD.
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This situation can only be explained by the presence of extra experimental points, so that it is 
seen how important the choice of design model in optimization. Some statistical data from both 

models are shown in the following (Tables 7 and 8). Important data may be sorted as “standard 
deviation (std. dev.),” R2 “(R-squared),” “adjusted R2 (adj R-squared),” and “adequate preci-
sion (adeq precision).” According to table data of CCD and BBD, standard deviation of CCD 
model is higher than BBD model that their values are 10.98 and 4.24, respectively. Statistically, 
model fit is better if standard deviation is low, so that this case influences the R-squared and 
adj R-squared values. In this context, R2 and Adj-R2 values of BBD model is higher than CCD 

model. Both type R2 value is important for model fitting, in which the high one is preferred. 
When comparing between the R2 values according to this result, it can be said that BBD model 

is more appropriate for the same experimental conditions. The probable cause of this case is 
that BBD has a more linear design model, but this linearity is valid only in conditions of param-

eters changing that have a linear effect on the response. On the other hand, adeq precision mea-

sures the signal to noise ratio. A ratio greater than 4 is desirable. Both model ratios (10.007 and 
10.228) indicate an adequate signal. These models can be used to navigate the design space.

Result model equation can be created with RSM. As shown in Eqs. (6) and (7), final equation 
in terms of actual factors of CCD and BBD have different coefficient (the coefficients rounded 
to two digits).

 Cu %  (CCD model)  = − 82.59 +  23.15   ∗   H  
2
    SO  4   +  1.21   ∗  Temp +  0.48   ∗  Time −  2.11   ∗   H  

2
     SO  4     

2   
–  0.01   ∗   Temp   2  –  0.01   ∗   Time   2  +  0.05   ∗   H  

2
     SO  4     

∗  Temp  

+  0.09   ∗   H  
2
     SO  4     

∗  Time +  9.79   ∗   10   −3∗   Temp   ∗  Time  (6)

 Cu %  (BBD model)  = − 164.77 +  47.34   ∗   H  
2
    SO  4   +  2.47   ∗  Temp +  0.69   ∗  Time −  3.72   ∗   H  

2
     SO  4     

2   
–  0.02   ∗   Temp   2  –  4.03   ∗   10   −3∗   Time   2  –  0.03   ∗   H  

2
     SO  4     

∗  Temp  

−  2.29   ∗   10   −16∗   H  
2
     SO  4     

∗  Time −  6.57   ∗   10   −18∗   Temp   ∗  Time  (7)

The above equations are useful model equations. Especially, if a parameter data is entered except 
for the design points, this model equation gives possible outcome. As it can be remembered, 

Std. dev. 10.98 R-squared 0.8797

Mean 54.15 Adj R-squared 0.7714

C.V. 20.28 Pred R-squared 0.0431

PRESS 9592.29 Adeq precision 10.007

Table 7. Statistical data from CCD model.

Std. dev. 4.24 R-squared 0.9424

Mean 57.12 Adj R-squared 0.8683

C.V. 7.42 Pred R-squared 0.0778

PRESS 2012.00 Adeq precision 10.228

Table 8. Statistical data from BBD model.
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design points are 4–8 M of H
2
SO4, 25–65°C of temperature, and 30–90 min of time. Let us run the 

model equation with any values outside the design points where it is wondered copper extraction 
result (response value) for 5 M of H

2
SO4, 30°C of temperature, and 80 min of time. According to 

the model equation result, it is obtained Cu%: 49.11 for central composite design model and Cu%: 
59.94 for Box-Behnken design model. Although the statistical data indicate BBD, the most accurate 
result can be achieved by comparing the result of the experiments made under these conditions.

The residual plots were examined for the model adequacy for each metal extraction design 
values. In Figures 10 and 11, the normal percent probability-studentized residual plot and 

predicted-actual plots are shown for copper extraction of two different model designs. All the 
normal probability plots show how well the model satisfies the assumptions of the ANOVA 
where the studentized residuals measure the number of standard deviations separating the 

Figure 10. Diagnostic graphics of CCD model: (a) normal probability and (b) predicted vs. actual graphics.
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actual and predicted values [19]. It is not desirable to have an S-shaped distribution in the nor-

mal distribution curve; however, it is desirable that the point distribution should be around 
line on the predicted-actual graphs. Last stage of design is to be the determination of optimi-

zation criteria. Optimization criteria of the both design models were held as the maximum 
copper extraction and three parameters interval was kept in range scale. Under these condi-
tions, the software purpose solution points where different response values (Cu extraction) 
can be obtained by changing leaching parameters. These tables are shown in Tables 9 and 10.

As seen in Tables 9 and 10, desirability of BBD model is higher than CCD that it is indicated 

that the model adaptation for the current situation is better in BBD even though copper extrac-

tion values are higher in CCD model. The response surface graphs for metal extractions under 
the optimum condition are shown in Figure 12 for CCD and Figure 13 for BBD.

Figure 11. Diagnostic graphics of BBD model. (a) normal probability and (b) predicted vs. actual graphics.
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The presence of onion rings in the graphics indicates that optimum regions were obtained 

under these conditions. While Box-Behnken design model gives the optimum regions, it does 
not provide with central compost design model. This is a very controversial issue so that 

when considering the design model, all conditions must be taken into account.

These three-dimensional result graphics are very useful in terms of observing the results. In 

this kind of graphs, the effect of more than one parameter on the result can be determined 
simultaneously, and also how it affects the result by interaction between the changing param-

eters. Figure 12 shows that high copper extraction can be obtained at high values of the param-

eters. For instance, 95% of copper extraction can be achieved under conditions: the leaching 
temperature of 65°C, leaching time of 90 min, and H

2
SO4 concentration of 8 M. An increase in 

extraction value with increasing values is not an acceptable approach in such studies. Because 
the goal is to achieve optimum conditions and is well-known that over consumption already 

provides high extraction values.

Number H
2
SO

4
Temp Time Cu Desirability

1 8.00 65.00 88.55 94.1577 0.989

2 8.00 65.00 88.59 94.1574 0.989

3 8.00 65.00 88.74 94.1571 0.989

4 8.00 65.00 88.89 94.1561 0.989

5 8.00 65.00 88.87 94.1542 0.989

6 8.00 64.99 88.51 94.1542 0.989

7 8.00 65.00 89.70 94.1434 0.989

8 8.00 65.00 87.31 94.1423 0.989

9 7.94 65.00 90.00 94.0657 0.988

10 8.00 65.00 80.37 93.4687 0.980

Table 9. Optimum solution points of Cu percentage for CCD model.

Number H
2
SO

4
Temp Time Cu Desirability

1 6.65 56.96 78.94 71.7234 1.000

2 6.14 51.34 65.60 72.0147 1.000

3 5.31 50.57 80.33 70.8928 1.000

4 5.53 48.11 79.95 71.8394 1.000

5 7.03 49.77 85.76 70.8148 1.000

6 5.88 53.32 61.76 70.9737 1.000

7 6.64 55.29 65.82 70.7235 1.000

8 6.56 54.94 65.38 71.0067 1.000

9 6.06 53.81 65.78 71.8761 1.000

10 5.76 47.27 60.14 70.046 1.000

Table 10. Optimum solution points of Cu percentage for BBD model.
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On the other hand, Figure 13 shows optimal copper extraction under optimum conditions. It is 
clear that graphs of temperature-H

2
SO4 and time-H

2
SO4 interaction have completed circle lines 

similar to onion rings. The center region of these rings point out hump on the surface graphic (3D 
graphics), which indicates the optimum point. It is noticed that other sides of parameter values 

Figure 12. The effect of parameters interaction on the result for CCD model.
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of hump (increasing and/or decreasing parameter values) cause decrease of copper extraction in 
which it is considered to be moving away from the optimum region. According to Figure 13a, 

approximately 70% of Cu extraction can be obtained in presence the 45–55°C of leaching temper-

ature, and 5.5–6.5 M of H
2
SO4 concentration. Also, Figure 13b shows that optimum conditions of 

parameters are 75–90 min of leaching time and 5.5–6.5 M of H
2
SO4 concentration.

Figure 13. The effect of parameters interaction on the result for BBD model.
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It is noted that if the parameter values are increased on the CCD for the same operation, 

the copper extraction is increased while the increased parameter values in the BBD cause 
the extraction values to drop significantly. This tendency arises from the examination of the 
effects of the parameters.

When two results about one factor plot are compared, copper extraction increases with 
increasing H

2
SO4-time-temperature for each plots of CCD model whereas copper extraction 

decreases or reaches the plateau with increasing parameters values after optimum condition 

points. Of course, it is not ignored that these factors are in an interaction.

In this chapter, presumed experimental data about hydrometallurgical copper extraction 
accompanied by three parameters were applied to two different design models, central 
composite design (CCD) and Box-Behnken design (BBD), in order to compare the results. 
As defined in the sections above, different statistical results and approaches were obtained 
although the same basic design values are entered as data. There are numerous design mod-

els, but the user should select the most suitable for own process. Namely, first of all we need 
to know the process well. As such, design models are not susceptible to unexpected changes 
in the process. According to the above model comparison, Box-Behnken design model is more 
appropriate for this process. It is implied that central composite design is not appropriate for 

this process, although it is generally more sensitive because of owing extra design points and 
rotatable feature. Although, only two models are compared here and different results are 
obtained, it is impossible to test all the models for a process. Instead of this, it is always more 

convenient to recognize model designs and processes and select a model accordingly.

Despite the optimization comparison above on a numerical example, similar study can be 
done for the modeling of nonnumerical (it will attribute as categorical factor) processes. In 
this context, the use of response surface methodology for optimization purposes of some sci-
ence branches such as mineralization, geochemical, stirring profile of any process can be con-

sidered to increase productivity.
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