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Abstract

Mitochondria play a key role in the normal functioning of the heart and in the pathogen-
esis and development of various types of heart disease. In addition, specific mitochon-
drial cardiomyopathies due to mutations in mitochondrial DNA have been identified. 
Increasing studies demonstrate that mitochondrial function has emerged as a therapeutic 
target in heart disease. This chapter addresses the recent studies of the role and the mech-
anism of mitochondria in the development of heart disease, and the progress in clinical 
diagnosis and treatments on a mitochondrial basis. Consequently, the aim of this chapter 
is to outline current knowledge about mitochondria in the heart disease.

Keywords: mitochondria, heart, heart failure, cardiac hypertrophy, heart disease

1. Introduction

The heart is the most metabolically active organ in the body and highly depends on oxida-

tive energy generation in mitochondria to supply the large amount of adenosine triphos-

phate (ATP) required for its continuous contractile activity. In addition, cardiac mitochondria 

also serve other cellular functions such as generating and regulating reactive oxygen species 

(ROS), buffering cytosolic calcium ions (Ca2+), and regulating cellular apoptosis through the 

mitochondrial permeability transition pore (mPTP).

Heart disease is the leading cause of mortality worldwide. Although the study of mitochon-

drial function in the human heart faces many obstacles, the role of mitochondria in cardiac 

diseases has been elucidated from the studies with animal models. Increasing evidences have 

shown that abnormalities in the mitochondrial structure and function are tightly associated 

with development of various cardiovascular diseases, which prompted new therapies to treat 

and prevent heart disease by aiming at metabolic modulation.

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Mitochondrial abnormalities include impaired mitochondrial electron transport chain (ETC) 

activity, increased formation of ROS, shifted metabolic substrate utilization, aberrant mito-

chondrial dynamics, and altered ion homeostasis. Some of the mitochondrial abnormalities 

may have a genetic basis due to the changes of mitochondrial DNA (mtDNA) or the muta-

tion of specific nuclear DNA (nDNA), while other abnormalities are due to environmental 
cardiotoxic insult or uncharacterized reasons. Although many specific mitochondrial targets 
have proven to be promising therapeutic strategies in experimental studies, most of them 

are pending for validation through clinical trials. Better understanding the molecular mecha-

nism of mitochondria in cardiac pathology is important to provide diagnosis and treatment 

of mitochondrial-based cardiac diseases.

In order to better understand the role that the mitochondrion plays in the heart, we provide in 
this chapter a brief background describing the regulation and function of mitochondria dur-

ing normal cardiac development and aging as well as the pathological mechanisms involved 

in cardiac diseases. We also address the mitochondrial abnormalities–based diagnosis and 

therapeutic options available in heart disease.

2. The role of mitochondria in the normal heart

Mitochondria have long been described as the powerhouses of the cell. They are responsible for 

the generation of ATP, the main energy currency of the cell, while playing important roles in intra-

cellular signaling, activation of apoptosis, and other mechanisms. Little information is currently 
available on mitochondrial function in the normal human heart as most of the studies on the role 

of mitochondria have relied on animal models, which may not be representative of the human. 

However, the development of new methods to study mitochondrial function provides an oppor-

tunity to use the small amount of tissue available from surgeries to understand mitochondrial 

function. In the near future, we expect more studies to be developed utilizing these techniques.

2.1. Basis of the regulation of cardiac mitochondrial function

2.1.1. Cardiac energy production and metabolism

The heart relies mainly on mitochondrial metabolism to provide most of its energy. The heart 

has the largest demand for energy among all organs, since it beats continuously from its for-

mation in the fetus until death, and thus cardiomyocytes contain the highest concentration of 

mitochondria in the body in order to meet its energy requirements [1]. Several interacting bio-

energetic pathways contribute to energy metabolism of cardiac muscle including pyruvate oxi-

dation, the tricarboxylic acid (TCA) cycle, the mitochondrial fatty acids oxidation (FAO), and 
oxidative phosphorylation (OXPHOS), which generates 80–90% of cellular ATP [2]. While the 

oxidation of pyruvate takes place in the cytosol, the other procedures occur in the mitochondria.

In the normal heart tissue, the supply of ATP from glycolytic mechanism is limited [2]. Fatty 
acids are the primary energy substrates used to produce ATP in cardiac muscle by OXPHOS, 

utilizing the carnitine shuttle to transport the fatty acids into the mitochondria. The heart also 
maintains stored high-energy phosphates, such as creatine phosphate (CP), that are produced 
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from creatine by mitochondrial creatine kinase (mitoCK) using ATP from the closely associ-

ated adenine nucleotide translocase (ANT) and mitochondrial ATP synthase [2].

Additionally, the heart is a well vascularized organ, allowing for delivery of freshly oxygen-

ated blood and quick removal of the waste products of metabolism. This constant supply of 

oxygen is important for OXPHOS to take place, as oxygen serves as the final electron acceptor 
in the ETC. Understanding the factors involved in the development and function of mito-

chondrial energy production pathways is increasingly important due to the many diseases 

associated with defects in this machinery.

Energy production within the cardiomyocytes of the heart is influenced by genetic factors as 
well as environmental factors. nDNA and mtDNA affect the enzymes and their cofactors as 
well as the availability of substrates to the mitochondria from their surroundings, which fur-

ther influence OXPHOS. Cardiac tissue has specific gene regulations to meet its physiological 
and developmental needs. For example, the ATP synthase β-subunit is expressed at higher 
levels in cardiomyocyte-differentiated cells compared to control cells [3], and some isoforms 

of enzymes, e.g., cardiac specific isoforms of cytochrome c oxidase subunits VIa, VIIa, and 
VIII, are differentially expressed across tissues [4].

Besides the expression and function of the main proteins associated with the OXPHOS, the 

component of the ETC complexes I-IV and ATP synthase (complex V), many other molecules 
have been found to be involved in the regulation of the mitochondrial energy production 

through posttranslational modification. For example, proteins within the mitochondrial com-

plexes can be nitrosylated (the addition of an NO group) or O-GlcNAcylated (the addition of 

O-linked β-N-acetylglucosamine (O-GlcNAc)) [5, 6]. These protein modifications modulate 
the activity of the complexes and hence change the efficiency of the mitochondria to meet 
the physiological function of the heart. In addition, our recent studies have also found a spe-

cific cell survival-promoting signaling that plays an important regulatory role in promoting 
ETC efficiency in cardiomyocytes, remarkably under the cardiac stress [7–9]. In particular, we 

found that this signaling pathway, which includes the heat shock protein 22(Hsp22), AKT, 

and valosin-containing protein (VCP), promotes ETC efficiency in cardiomyocyte through the 
increase of mitochondrial inducible nitric oxide synthase (iNOS) [7–9].

2.1.2. Modulation of calcium signaling

Ca2+ concentration is highly regulated in the myocardium and is responsible for the induction 

and intensity of contraction in the myocytes [10]. Mitochondria are able to modulate the Ca2+ 

concentration in the cardiomyocyte, which plays an important role in the cardiac function [11].

Mitochondria can directly decrease the Ca2+ concentration in the cytosol of the cell by import-

ing Ca2+ via the mitochondrial Ca2+ uniporter. Reciprocally, they can also increase the Ca2+ 

concentration in the cytosol by expelling calcium stored within the mitochondria through 

Na+/Ca2+ or H+/Ca2+ exchangers [12]. This elaborate system of channels and transporters allows 

for physiological responses to cytosolic calcium signals and the loading of Ca2+ in the mito-

chondrial matrix. Mitochondria partake in the cardiac excitation-contraction coupling (ECC) 

by storing Ca2+, responding to cytosolic calcium signals and generating the ATP required for 

cardiac contraction. Ca2+ influx via L-type Ca2+ channels triggers further release of Ca2+ from 
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the sarcoplasmic reticulum (SR), which binds to troponin C, and allows for the myosin and 

actin filaments to interact [10]. During diastole, the Ca2+ either goes back into the SR or is 

exported out of the cell via the Na+/Ca2+ exchanger [13]. An increase in workload, as triggered 

by β-adrenergic stimulation, increases the number of Ca2+ transients as well as the size of 

the transients, leading to stronger cardiac contractions [14]. Additionally, mitochondria can 

also indirectly contribute to Ca2+ regulation by inducing changes in the concentration of ATP, 

NAD(P)H, pyruvate, and ROS, which in turn regulate other Ca2+ signaling machinery com-

ponents [15]. This associated Ca2+ signaling is involved in the Ca2+ buffering, the Ca2+ release 

from internal stores and the influx from the extracellular solution, the Ca2+ uptake into cellular 

organelles, and the extrusion by plasma membrane Ca2+ pumps [16].

Calcium signaling in the mitochondria also contributes to the regulation of cellular energy metab-

olism. ATP is hydrolyzed to ADP in order to power energy-requiring processes and is shuttled 
into the mitochondria to be reconverted into ATP as a final step in respiration. This enhances the 
electron flux within the ETC, resulting in the oxidation of NADH to NAD+. Concurrently, Ca2+ 

is transferred into the mitochondria through the mitochondrial Ca2+ uniporter (MCU), activat-

ing the enzymes of the Krebs cycle to adjust NADH regeneration to match its oxidation [14]. In 

addition, excessive mitochondrial Ca2+ uptake and Ca2+ accumulation, irreversible ΔΨ collapse, 
ATP depletion, and oxidative stress contribute to the opening of the mPTP [17].

Type 2 ryanodine receptors (RyR2s) and type 2 inositol 1,4,5-trisphosphate receptors (IP3R2s) 

are Ca2+ release channels found on cardiac SR. Recent studies have demonstrated that leaky 

RyR2 channels, but not IP3R2, contribute to mitochondrial Ca2+ overload and dysfunction in 

heart failure (HF) [11]. NO signaling and its downstream effectors such as S-nitrosylation 

have also been shown to be key processes in regulating calcium signaling. The neuronal 

nitric oxide synthase (nNOS or NOS1) has been linked to the reduction of calcium influx 
through the L-type Ca2+ channel [5, 18]. This decrease in Ca2+ influx may be responsible for 
the cardioprotection induced by NO. Furthermore, decreased S-nitrosylation of key SR Ca2+ 

handling proteins such as the RyR2s due to impaired NOS1 can result in increased Ca2+-

mediated ventricular arrhythmia in the setting of elevated myocardia [Ca2+]
i
 [19]. Inhibition of 

S-nitrosylation of the SR Ca2+ ATPase (SERCA) has been associated with lower Ca2+ uptake in 

the SR and impaired myocardial relaxation [20].

While substantial efforts were undertaken to characterize the kinetic properties of mitochon-

drial calcium cycling, the experimental approaches and techniques have not been able to 

reach explicit conclusions on cardiac mitochondrial responses to cytosolic Ca2+ oscillations 

during each heartbeat. However, it is widely accepted that Ca2+ is a second messenger for the 

regulation of mitochondrial tasks and represents a crucial link for the role of mitochondria for 

excitation-metabolism and excitation-contraction coupling in the heart.

2.1.3. Generation of ROS

Mitochondria are also a large cellular source of ROS. ROS includes the superoxide anion radi-

cal (O
2

·−) and hydroxyl radical (·OH), as well as nonradical oxidants, such as hydrogen per-

oxide (H
2
O

2
) and singlet oxygen (1O

2
) [21]. They can be converted from one to the other by 

enzymatic and nonenzymatic mechanisms. The most abundant form of ROS in the body is O
2

·−, 

which is enzymatically or spontaneously dismutated to H
2
O

2
. In the human body, there are 
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three superoxide dismutase (SOD) isoforms with precise subcellular compartmentalization: 

the Cu,Zn-dependent isoform (Cu,Zn SOD, SOD1) is found in the cytosol; the Mn-dependent 

isoform (Mn SOD, SOD2) is located in the mitochondrial matrix; and Cu,Zn SOD is located 

in the extracellular space (ecSOD, SOD3) [22]. Mitochondrial ROS have emerged as an impor-

tant mechanism of disease and redox signaling in the cardiovascular system.

O
2
·− is the proximal mitochondrial ROS and is produced by the one-electron reduction of oxygen 

[23]. Mitochondrial O
2
·− production takes place at redox-active prosthetic groups within pro-

teins where the kinetic factors are key to the production of O
2
·− formation [23]. Under physiolog-

ical conditions, the balance between ROS generation and ROS scavenging is highly controlled. 

ROS generation can initiate diverse cellular responses, which include triggering signaling 

pathways involved in cell protection, initiating coordinated activation of mitochondrial fission 
and autophagy to optimize removal of abnormal mitochondria and cells, and ensuring that the 

damage does not spread to neighboring mitochondria and cells [21]. Both high levels of ROS 

(oxidative stress) and excessively low levels of ROS (reductive stress) are harmful and may play 

causative roles in the pathologies related to the dramatic change of redox environment [21]. 

Excess ROS production in the heart under pathophysiological conditions leads to mitochondrial 

dysfunction and bioenergetic decline and contributes to a number of cell pathologies in the 

heart. For example, ROS is favored by high membrane potential, low ATP formation, and ham-

pering the flow of electrons through the complexes in cardiomyocytes. In addition, ROS forma-

tion is the result of the uncoupling of respiration as seen during the opening of the mPTP [21]. 

Although many studies have detected O
2
·− produced in isolated mitochondria, there are few 

reliable methods that can be used to measure the mitochondrial ROS production in vivo [24].

The molecular mechanisms of ROS generation in the cardiac mitochondrion remain unclear. 

It has been showed that complex I (NADH-ubiquinone oxidoreductase) is the main source of 

ROS in the mitochondrion. However, the ROS production at complex I is high under patho-

logical conditions, not physiological condition [21]. Further mechanistic studies suggest that 
the major site of ROS production in complex I is either upstream of a rotenone-binding site or 

tightly coupled to the increased level of NAD(P)H after rotenone supplementation [21]. ROS 

production at complex II is low at physiological concentrations of succinate, suggesting that 

complex II is not a key contributor to the mitochondrial ROS. ROS production at complex III 

only occurs after the binding of antimycin A, suggesting that conformational changes that 

occur on antimycin A binding may be responsible for the production of ROS [21].

2.1.4. mPTP opening

Mitochondria can mediate cell death through the opening or activation of the mPTP [25]. The 

mPTP is a high conductance channel that generates a sudden increase in inner mitochondrial 

membrane (IMM) permeability to ions and small solutes when opened [26, 27]. The pore is 

regulated by the concentration of Ca2+, ADP, NADH, and ROS. Regulation of the mPTP open-

ing is a key essential mechanism for cardiomyocyte survival and function.

Intense research efforts have been focused on elucidating the molecular components of the 
mPTP. The original mPTP model hypothesized that the channel comprised these principal 

proteins: cyclophilin D (CyPD), located in the mitochondrial matrix; the ANT, found in the 

inner membrane; the voltage-dependent anion channel (VDAC) in the outer membrane [28]; 
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and other interacting mitochondrial molecules such as the phosphate carrier, BH3 proteins, 

and p53 [29]. However, genetic ablation of the proposed components revealed that only the 

deletion of the CyPD gene resulted in impaired opening of the mPTP, suggesting that the 

other proposed components are not a necessary part of the pore [30, 31].

Recent studies indicated that the ATP synthase is a major component of the mPTP [32]. There are 

two working proposals about the mechanism for ATP synthase in the mPTP formation. The first 
one suggests that the pore forms at the interface of two dimers of ATP synthase [33]. It has been 

showed that the current that was observed from reconstituted lipid bilayers with purified dimers 
of the ATP synthase was electrophysiologically equivalent to that of the mPTP. Additionally, 

genetic ablation of two specific subunits of the F0 subcomplex that are necessary for dimeriza-

tion did not result in opening of the pore, which further underscores the importance of dimeriza-

tion for the formation of the mPTP [34]. The second hypothesis focuses on the c-subunit ring of 

the F0 subcomplex [35]. In purified ATP synthase extracts in yeast, the ring structure produced 
by the c-subunits exhibited a current that was equivalent to that of the mPTP [34], and the cur-

rents were inhibited by regulators of the mPTP, suggesting that the ring and the mPTP are the 

same. While debate continues about the precise components and mechanism of the mPTP, its 

importance in physiology and pathology is clear and its regulation is paramount to cell survival.

While a short-term opening of the mPTP appears to act as a normal calcium-release mecha-

nism that is required for proper metabolic regulation [29, 36–38], irreversible formation and 

consequent opening of the mPTP are key factors in mitochondrial dysfunction and mitochon-

dria-driven cell death [32, 39, 40]. When the mitochondria are exposed to high concentrations 

of calcium, they undergo a massive and permanent swelling that leads to an abrupt increase 

in permeability to small solutes of the IMM, abolishing the chemiosmotic gradient across the 

IMM [29], which subsequently uncouples OXPHOS, leading to a decrease in ATP production 

and an increase in ROS formation [25]. Further rupture of the outer mitochondrial membrane 
results in the extrusion of cytochrome c, a key step in the initiation of apoptosis [41]. The 

mPTP may also play a role in the regulation of energy production due to the dual role of the 

ATP synthase in both ATP production and mPTP formation [25].

Interestingly, small increases in O-GlcNAcylation were correlated with improved ability of 

cardiac mitochondria to sequester Ca2+ as well as resistance to mPTP opening. Key regulatory 

proteins in the mPTP, the VDAC and ANT, were also found to be able to be O-GlcNAcylated. 

The ATP synthase, the key molecule that forms the mPTP, has also been shown to be able 

to be O-GlcNAcylated [6]. Since mPTP opening is influenced by the loss of the mitochon-

drial potential as well as calcium overload, any change in mitochondrial potential or calcium 

dynamics may have adverse effects in the mitochondria. Key calcium signaling participants 
of mPTP regulation include the pore of the outer membrane, VDAC, the pore of the IMM cal-
cium uniporter, and a key regulator of the mPTP, cyclophilin D [42]. Our most recent study 

also showed that overexpression of VCP protects against stress-induced mPTP opening in 
cardiomyocyte through an iNOS-dependent mechanism [9].

2.2. Cardiac mitochondrial changes during cardiac development

There are significant differences in mitochondrial metabolism and function during the cardiac 
development through the fetus, neonatal, and adult heart.
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One of the major changes during the cardiac development is the use of energy fuels to generate 

ATP in cardiomyocyte. In the fetal heart, glucose and lactate are the predominant substrates 

used in the generation of ATP [43, 44]. The fetal heart boasts of a large endogenous glycogen 

supply, which is a significant source of the glucose on which the heart relies. Glycogenolysis 
is also particularly important in conditions of oxygen deprivation, allowing the fetal heart to 

resist the effects of hypoxia and ischemia better than the adult heart [43]. Fetal hearts have less 
mitochondria and therefore lower levels of respiratory and TCA cycle activities [2]. Notably, 

circulating levels of fatty acids are low, reducing the role of FAO in the generation of ATP. FAO 
is further inhibited by the high lactate levels present in the fetal heart [2]. Postnatally, an 

important switch occurs as fatty acids replace glucose and lactate as the primary energy sub-

strates in the developing heart [43]. Consequently, the activity of the proteins of the carnitine 

shuttle, particularly the M isoform of the mitochondrial carnitine palmitoyltransferase I (CPT 
I) and mitochondrial carnitine palmitoyltransferase II (CPT II), is markedly increased during 

the early postnatal period [45]. Other key proteins that have been associated with the uptake 

of fatty acids into cardiac muscle cells also exhibit increased mRNA expression during matu-

ration of the heart, reflecting increased fatty acid uptake and metabolism [46].

In addition, there is a change in the transfer and use of the energy currency in the mitochon-

dria during the cardiac development. MitoCK is responsible for the production of high-energy 

phosphates in adult heart. In the fetal heart, mitoCK levels are undetectable, with its expression 

starting between weeks 1 and 2 in the Wistar rat pup and rising to adult levels after 6 weeks 

[47]. MitoCK expression was associated with creatine-activated respiration and the affinity of 
OXPHOS to ADP. Importantly, there is a change in the organization of the cardiac mitochon-

dria from a random arrangement from day 1 in a rat to a fine network of myofibrils by week 3, 
as mitoCK allows maximal activation of the processes of OXPHOS [47].

2.3. Cardiac mitochondria during aging

Aging is a major risk factor for cardiovascular diseases. During aging, mitochondrial oxida-

tive stress responses, mitochondrial damage, and biogenesis as well as the cross-talk between 

mitochondria and cellular signaling are changed.

Aging may induce changes to the shape and size of mitochondria in the heart [48]. In aged 

mice, mitochondria appeared more rounded and less spherical [49]. It was further noted that 

aged mitochondria exhibit a lower total area of inner membrane per mitochondria, suggesting 

a reduced capacity for OXPHOS [50]. Reciprocally, increased levels of large-scale deletions 

and point mutations in cardiac mtDNA, as well as reduced levels of mitochondrial enzymatic 

activities, may occur with aging.

Additionally, the multiple metabolic changes that occur in cardiac muscle with advancing age 

include increasing levels of saturated fatty acids and reduced levels of polyunsaturated fatty 
acids and cardiolipin [51]. Cardiolipin is a key cellular phospholipid and an important con-

stituent of the mitochondrial inner membrane. Reduced cardiolipin influences cardiac mito-

chondrial membrane transport function, fluidity, and stability of the membrane and facilitates 
optimal energy generation [51]. Significant reduction in carnitine and acetyl carnitine levels 
has also been reported in older subjects, suggesting lowered ability to transfer fatty acids into 
the mitochondria to be metabolized [52]. In addition, the effect of aging on cardiac OXPHOS 
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enzymatic function has been reported. Within cardiomyocytes, the interfibrillar mitochondria 
consume less oxygen and show a decrease in the ETC enzyme activity, particularly complexes 

III and IV during aging [53, 54]. This decrease in enzyme activity may lead to the lowered abil-

ity to meet the energy demands of the heart as aging ensues.

Furthermore, mitochondrial abnormalities have been proposed due to the increased mito-

chondrial production of ROS during aging. The rate of oxidative phosphorylation decreases 

with aging, allowing for increased leakage of electrons [48], these electrons are then able to 

interact with oxygen, generating superoxide anions and other forms of ROS. Excessive ROS 

formation has harmful consequences, including cellular dysfunction and cell death [48]. This 

high level of ROS is also able to oxidize mtDNA. Moreover, opening of the mPTP has been 

found to be changed in the heart during aging [55]. Increased opening of the mPTP may be 

linked to higher ROS levels and thus may be facilitating the aging process.

3. Mitochondria in heart diseases

Although the pathophysiology of heart diseases is divergent, mitochondrial dysfunction 

appears to be a common mechanism that determines cardiac survival and function. Cardiac 

mitochondrial abnormalities include shifted metabolic substrate utilization, impaired mito-

chondrial ETC activity, increased formation of ROS, altered calcium homeostasis, and 

increased mPTP opening. Defects in mitochondrial structure and function have been found 

in association with cardiovascular diseases such as dilated and hypertrophic cardiomyopathy 

(DCM and HCM, respectively), cardiac conduction defects and sudden death, ischemic and 

alcoholic cardiomyopathy, and myocarditis. This section focuses on the changes of mitochon-

drial bioenergetics that are associated with cardiac survival and growth in heart diseases, 

including heart failure (HF), ischemia/reperfusion (I/R), pressure overload–induced cardiac 
hypertrophy and the cardiomyopathies in diabetes, and genetic mitochondrial diseases (MD).

3.1. Mitochondrial dysfunction in HF

HF is an end stage of many heart disorders and a complex chronic clinical syndrome. Although 
the causes of HF are variable, HF is viewed as an energy-mismatched disease [1, 56]. The first 
link between HF and mitochondrial dysfunction was described in 1962 in a guinea pig model 
with HF induced by an aortic restriction [57]. Since this observation, there has been growing 

interest in the investigation of mitochondrial function in failing hearts [58], and emerging evi-

dence supports the concept that dysregulation of myocardial energetics is tightly associated 

with the development and progression of HF [1, 56, 59, 60].

The heart requires large amounts of energy to facilitate its continuous contraction and relax-

ation cycles. HF occurs when the energy demand outweighs the energy supply. Any contribu-

tor that leads to HF is accompanied with a gradual but progressive decline in the activity of 
mitochondrial respiration, leading to diminished capacity for ATP production and subsequent 

progression of the heart to fail. Reciprocally, a failed heart reduces the blood and oxygen sup-

ply to the peripheral tissues and to the heart itself, further exacerbating the decline in cardiac 

energy production. On the other hand, the amount of ATP required from the mitochondria is 

increased to meet the abnormally enlarged myocardium size and failing function, augmenting  
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the imbalance between the requirement and supplement of oxygen in the cardiac muscle dur-

ing the contraction and relaxation cycle. Consequently, the bioenergetic requirements of the 

heart are beyond what the mitochondria can cope with, and the heart begins to progress to 

HF. Thus, energy deficiency can be a cause and effect of HF. There are considerable evidences 
of links between HF and impairment of the energetics of myocardial mitochondria, such as 
declined mitochondrial synthesis/resynthesis of ATP, shifted fuel selection, impaired mito-

chondrial biogenesis, and abnormal calcium transport.

3.1.1. Reduction of ATP synthesis

Like all the other cells, there are three energy systems that contribute to the production of ATP 

in cardiac muscles: phosphagen system (ATP-creatine phosphate cycling; high power, short 

duration), glycolysis (moderate power/short duration), and FAO (low power/long duration). 
Three energy systems can be selectively recruited, depending on the amount of oxygen avail-

able, as part of the cellular respiration process to generate the ATP for the cardiac muscles. 

Since the heart has a limited capacity for substrate storage, energy is required to rebuild or 

resynthesize it. The energy released from any of these three series of reactions is coupled with 

the energy requirements of the reaction that resynthesizes ATP.

ATP-CP system is the quickest way to resynthesize ATP. CP, like ATP, is stored in cardiac 

muscle cells and serves as the main energy store in myocardium. If oxygen is unavailable, 

the ATP-CP system does not use oxygen and does not produce lactic acid. This is the primary 

system behind the very short, powerful movements of the cardiac contraction and relaxation 

cycle. When CP is broken down, a large amount of energy is released. This energy released is 

coupled to the energy requirement necessary for the resynthesis of ATP. CP can easily diffuse 
through the inner mitochondrial membrane to the cytosol to generate ATP from ADP cata-

lyzed by the cytosolic CK (cytoCK). Normal beating cardiomyocytes, even under variations of 

workload, maintain a constant level of ATP and CP in the cytosolic and mitochondrial com-

partments [58]. The CP/ATP ratio of 1.7–2.1 reflects normal mitochondrial ATP production and 
CK efficiency. This ratio has become a powerful index of the bioenergetics of the heart and its 
decrease has been reported in both the human and animal models of HF [61–65]. In HF patients 
and animal models, the total CK, as well as both the cytoCK and mitoCK, positively correlates 

with ejection fraction and can decrease as much as 50% [66–68]. It is observed that the decrease 

in CK activity, rather than the level of hypertrophy itself, is a hallmark of the transition from 

severe hypertrophy to HF [62, 69]. Interestingly, healthy myocardial cell size, myofibrillar and 
cytoskeletal organization, and positioning of the mitochondria near the SR allow for the ATP 

production in both mitochondrial and cytosolic regions and work concurrently to meet the 

energy demand [69]. However, in the failing hearts, the increase in myocardial cell size, the 

shrinkage of mitochondrial content, the alterations in microtubules, and the disorganization 

of cytoskeletal protein and their reduced expression contribute to decrease the efficiency of 
mitoCK and cytoCK for the energy transfer between the mitochondria and the cytosol [70–73].

The glycolysis system is the second-fastest way to resynthesize ATP. In the normal heart, pyru-

vate is converted into a metabolic intermediary molecule called acetyl coenzyme A (acetyl-

CoA), which enters the mitochondria for oxidation and the production of more ATP. In the 

failing heart, the conversion to lactate occurs due to the greater demand for oxygen than the 

available supply. Although the catabolism of sugar supplies the necessary energy from which 
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ATP is manufactured, it is only partially broken down when sugar is metabolized anaerobi-

cally. Only a few moles of ATP can be resynthesized from the breakdown of sugar as compared 

to the yield possible when oxygen is present. In addition, there is an increase in hydrogen ions 

due to the formation of lactic acid, causing the muscle pH to decrease. This leads to acidosis 

and the accumulation of other metabolites such as ADP, P
i
, and potassium ions that may fur-

ther induce the inhibition of specific enzymes involved in metabolism and muscle contraction.

The aerobic system includes the Krebs cycle and the ETC. Mitochondria are crucial for the 

working of the cardiomyocytes as these powerhouses provide the aerobic metabolism for 

the cardiomyocyte function. Reduced mitochondrial oxidative capacity has been observed in 

rodent HF models. The onset of HF is not an overnight process but a progression of continual 
abnormalities in the bioenergetics due to the disruption of metabolic regulatory signaling 

pathway or the lack of oxygen supply, which leads to failure in mitochondrial dysfunction 

and decline in ATP production.

3.1.2. The shift of fuel selection of mitochondrial bioenergetics

Numerous studies have demonstrated that cardiac substrate preference is altered in the failing 

heart. Fatty acids are the preferential energy substrates of the heart and contribute to 60–90% 
of cardiac ATP production [74]. At the early phase of HF, there is a decline in FAO. An adap-

tive mechanism is to switch from fatty acid to glucose via the glycolytic pathway. The decrease 
in the capacity for the mitochondria to oxidize fatty acids is linked to the reduced expres-

sion of the master regulator of energy metabolism in mitochondria, PGC-1α (transcriptional 
co-activator peroxisome proliferator–activated receptor-γ coactivator-1α) [75–77]. In mouse 

model, PGC-1α is shown to be crucial for the functional efficiency of mitochondrial FAO, lipid 
regulation, and ATP synthesis, particularly in instances of increased cardiac demand [78]. The 

overexpression of PGC-1α in transgenic mice induces enhancement of mitochondrial respira-

tion and an increase in mitochondrial numbers [79]. The downregulation of PGC-1α leads to 
reduction of its downstream targets, e.g., nuclear respiratory factor (NRFs), estrogen recep-

tor–related receptor (ERRα/γ), peroxisome proliferator–activated receptors (PPARs), and sub-

sequently regulates FAO, glucose utilization, and mitochondrial biogenesis [1, 69]. PPARα, 
as a transcription factor that enables fatty acids to be transported into the mitochondria and 
peroxisomes, is downregulated in failing hearts of animals and humans [80, 81]. In human HF 
patients (both ischemic and idiopathic DCM), ERRα and its target genes were downregulated, 
which may contribute to the reduction of mitochondrial metabolic capacity [81].

It is yet unclear whether the myocardial substrate shifts serve as adaptive functions or cause 

deleterious effects on the failing heart, but the evidences from reports in animal models and in 
rare genetic human diseases provide some light. In mice studies, the rapid decline in the cardiac 

mitochondrial FAO capacity induces cardio-lipotoxic effects due to the accumulation of lipids 
[82, 83]. Furthermore, when FAO enzymes such as the very-long-chain acyl-CoA dehydrogenase 
(VLCAD) or the long-chain acyl-CoA dehydrogenase (LCAD) are disrupted in mice, cardio-

myopathic profiles similar to human cases are observed [84, 85]. Likewise, with cardiac-specific 
deletion of the PPARβ gene, which is involved in the oxidation of the FA, the mice developed car-

diomyopathy with cardiomyocyte apoptosis and death [86]. Moreover, in human cases, reports 

of deficiencies in children of enzymes that are part of the mitochondrial long-chain FAO have 
caused a stress-induced cardiomyopathy due to accumulation of myocardial lipids [87]. Despite 
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these evidences of the cardiac pathologies that come from reduced mitochondrial FAO, the shift 
from FAO to glucose in the hypertrophied heart may be beneficial and adaptive for the short 
term. PPARα-null mice, for example, have reduced FAO efficiency, but the hearts showed no 
ventricular dysfunction. However, in a rat pressure overload model, when FAO was reactivated, 
the hearts developed ventricular dysfunction [88]. In addition, the degree and duration of the 

pathophysiological stimulus as well as the systemic metabolic state (e.g., levels of circulating lip-

ids) may contribute to the consequence of alterations of FAO capacity in the pathogenesis of HF.

3.1.3. Dysregulation of Ca2+ homeostasis

The reduction of energy production rate in dysfunctional mitochondria is also attributed by 
the dysregulation of Ca2+ homeostasis within the cardiomyocyte. Mitochondria act as a cal-

cium sensor detecting the increase and decrease of the cytosolic Ca2+ to meet the needs of 

the cardiomyocyte. Ca2+ is transported into the mitochondria via MCU and out of the mito-

chondria via the sodium-calcium exchanger (NCX). Both the MCU and mitochondrial NCX 

are localized to the IMM. In normal physiological conditions, in the event of increased work-

load, the cytosolic Ca2+ is increased, triggering the opening of the MCU to transport Ca2+ into 

the mitochondrial matrix. The influx of the mitochondrial Ca2+ in the matrix increases the 

ATP synthase and the dehydrogenase activity of the citric acid cycle to generate more ATP 

[58]. Another transporter of Ca2+ into the mitochondria is the mPTP, which requires oxidative 

stress, elevated phosphate, and adenine nucleotide depletion to be opened. Increased uptake 

of Ca2+ into the mitochondria has been linked to cellular dysfunction and energy reduction [89, 

90]. Also, the accumulation of Ca2+ in the mitochondria induces activation of the apoptotic and 

necrotic pathways [91]. In addition, in postmyocardial infarction HF mouse model, diastolic 
SR Ca2+ leak induces mitochondrial Ca2+ overload and dysfunction [92]. In HF, Ca/calmodu-

lin-dependent protein kinase II (CamKII) has been involved in increasing mitochondrial Ca2+ 

uptake through the MCU and promotes mPTP opening and myocardial cell death [93].

3.1.4. Impaired mitochondrial biogenesis

Efficient mitochondrial capacity to meet the heart’s workload also involves maintaining and 
protecting its biogenesis. It has been shown that the mitochondrial biogenesis was declined 

in failing heart, which is associated with the downregulation of the transcription factors such 

as NRF and ERRα [94].

3.1.5. Excess generation of ROS

The respiratory chain regularly generates ROS in the form of O
2
·−, which can initiate the for-

mation of other ROS such as OH, peroxynitrite, and H
2
O

2
. These O

2
·− are not able to easily 

permeate outside the mitochondria and become trapped within. Since mtDNA has no protec-

tive histones and a poor DNA repair system, mtDNA is more susceptible to damage and has 

a high mutation rate [58]. Presence of ROS generates oxidative stress and damage not only to 

DNA, but also to proteins of the cell, which include those in signaling of the mechanical and 

structural roles. In a canine model of HF and HF patient blood samples, O
2
·− production by 

the mitochondria is increased [95, 96]. The reduction of PGC-1α in HF has also been found to 
promote oxidative stress and mitochondrial damage [97]. Another source of ROS is one of the 
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isoforms of NADP oxidase (Nox). Nox 4 is abundant in cardiomyocytes and is localized pri-

marily in the mitochondria. Nox 4 has been reported to enhance ROS production in aging and 

in pressure overload–HF models [98–100] and also is highly active in failing human hearts 

[101]. Moreover, ROS plays a part in regulating cardiac hypertrophic pathways: Ras, protein 

kinase C, Jun N-terminal kinase, and mitogen-activated protein kinase [94, 102].

In summary, HF is characterized by bioenergetic imbalance between the energy production 
from mitochondria and demands from the myocardial performance. There are many complex 

simultaneous interplays between: the maintenance of ratio of CP/ATP, the level of total CK 

as a catalyst, the cycling of Ca2+ between the cytosol and the mitochondrial matrix, the major 

regulatory role of PGC-1α for mitochondrial biogenesis, FAO and glucose metabolism, and 
even the volume of cardiomyocyte in affecting mitochondria positioning that influences effi-

ciency of ATP production in cardiac mitochondria.

3.2. Mitochondria and ischemia/reperfusion (I/R)

The normal function of the mitochondria maintains the endurance of the cardiomyocyte in 

the events of stress and increased workload. However, as soon as the series of biochemical 

alterations and damage in the mitochondria occur, the cell viability declines and regresses 

to cell death. Mitochondrial dysfunction contributes to cell damage during I/R. Myocardial 

ischemia is the result of the narrowing or blockage of the coronary artery, thereby depriving 

the cardiomyocytes from oxygen leading to hypoxia and damage to the heart region and dis-

abling the heart to efficiently pump. The effects of hypoxia induce sudden biochemical and 
metabolic changes in the cardiomyocytes. These alterations induce mitochondrial membrane 

depolarization, reduction of ATP synthesis, and damage to the contractile function. With the 

cardiomyocytes being devoid of O
2
, the cell metabolism changes to anaerobic respiration, 

inducing lactate accumulation and pH reduction. The increase in proton drives the Na+-H+ 

ion exchanger to expel H+ from the cell in exchange for entry of Na+ ions [103]. Furthermore, 
due to the lack of ATP, 3Na+-2 K+ATPase fail to function causing more accumulation of Na+ 

and inducing the reverse function of the NCX pump to extrude Na+ and accumulate Ca2+ ions, 

promoting Ca2+ overload [104]. However, with prolonged ischemia, the increase in mitochon-

drial Ca2+, ROS, and decline of ATP level, the mPTP is triggered to be opened. These changes 

further result in mPTP opening, mediating both the necrotic and apoptotic cell death.

Although reperfusion restores the region of ischemia with new influx of O
2
, and the necessary 

substrates for aerobic ATP synthesis are delivered and extracellular pH has been restored, 

reperfusion has been proven to deliver damage at the same time. As blood flow reintroduces 
molecular oxygen to the damaged areas, ROS is generated. While the mitochondria gener-

ate ROS in normal physiology, the reperfusion of the ischemic region induces bursts of ROS 

production that overwhelms the ability of the cells to normally scavenge the reactive species 

[105]. It has been reported that upon reperfusion, while O
2
 supply is suddenly restored, the 

rapid normalization of the pH and the existing Ca2+ overload and oxidative stress triggers the 

mPTP to be opened [106, 107]. If the duration of the ischemia is relatively short, the biochemi-

cal changes would not be as severe, mPTP remains closed, and the cell will recover [58]. The 

activation of mPTP occurs in two stages [107]. In the first stage, during ischemia, due to the 
accumulation of fatty acids, loss of cytochrome c and antioxidants, the dissipation of the elec-

trical potential across the membrane establishes the ‘priming’ formation of the mPTP. When 
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reperfusion is introduced, the opening of the mPTP is triggered by multiple factors such as 

Ca2+ overload, increased free phosphate, ROS, and acidosis [107]. In addition, as the mito-

chondrial membrane potential continues to decline, mitochondrial and cytosolic Ca2+ levels 

continue to increase, leading to cell necrosis and apoptosis.

3.3. Mitochondria and pressure overload–induced cardiac remodeling

Under physiological or pathological cardiac workload, the heart adapts through structural 

remodeling to meet the requirements. Remodeling at the cellular level induces alterations 

in organelle structure, intercellular protein, and gene expression [108]. At the early stages of 

cardiac hypertrophy, there are enhancement and preservation of the mitochondrial oxidative 

capacity, but as hypertrophy progresses to HF, mitochondrial function is gradually impaired 
[109]. Mitochondrial alterations and dysfunction have been linked to cardiac remodeling 

including morphology, FAO, ATP synthesis, biogenesis, ROS, and mitophagy.

It has been widely accepted that pressure overload–induced cardiac remodeling alters the mito-

chondrial morphology in size, volume, and numbers. For example, the mitochondria were found 
to be swollen, with degraded mtDNA and altered cristae structures in HCM model in pigs [110]. 

There were distorted cristae and reduced mitochondrial density and volume in a pressure over-

load–induced cardiac hypertrophic mouse model without difference in mitochondrial numbers 
between the hypertrophic hearts and the sham control [111]. Despite these evidence from animal 

models, observations from electron microscopy show remarkable variabilities in HF patients of 
cardiomyopathy in terms of the mitochondrial numbers, size, and matrix density [112].

In addition, in the pressure overloaded heart, the fuel that drives mitochondria to synthesize 

ATP switches from FA to glucose, which causes lesser ATP production and depletion in cel-
lular energy. In normal physiology, the uptake of FAs involves the conjugation of FA to acetyl 
CoA (FA-CoA). FA-CoA enters the mitochondrial matrix and is metabolized by the beta oxi-
dation process through the carnitine shuttle, CPT-1 and CPT-2 [113]. In the pressure overload 

heart, FAO rate is reduced, along with the decrease in mRNA expression of CPT-1 [114–116]; 

however, some report it to be unchanged [113]. The variable data might be due to the varying 

degrees of hypertrophy in different animals [113].

Furthermore, pressure overload–induced cardiac remodeling also affects mitochondrial 
biogenesis. In response to metabolic status of the cell, the mitochondria undergo controlled 

cycles of biogenesis with fusion and fission. The processes of the fusion and fission are well 
regulated by PGC-1α, which then regulates ERRα to act on the group of guanosine triphos-

phatases (GTPases). Fusion involves mitofusin proteins (MFN 1 and 2) in the outer mito-

chondrial membrane and optical atrophy protein 1 (OPA1) in the IMM. The fusion process is 

switched on to balance the mitochondrial membrane potential and allows for the exchange 

of matrix components, as well as damaged mtDNA [117]. Fission, on the other hand, allows 
for more mitochondria to be distributed further to release cytochrome c during apoptosis 

and mitochondrial degradation by mitophagy. Fission occurs through dynamin-1-like pro-

tein (DRP1), mitochondrial fission factor (MFF), and adapter protein mitochondrial fission 1 
(FIS1). In physiological hypertrophy, PGC-1α activates biogenesis to meet the demands of the 
heart [77]. At early stages of pathological hypertrophy, mitochondrial biogenesis increases, 

and mitochondrial numbers increase, but as hypertrophy worsens to HF, PGC-1α expression 
is downregulated and biogenesis activity is impaired [79, 118]. In addition, as hypertrophy 
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transits to HF, the expression of OPA1 is reduced and mitochondria become small and frag-

mented. Furthermore, in decompensated hypertrophy and HF, the mitochondrial biogenesis 
also declines due to depletion of ATP synthesis, which then halts the increase in new mito-

chondria in the cardiomyocyte [109].

Moreover, cardiac hypertrophy also affects the energetic cross-talk between mitochondria 
and other organelles to transfer ATP. There is direct communication between the mitochon-

dria and the ATPases of the myofibrils and the SR [119]. Muscle mitochondria in its ordered 

bundled organization around the myofibrils and the SR are highly clustered at regions of 
high-energy demand where there is a tightly regulated ATP/ADP ratio [69]. In the pressure 

overload–induced hypertrophic heart, the direct channeling of ATP within the high-energy 

demand sites becomes weakened due to the decrease in mitochondrial content and num-

bers [69, 119]. In addition, mitophagy is activated in pressure overloaded cardiomyocytes 

due to the increased cellular damage from mitochondrial dysfunction. The causative factors 

of autophagy in cardiac hypertrophy are complex. Although low baseline autophagy allows 

the cardiomyocytes to adapt to hypertrophic demands, exacerbation of autophagy promotes 

hypertrophic contractile dysfunction [120].

In summary, pressure overload causes cardiac remodeling through disruption of the cell 

signaling pathway, altering the mitochondrial morphology in size, volume, and numbers, 

regulating the mitochondrial biogenesis and affecting the energetic cross-talk between mito-

chondria and other organelles to transfer ATP for utilization by the cardiomyocyte or mitoph-

agy. These changes further lead to the failing of the myocardium.

3.4. Mitochondria and diabetic cardiomyopathy

Although coronary artery disease remains as the top cause of mortality and morbidity in west-

ern countries, the link between HF and diabetes is growing with the rising incidence of dia-

betes and prediabetes [121]. Based on epidemiological studies, diabetic individuals are likely 

to develop HF compared to those who have no diabetic history [122]. This link describes the 

term diabetic cardiomyopathy, which is due to the myocardium of chronic diabetes patients 

showing diastolic dysfunction and left ventricular hypertrophy, followed by later onset sys-

tolic dysfunction that regresses to decompensated HF [123]. Approximately 60% of type 2 dia-

betic patients have diabetic cardiomyopathy [124]. The causes of diabetic cardiomyopathy are 

multifactorial and complex. Cardiac mitochondrial abnormalities were found in both diabetic 

mouse models and human diabetic hearts. Diabetic cardiomyopathy has been linked to the 

increased myocardial oxygen consumption and increased oxidative stress. Mouse models of 

type 2 diabetes (db/db and ob/ob) showed dysfunctional mitochondrial state 3 respiration and 

decline in ATP production [125, 126]. In right atrial myofibers of diabetic patients, defects in 
respiratory complex were observed with the reduction of state 3 respiration on impairment in 

complex I alone [127]. Another respiration deficiency was detected in myofibers from diabetic 
patients that showed deficiency in respiration with substrate palmitoyl-L-carnitine [127].

Interestingly, opposite to the reduction of FAO in failing heart, diabetic hearts had more FAO and 
a reduction in glucose oxidation. The increase in FAO is attributed to the increased expression of 
PPARα, which increases the genes that are involved with cardiac FA utilization [128]. Additionally, 

in type 2 diabetes, reduction of cardiac efficiency is also caused by an increase in mitochondrial 
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uncoupling that in turn increases O
2
 consumption. The series of events begins with the increased 

availability and delivery of FA that forces the mitochondria to increase FA uptake. This stimulates 
the increase in ROS production [129]. ROS generation activates the uncoupling proteins (UCs) 

and promotes proton leak via ANT. The increase in mitochondrial uncoupling propagates the 

increase of mitochondrial O
2
 consumption, which promotes the activation of FAO. As mitochon-

drial uncoupling causes the rise in O
2
 consumption, the ATP production will not be increased. 

This reduces the cardiac efficiency of the cell in the generation and usage of energy, which sub-

sequently reduces the provision of ATP for the cell and leads to contractile dysfunction. Thus, 

this is the link between the type 2 diabetes mechanism merging with contractile dysfunction and 

development of muscle pathology, with diastolic dysfunction and left ventricular hypertrophy.

3.5. Genetic mitochondrial heart disease

Genetic MD can be caused by a mutation in either the mtDNA or the nDNA [130, 131]. MDs 

arising from mtDNA are more prevalent in adults, whereas diseases arising from nDNA tend 

to be more prevalent in infants and children [132]. MDs can also be classified by the function 
of the proteins involved in the disease. For example, MDs have been found to be associated 
with the mutations in genes that encode subunits of the ETC complexes [130] and ATP syn-

thase [133, 134], ancillary proteins that participate in the assembly, transport, and function of 

the ETC complexes, or the regulatory proteins that control activities of the mitochondria [130, 

131]. In addition, mutations have been described in gene-encoding proteins that synthesize 

cardiolipin, an integral part of the inner mitochondrial membrane [135, 136]. The most fre-

quently identified biochemical abnormalities are deficiencies in NADH-coenzyme Q (CoQ) 
reductase (complex I) and cytochrome-c oxidase (complex IV) [135, 136].

The mitochondrion is a unique organelle as it possesses its own DNA system. While mutated  

DNA can affect any organ, the presence of the mtDNA mutations in highly metabolic tissues, 
such as brain, heart, skeletal muscle, and eyes, exhibits a more severe and progressive prognosis. 

Patients with the known mitochondrial mutation of m.3243A > G develop early death, whereas if 

this mutation has a cardiac cause, sudden deaths would occur [137]. A healthy individual may pos-

sess mutated DNA, but the onset of the disease will not be obvious until a certain mutation thresh-

old of ~60–90% is present [138]. Inheritance of mtDNA occurs only through the maternal line with 

single, large-scale deletions being rare and the point mutations frequently transmitted [139].

Cross-sectional studies have shown that specific mitochondrial mutations have been pre-

sented with a certain cardiac phenotype, and cardiac disorders could inherit different mtDNA 
mutations [140]. For example, there are inherited familial cardiomyopathies (in both children 
and adult) linked to mutations in the mtDNA [139, 141]. Mutation m.1555A > G mt-rRNA has 

only been associated with restrictive cardiomyopathy [142]. Conversely, up to 40% of MD 

patients have HCM [143]; atrioventricular (AV) block is one of the manifestations of Kearns-
Sayre syndrome (KSS) that is due to the large-scale deletions in the mtDNA [143]. The symp-

toms of HCM patients who have sarcomeric protein gene mutations differ from the those of 
MD patients who developed HCM. Generally, these MD patients who develop HCM have left 

ventricular dysfunction but no left ventricular outflow tract obstruction [144, 145]. Another 

cardiomyopathy-presenting phenotype that is less common in the MD patients is DCM. The 

echocardiographic findings showed slow progression of disease [146, 147].
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Cardiac phenotype association with genetic MD is more common than realized; however, the 

mechanism of association of some mutations with specific cardiac phenotypes is not clearly 
understood. Since myocardial cells depend heavily upon mitochondria for its energy require-

ments, it is no wonder that specific MD involves specific cardiac pathology phenotype.

4. Clinical applications

4.1. Diagnosis of mitochondrial dysfunction in heart disease

Although it has been widely accepted that mitochondria play a key role in cardiac pathological 

conditions, effectively diagnosing mitochondrial dysfunction in the clinical setting has been chal-
lenging. MDs often affect multiple organ systems in the body and clinical presentation varies; 
however, there are a few “tell-tale” signs and combinations that may enable clinicians to better 
identify MDs [148]. For example, patients with KSS, which is typically associated with single 
deletion mutations, may present with ptosis, retinal pigmentary abnormalities, ataxia, and car-

diac conduction abnormalities [148]. In patients with myoclonic epilepsy with ragged-red fibers 
(MERRF), myoclonus, cerebellar ataxia, and elevated blood lactate are key symptoms in their pre-

sentations [149]. A high suspicion is important when considering a diagnosis of MD. Cardiologists 

who evaluate patients for hypertrophy, conduction abnormalities, and DCM should be aware of 

the spectrum of MD so that they can collaborate with MD specialists to make accurate diagnoses.

Since there are variabilities in the MD symptom presentations, in addition to the clinical diag-

nosis, a multiple-parametric approach that involves histological, biochemical, and genetic 

testing is required to identify abnormalities of blood, urine, or cerebrospinal fluid (CSF) ana-

lyte values, microscopic irregularities, biochemical deviations on polarographic assays, or a 

diagnostic genetic finding [150].

4.1.1. Genetic tests

It is crucial to understand that not all persons with mtDNA mutations will manifest the symp-

toms. Nuclear DNA and mtDNA mutation screening can be performed in the consented fam-

ily, but the challenge remains that only a small proportion of these nDNA mutations have 

been identified. The presence of family history of maternal inheritance or multisystemic dis-

eases will be important to note. Furthermore, mitochondrial genome screening can also be 
performed on the muscle sample [132].

4.1.2. Laboratory tests

Muscle biopsy in conjunction with molecular genetic testing is required for effective diagnosis 
of MD [151]. A major feature of the histological result of the biopsy using the Gomori Trichrome 

stain shows >2% ragged red fibers that come from the sub-sarcolemmal mitochondrial accu-

mulation. However, these ragged red fibers are present only in the late stage of the disease and 
commonly absent in children [132]. The key diagnostic feature is the presence of fibers that are 
deficient for cytochrome c oxidase (COX) activity [with >2% of COX negative fibers], reflect-
ing low activity of complex IV of the respiratory chain, in patients less than 50 years [148, 151]. 

COX activity may be decreased in healthy older patients, so its use in diagnosis is limited to 
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younger patients. Laboratory tests for the levels of creatine phosphokinase, pyruvate, albumin, 

lactate, transaminases, and blood count are also recommended [152]. An elevated postprandial 

lactate:pyruvate ratio (>20) is commonly found in MD patients; however, some MD patients 

may show normal ratio and thus other tests are required to confirm the disease [146]. Next-

generation sequencing is also proposed for screening of the multiple mutations associated with 

MDs [152]. Additionally, fibroblast growth factor-21 (FGF-21) has been recently identified as a 
serum biomarker of MDs associated with both mtDNA and nDNA mutations [148], potentially 

simplifying the clinical diagnosis of MD.

4.1.3. Cardiac imaging

The cardiac presentation of MD patients varies; however, progressive cardiac conduction defects 

may develop into a complete heart block in KSS, while Wolff-Parkinson-White (WPW) syndrome 
can develop in patients with mitochondrial encephalomyopathy, lactic acidosis, and stroke-like 

episodes (MELAS) syndrome owing to the m.3243A > G mutation [153, 154]. There is no char-

acteristic manifestation of cardiomyopathy that differentiates MD, although HCM is common 
[150]. Cardiac imaging using cardiovascular magnetic resonance (CMR) with late gadolinium 

enhancement (LGE) can be used to effectively evaluate the heterogeneous presentation of HCM, 
offering a more reliable measurement of all segments of the heart than echocardiography [155].

4.1.4. Electrocardiogram

In the early stage of the diagnosis process of MD, 12-lead electrocardiogram results are useful 

to add to the diagnostic criteria [146]. ECG results will be variable depending on the kinds of 

syndrome the mitochondrial myopathy is associated with [156]. Ocular myopathy patients 

may in general show normal ECG profile, but two out of the six patients were presented with 
ST depression and inverted T wave [156]. Patients with MELAS/MERRF may show atrial or 
ventricular premature contraction (APC or VPC) with T-wave abnormalities such as inverted T 
wave, as well as ST depression [156]. These abnormalities can be present even without the pre-

sentation of left ventricular hypertrophy [146]. A profile of short PR, or WPW, was also found 
for a MELAS patient [146, 156]. Patients with KSS presented cardiac conduction abnormalities 

with a variation of ECG profile of AV blocks, complete right bundle branch block with inverted 
T, or left axis deviation (LAD) and prolonged His ventricular (HV) interval [156]. Though some 

patients may show normal ECG profile at diagnosis, performing another ECG every 1–3 years 
may be important to detect uprise of cardiac abnormalities or complications [151].

4.2. Mitochondria as a drug target in heart disease

Most standard-of-care pharmacological approaches to HF, such as β-blockers, ivabradine, a 
cyclic nucleotide-gated channel blocker, and antagonism of the renin-angiotensin-aldosterone 

system, focus on the reduction of the energy requirements of cardiac muscle, including modu-

lation of neurohormonal abnormalities, unloading the heart (vasodilatation), and/or reducing 

the heart rate, which subsequently reduces myocardial oxygen consumption. Although these 

therapies have improved survival in patients over the past 2–3 decades, death and poor quality 

of life continue to adversely affect this ever-increasing patient population [94]. The search for 

more effective and complementary therapy for these patients must be focused on improving 

Mitochondria and Heart Disease
http://dx.doi.org/10.5772/intechopen.72611

47



the intrinsic function of the cardiomyocytes [157, 158], such as finding ways to increase/restore 
the energy supply, in addition to reducing the energy demand of the heart [1].

Since disruption of metabolic signaling pathways such as in FAO, glucose utilization, or ATP 
generation contributes to the development of heart dysfunction, proteins in these metabolic 

pathways have become attractive targets of novel therapeutic strategies for the prevention or 
early treatment of HF [159]. Selective agonists for each of the PPARs have been established and 

are currently used to treat hyperlipidemia (fibrates) and diabetes (thiazolidinediones). It must be 
noted that stimulation of the PPAR pathway in the heart or extra cardiac tissues, e.g., adipose or 

hepatic tissue, potentially diminishes cardiac lipotoxicity by reducing lipid delivery or increas-

ing mitochondrial oxidation. However, chronic activation of PPARα could lead to deleterious 
effects, particularly in the context of diabetes, hyperlipidemic states, or the ischemic heart [159].

Additionally, although the molecular mechanisms responsible for mitochondria-mediated dis-

ease processes are not yet clear, oxidative stress seems to play an important role. Accordingly, 

strategies for the targeted delivery of antioxidants to mitochondria are being developed. 

A typical “mitochondrial cocktail,” which may include coenzyme Q10 (CoQ10), creatine, 
L-carnitine, thiamine, riboflavin, folate, as well as other antioxidants such as vitamins C and E, 
has been reported to partially improve clinical manifestations, though others have disputed its 

effectiveness [160]. Although, L-carnitine supplementation may be highly effective in patients 
diagnosed with DCM secondary to primary systemic carnitine deficiency, supplementation 
has little effect on other types of mitochondrial cardiomyopathy [132]. Recent developments in 

mitochondrial-targeted antioxidants that concentrate on the matrix-facing surface of the IMM 

protect against mitochondrial oxidative damage and hold therapeutic potential for future 

treatment of cardiovascular diseases (CVDs) [161].

Because a cure for mitochondrial genetic defects is still not available, the management of 

genetic MD with presentation of cardiac pathology, β-blockers, ACE inhibitors, or angioten-

sin receptor blockers should be administered [146]. Providing rudimentary nutritional educa-

tion along with nutritional assessment and exercise will be important for the patients to take 

preventative measures from further lifestyle disease complications [146, 162]. Should there 

be advanced second- and third-degree AV block coupled with neuromuscular disorders, a 
permanent pacemaker is highly recommended [163]. Depending on the severity of the mito-

chondrial cardiomyopathy, cardiac transplantation could be recommended depending on the 

presence of neuromuscular weakness as it can complicate anesthesia administration [164].

5. Future direction

Because diagnosing MD can be challenging for clinicians, research is needed to better under-

stand the complex bioenergetic arrangements and redox networks of the mitochondrion in car-

diac cell. Improved understanding of mitochondrial mechanism in the pathophysiology in the 

heart will help the discovery of novel biomarkers and clinical diagnostic standards for the heart 

disease. In addition, current pharmacologic strategies are incompletely effective, and large ran-

domized controlled trials are warranted to direct future therapy. Since HF is recognized as a state 
of myocyte energy starvation, greater evidence, in the form of large randomized, controlled tri-

als, is required to confirm the role of metabolic-modulating drugs in the treatment of HF, which 
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will be expected to be an area of great advances in the future. Additionally, more preclinical and 

clinical studies are necessary to evaluate the effectiveness and toxicity of mitochondrial-targeted 
antioxidants. Furthermore, the identification of the mechanisms by which alterations in sub-

strate utilization cause cardiomyopathy is also a necessary area of intense research.
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