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Abstract

In this chapter, we evaluate the forecasting performance of the model combination and
forecast combination of the dynamic factor model (DFM) and the artificial neural net-
works (ANNs). For the model combination, the factors that are extracted from a large
dataset are used as additional input to the ANN model that produces the factor-
augmented artificial neural network (FAANN). Linear and nonlinear forecasts combin-
ing methods are used to combine the DFM and the ANN forecasts. The results of the
best combining method are compared to the forecasts result of the FAANN model. The
models are applied to forecast three time series variables using large South African
monthly data. The out-of-sample root-mean-square error (RMSE) results show that the
FAANN model yields substantial improvement over the individual and best combined
forecasts from the DFM and ANN forecasting models and the autoregressive AR bench-
mark model. Further, the Diebold-Mariano test results also confirm the superiority of
the FAANN model forecast’s performance over the AR benchmark model and the com-
bined forecasts.

Keywords: artificial neural network, dynamic factor model, factor-augmented artificial
neural network model, forecasts combination, forecasting

1. Introduction

Prediction of economic or financial variable using related independent variables could be done

by either using a super model which contains all the available independent variables or using

the forecast combination methodology. Generally, it is admitted in the literature of economet-

rics that the forecast obtained by all the information integrated in one step is much better than

the combination of forecast from individual models. For example, [17] argued that “The best

forecast is obtained by combining information sets, not forecasts from information sets. If both

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



models are known, one should combine the information that goes into the models, not the

forecasts that come out of the models.” Authors of Refs. [13, 23, 25] expressed similar opinions.

As it seems the investigators in this field lean more to prefer the combination of information in

one model.

The main questions that arise in researchers’ minds are “To combine or not to combine” and

“how to combine.” In this chapter, we are concerned with the question of “combining forecasts

from different models or combining information in one model.” This is an area that has been

discussed by many researchers but not in detail (see [9, 11, 12, 29, 35, 40]).

Huang [29] state that “the common belief that combination of information is better than

combination of forecasts might be based on the in-sample analysis.” On the contrary, from

out-of-sample analysis, they found out that combination of forecasts performs better than

combination of information. Many articles typically account for the out-of-sample success of

combination of forecasts over combination of information by pointing out various disadvantages

that combination of information may possibly possess. For example, (a) in many forecasting

situations, particularly in real time, combination of information by pooling all information sets is

either impossible or too expensive (see [12, 13, 42]); (b) in a data substantial mediumwhere there

are much closed input variables in hand, the super combination of information model may bear

from exclusion problem [42]; and (c) in the absence of linearity and, simple dynamics, building

an excellent model using combination of information is more likely to be misspecified [26]. We

believe that the above-mentioned points can be maintained through the precise selection of the

model that is used to estimate the combined information. In our case we used the artificial neural

networks to overcome the nonlinearity problem that can be inherent in the series. On the other

hand, the factor model is used to tame the problem of the dimensionality, where a large dataset

can be summarized in few numbers of factors.

The seminal work of [7] opened the door to examine the prediction combination in different

fields of studies in economics and finance. Consequently, a new scope in forecasting study has

been to combine the forecasts generated by individual models, using different combinations of

techniques. This lets the ultimate forecast result to extract strength from the individual fore-

casting techniques that cannot be carried out by a single method. Empirically, forecast combi-

nations have been used successfully in diverse areas such as forecasting gross national

product, currency market volatility, inflation, money supply, stock prices, interest rates, mete-

orological data, city populations, and outcomes of football games.

Factor models were introduced in macroeconomics and finance by [22, 36]. The literature on

the large factor models starts with [19, 37]. Further theoretical advances were made among

others [4, 5, 20]. Upon the successive performance of the DFMs in forecasting, factors aug-

mented to other models are introduced. For example, Bernanke et al. [8] proposed a forecast-

ing model which they called the factor-augmented vector autoregressive (FAVAR) model, a

model which merges a factor model with a vector autoregressive component. A factor-

augmented vector autoregressive moving average (VARMA) model is suggested by Dufour

and Pelletier [16]. Factor-augmented error correction model (FECM) was introduced by Banerjee

and Marcellino [6]; Ng and Stevanovic [38] proposed a factor-augmented autoregressive distrib-

uted lag (FADL) framework for analyzing the dynamic effects of common and idiosyncratic
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shocks. Babikir and Mwambi [2] introduced a factor-augmented artificial neural network

(FAANN) that showed improved forecasts compared to DFM and AR models.

On the contrary, artificial neural networks (ANNs) have become one of the most scientific

projection methods and have been extensively used in different fields of projection goal.

Artificial neural networks have several aspects that make them interesting and authentic for

projection work. First, ANNs are common functional approximators. Second, ANNs are data-

induced self-flexible approach in that there are less a priori presumptions to be stated about

the models for the problem under examination; thus, ANN modeling is not similar to classical

model-based approaches. Third, an ANN model is a nonlinear model which is in contrast to

the conventional time series forecasting models, which postulate linearity of the series under

consideration. [45] demonstrated that systems of the real world are often nonlinear. These

advantages of ANNs have attracted attention in time series forecasting and have become a

competitive method to traditional time series forecasting methods, and the literature is very

vast in this area. The hybrid approach or combining models represent the most important

developments in ANNs over the last decade. More hybrid models of ANNs with different

forecasting models have been introduced in the recent time, which successfully improve the

forecasting performance. [44] proposed the integration of the generalized linear autoregression

(GLAR) model with artificial neural networks in order to obtain accurate forecasts for foreign

exchange market. [43] proposed a hybrid model called SARIMABP that combines the seasonal

autoregressive integrated moving average (SARIMA) model and the back-propagation neural

network model to predict seasonal time series data. [34] introduced a hybrid model of ANNs

and ARIMA models for forecasting purpose. [1] introduced a hybrid model where the factors

were used as input to the ANNmodel. The model produced more accurate forecasts compared

to ANN and DFM.

In this chapter, through the artificial neural networks framework and factor model, for in-

sample and out-of-sample forecasting, we show analytically that combination of forecasts—of

dynamic factor model and artificial neural networks—can be outclassed by combination of

models (information)—of the factors to be used as additional input variables to the artificial

neural networks.

To the best of our knowledge, the evaluation of the forecasting performance of the combination

of information or models of factors and ANN—the FAANN—and combination of forecasts of

ANN and DFM using different linear and nonlinear combinations is new, and this is the first

attempt in general and in South Africa in particular. The empirical results show sizable gains in

terms of the forecasting ability of the FAANN compared to both the standard ANN and the

DFM and their forecasts combination; in other words it seems that combination of models

outperforms combination of forecasts meaning that combination of information could be

better than the combination of forecasts.

The remaining of the chapter is formulated as follow: Section 2 in brief expresses the DFM, the

ANN, and the FAANN projection models and the combination techniques; Section 3 intro-

duces the data; the results obtained from forecasting models and their combinations are

presented in Section 4; finally, Section 5 gives a concise conclusion of the study and some

suggestions for future researches.
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2. Individual forecasting models and combination methods

In this section, we introduce briefly the symbols, formation, and estimation methods in fore-

casting models; also, we introduce and discuss the various combining methods.

2.1. Individual forecasting models

2.1.1. The dynamic factor model and the estimation of factors

This subsection handles DFM to get common elements from a large group of variables; then,

these common components are used to predict the variables of interest.

Suppose that we have a group of observations, Xt be the N stationary time series variables

having observations at times t = 1,…, T, where it is considered that the series have zero mean.

Factor model assumes that most of the variation in the dataset can be explained by a small

number q≪N of factors involved in the vector f t. We can express the dynamic factor model

representation as follows:

Xt ¼ χt þ ξt ¼ λ Lð Þ0f t þ ξt (1)

where χt is the common components driven by factor ft and ξt is the idiosyncratic components

for each of the variables. ξt is the portion of Xt that cannot be explained by the common

components. χt is a function of the q� 1 vectors of λ Lð Þ0f t; the operator λ Lð Þ ¼ 1þ

λ1Lþ…þ λsL
s is a lag polynomial with positive powers on the lag operator L with

Lft ¼ ft�1. The static representation of the model can be rewritten in as

Xt ¼ Λ0Ft þ ξt (2)

where Ft is a vector of r ≥ q static factors that compose of the dynamic factors ft and all lags of

the factors. From a set of data, there are three different methods of estimating the factors in Ft.

These methods were developed by Stock and Watson [39] hereafter SW [30] and Forni, Hallin,

Lippi, and Reichlin [20] hereafter FHLR1. In the current chapter, we employ the estimation

method developed by FHLR. For more details of the dynamic factor model estimation, see

Babikir and Mwambi [2]. Thus, the estimated factors will be used to forecast the variables of

interest. The forecasting model is specified and estimated as a linear projection of an h-step

ahead transformed variable ytþh into t-dated dynamic factors. The forecasting model follows

the setup in [3, 21, 41] with the form

ytþh ¼ β Lð Þbf t þ γ Lð Þyt þ utþh (3)

where bf t represents the dynamic factors that estimated using the method by FHLR, while

β Lð Þ and γ Lð Þ are the lag polynomials, which are determined by the Schwarz information

criterion (SIC). The uhtþh is an error term. The coefficient matrix for factors and autoregressive

terms are estimated by ordinary least squares (OLS) for each forecasting horizon h. To find

1

For further technical details on this type of factor models, see [35].
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the estimate and forecast of the AR benchmark, we enforce a condition to Eq. (3), where we

setβ Lð Þ ¼ 0.

2.1.2. The artificial neural network model

The ANN is one of the most popular and successful biological-inspired forecasting methods,

which emulate the framework of the human brain; thus, ANNs have gradually achieved

immense importance in forecasting among other fields. The ANN model is one of the general-

ized nonlinear nonparametric models (GNLNPMs). Compared to the traditional econometric

models, the advantage of ANNs is that they can handle complex, nonlinear relationships with-

out any prior assumptions about the underlying data-generating process (see [28]; Figure 1).

The properties of the ANN model made the method an attractive alternative to traditional

forecasting models. Most importantly, ANN models deal with the limitations of traditional

forecasting methods, including misspecification, biased outliers, and assumption of linearity

[27]. One of the most recognized ANN structures in time series forecasting problems is the

multilayer perceptron (MLP). An MLP is basically a feedforward architecture of an input, one

or more hidden, and an output layer. The network structure illustrated in this chapter gives

forward network connected with linear neuron activation function. Basically, the input nodes

are connected forward to all nodes in the hidden layer, and these latent nodes are joined to the

single node in the output layer, as shown in Figure 1. The inputs in this model serve as the

independent variables in the multiple regression model and are joined to the output node—

which is similar to the dependent variable—through the latent layer. We follow [33], in des-

cribing the network model. Thus, the model can be specified as follows:

nk, t ¼ w0 þ
Xp

i¼1

wiyt�i þ
XJ

j¼1

∅jNt�1, j (4)

Nk, t ¼ f nk, tð Þ (5)

yt ¼ αi,0 þ
XK

k¼1

αi,kNk, t þ
Xp

i¼1

βiyt�i (6)

Figure 1. A p � h � 1 structure of a feed forward neutral network.
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where inputs yt�i represent the lagged values of the variable of interest and the output yt is

their forecasts. The w0 and αi,0 are the bias, and wi and αi,k denote the weights that link the

inputs to the latent layer and the latent layer to output, respectively. The ∅j and βi connect the

input to the output via the latent layer. The p-independent variables are connected linearly to

form K neurons which then are combined linearly to produce the prediction or output.

Eqs. (4)–(6) link inputs yt�i to outputs y through the hidden layer. The function f is a logistic

function meaning that Nk, t ¼ f nk, tð Þ ¼ 1
1þe

�nk, t : The second summation in Eq. (6) shows that we

also have a jump connection or skip-layer network that directly links the inputs yt�i to the

output yt. The beauty of this ANN structure is that the model combines the true linear model

and nonlinear supply-forward neural network. So, if the association between inputs and output

is true linear, in this case, the coefficient set β, which is skip layer should be significant, in

contrast if the association is a nonlinear in nature the jump connections coefficient β to

be insignificant, while the coefficients set w and α be highly significant. Certainly, if the

association between input and output is mixed, then we watch for all coefficient sets to be

significant. For the best network selection in this chapter, beside the minimum error, we use

Bayesian information criterion (BIC), which is usually preferred more than the other three

criteria, because it has the ability to penalize the extra parameters more severely; mathemati-

cally, BIC is given by the following as described in [31]

BIC ¼ Np,h þNp,hln nð Þ þ nln
S Wð Þ

n

� �

(7)

where Np,h ¼ h pþ 2ð Þ þ 1 is total number of parameters in the network, n ¼ Ntrain � p is the

number of effective observations, Ntrain is the in-sample observation, S Wð Þ is the network

misfit function, and W is the space of all weights and biases in the network. The in-sample

sum of squared error (SSE) is usually used to determine the function S Wð Þ: Eventually, the

optimal model is the model with minimum BIC value.

2.1.3. Factor-augmented artificial neural networks (FAANN)

The FAANN model is a hybrid model of artificial neural network and factor model in order to

combine information of factors and lagged values of interested variable to be forecasted for

more accurate forecasts in hand. The nonlinear function uses the series, its lag, and factors to

formulate the FAANN model that defines as follows:

yt ¼ f yt�1; yt�2;…; yt�p

� �

; F1; F2; F3; F4; F5ð Þ
h i

(8)

where f is the nonlinear functional form determined via ANN. In the first stage, the factor

model is used to extract factors from a large related dataset. In the second stage, a neural

network model is used to model the nonlinear and linear relationships existing in factors and

original data. Thus, based on the model structure depicted on Figure 2,

ytþh ¼ α0 þ
X

h

j¼1

αjg β0j þ
X

p

i¼1

βijyt�i þ
X

pþ5

i¼pþ1

βijFt, i

0

@

1

Aþ εt (9)
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As previously noted, the αj (j ¼ 0, 1,…, hÞ and βij i ¼ 0; 1;…; p; j ¼ 1; 2;…; hð Þ are the parame-

ters of the model that called the connection weights. As we have stated earlier, p and h are the

numbers of input and hidden nodes, respectively, and εt is the error term. Figure 2 shows the

FAANN model structure used.

2.2. Forecast combining methods

To combine individual forecasts composed by the DFM and ANN models, we used four

combination methods. The combining methods involve three linear combining methods (the

mean, VACO, and discount MSFE-based methods) and one nonlinear combining method

(ANN). Just as some of the combining methods need a holdout period to calculate the weights

used to combine individual forecasts, we use the first 24 months of the out of sample as

holdout observations. For all combining methods, we form combination forecasts over the

post holdout out-of-sample period. Brief details about the above combining methods are given

below.

2.2.1. Mean combination method

The mean serves as a convenient criterion as has been shown to achieve better results com-

pared to other fancy methods. For instance, see [10, 21, 32]. Compared to single forecasts, the

performance of the simple average combination method is found to be superior (see [18]). The

simple average combination method can be expressed as

byct ¼
Xm

i¼1

wibyit (10)

where byct is the combined forecast at time t, byit is the forecast from ith individual forecasting

model, wi ¼
1
m is the individual forecast weight for model i, and m is the number of individual

models. There are different forms of weights, but generally the weights have to satisfy the

condition
Pm

i¼1

wi ¼ 1.

Figure 2. The FAANN model architecture (N(p + 5,h,1)).
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2.2.2. Variance-covariance (VACO) combination method

The method uses the historical achievement of the individual forecasts to compute the weights.

Thus, according to the VACO method, the weights determined as follows:

wi ¼

PT

j¼1

yj � byi
j

� �2
" #

�1

Pm

i¼1

PT

j¼1

yj � byi
j

� �2
" #

�1
(11)

Then, the combined forecast is given by byct ¼
Pm

i¼1

wibyit where yj is the jth actual value, byij is the jth

forecasting value from ith individual forecasting model, and T is the total number of out-of-

sample points. The weight in Eq. (11) is based on the inverse sum of squared deviation for

model i as the numerator, and the denominator is the sum of these inverse contributions from

all models. This guarantees that
Pm

i¼1

wi ¼ 1.

2.2.3. Discounted mean square forecast error (DMSFE) combination method

The DMSFE method weights recent forecasts more heavily than distant ones. [32] suggest that

the weights can be calculated as

wi ¼

PT

j¼1

δT�jþ1 yj � byi
j

� �2
" #

�1

Pm

i¼1

PT

j¼1

δT�jþ1 yj � byi
j

� �2
" #

�1
(12)

where δ is the discount factor with 0 < δ ≤ 1, if δ ¼ 1 and then the DMSFE and VACO methods

become one method, which means that the VACO is a special case of the DMSFE. Note that as

mentioned above the sum of all weights is equal to one.

2.2.4. Artificial neural network (ANN) combination method

Linearity of combinations of the individual forecasts is the corner stone of linear combination

method, but if the individual forecasts are based on nonlinear methods, the combinations are

defined to be insufficient or if the true relationship is nonlinear. For the success of the ANN as a

combination method over the linear methods, among others, see [15, 25]. Here, we use the

same setup used in subsection (2.1.2); the output byct of combined forecasts can be given by

byct ¼ αi,0 þ
XK

k¼1

αi,kNk, t þ
Xm

i¼1

βiby
i
t (13)

where byit is the forecast from ith individual forecasting model.
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3. Data

For FAANN and DFM models, data are gathered that include 228 monthly time series2 of

which 203 are collected from South Africa, including the financial, real, nominal sectors, and

confidence indices, 2 global variables, and 23 series of major trading partners and global

financial markets. The AR criterion model will be used for the data which composed only the

variable of interest, namely, deposit rate or share prices for gold mining or long-term interest

rate. Thus, besides the national variables, the chapter uses a set of global variables such as gold

and crude oil prices. Also, the data incorporate series from financial markets of major trading

partners, namely, the United Kingdom, the United States, China, and Japan. For estimation

data cover the period January 1992 through December 2006, while the period from January

2007 through December 2011 will be used for goodness of fit for the extracted model. For the

degree of integration of all series, the augmented Dickey-Fuller (ADF) test will be used.

Difference of the series is used for all nonstationary series in this study. The Schwarz informa-

tion criterion (SIC) is used in selecting the appropriate lag length in such a way that no serial

correlation is left in the stochastic error term. Finally, all series are standardized to have a mean

of zero and a constant variance.

4. Evaluation of forecast accuracy

To evaluate the forecast accuracy of model combination or information combination, we used

three datasets from South Africa, namely, deposit rate, gold mining share prices, and long-

term interest rate, in order to demonstrate the in-sample and out-of-sample appropriateness

and effectiveness of the combination of models or information of the DFM and ANN models.

4.1. In-sample forecast evaluation

In this subsection, we evaluate the in-sample predictive power of the combined model forecast

—the FAANN model—and other fitted models which include AR (benchmark model), DFM,

and ANN and best combined forecasts of the DFM and ANN models. To achieve this, a full

sample from January 1992 to December 2011, giving a total of 240 observations of the three

datasets—deposit rate, gold mining share prices, and long-term interest rate—is used to

estimate the forecasting models in order to check the robustness of in-sample results of

competed models and compare it to the AR benchmark model. In-sample forecasting is most

useful when it comes to investigate the true relationship between the independent variables

and the forecast of dependent variable. Table 1 reports the root-mean-square error (RMSE)3 of

the in-sample forecasting results. The FAANN model outperformed all other models. The

maximum reduction in RMSE over the AR benchmark model is around 24%, while the

2

The data sources are the South Africa Reserve Bank, ABSA Bank, Statistics South Africa, National Association of

Automobile Manufacturers of South Africa (NAAMSA), South African Revenue Service (SARS), Quantec, and World

Bank.

3

The RMSE statistic can be defined as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

P
Ytþn �t

bY tþn

� �2
r

, where Ytþ n denotes the actual value of a specific variable

in period tþ n andt
bY tþn is the forecast made in period t for tþ n.
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minimum reduction is around 14% considering all variables. Regarding the in-sample fore-

casting, the FAANN model provides lower RMSE with a reduction of between 9 and 19% for

all variables compared to the DFM. Despite that the same factors are augmented to AR and

ANN to produce the DFM and the FAANN models, the in-sample results provide significant

differences between estimation methods which favor the nonlinear method over the linear one.

This is potentially due to the flexibility and property of the ANN models as universal

approximators that can be used to different time series in order to obtain accurate forecasts.

Comparing the forecasting performance of the FAANN and standard ANN model, the

FAANN model produced lower RMSE of 6–19% for all variables. These results indicate the

importance of the factors—which summarized 228 related series into five factors—that are

used as input to the ANN to produce the FAANN model. Regarding the in-sample forecasting

performance of the forecasts of combined models or information—the FAANN model—com-

pared to the best forecast combination of the DFM and ANN models, the FAANN model

outperforms the best forecast combination with reduction in the RMSE around 0.01–13% for

all variables. These results confirm the superiority of the combination of information or models

when a precise estimation method is used to estimate the combined information over the

combined forecasts of individual models.

4.2. Out-of-sample forecast evaluation of individual models

In this subsection, we estimate the individual forecasts of the AR, DFM, and ANN and the best

combined forecasts of the DFM and ANN models and the FAANN model that combine

information of the factors and ANN for the three variables of interest, namely, deposit rate,

gold mining share prices, and long-term interest rate, over the in-sample period January 1992

to December 2006 using monthly data, and then compute the out of sample for 3-, 6-, and

12-month-ahead forecasts for the period of January 2007 to December 2011. We employ

iterative forecast technique to compute the RMSE for the three forecasting horizons used for

the three variables across all of the different models in order to compare the forecast accuracy

generated by the models. The starting date of the in-sample period depends on data availabil-

ity of some important financial series. The out-of-sample period includes the occurrence of the

financial crisis that affected economies and financial sectors in particular. Thus, we used this

period as out of sample in order to show the suitability and efficiency of the combination of

information—FAANN model—to produce accurate forecasts for such data that exhibits inher-

ent nonlinearity or the data that faced fluctuations during the financial crisis. The result of each

single variable can be summarized as follows:

Variable Model

FAANN DFM ANN AR Best combined forecasts of DFM and ANN

Deposit rate 0.1687 0.1849 0.1793 0.1954 0.1694

Share prices for gold mining 1.5922 1.7782 1.7787 1.8187 1.6215

Long-term interest rate 0.1253 0.1537 0.1546 0.1640 0.1438

Table 1. The RMSE of the in-sample forecasts.
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• Deposit rate forecasting results: for the FAANN model estimation firstly, MATLAB package

is used to estimate the factors. Secondly, R software using Broyden, Fletcher, Goldfarb,

and Shanno (BFGS) algorithm is used to find and estimate the optimum network architec-

ture. The network with the lowest in-sample RMSE and the Bayesian information criterion

(BIC) is selected as best-fitted network, which is composed of eight inputs, five neurons in

the hidden layer, and one output (in abbreviated form N 8�5�1ð Þ). Table 2 reports the

RMSEs of the 3-, 6-, and 12-month-ahead and the average of the 3-, 6-, and 12-month-

ahead RMSEs. The benchmark for all forecast evaluations is the AR model forecast

RMSEs. For both long and short horizons, the FAANN model outperforms all other

models followed by the DFM for the short horizons and the ANN in long horizon. The

RMSE of the FAANN model decreases as the forecast horizon increases which in turn

agreed with [24] who found that the ANNs significantly forecast better in long horizon.

Results reveal that the FAANN performed better with large reductions in RMSE of around

25–46% of the RMSE compared to the AR benchmark model and the reduction on the

average RMSE around 37%.

• Gold mining share prices: we used the same steps where software and algorism were imple-

mented to the previous variable to estimate the FAANN model. The optimum network is

composed of eight inputs, seven neurons in the hidden layer, and one output (in abbrevi-

ated form N 8�7�1ð Þ). Table 3 presents the RMSE results of the FAANN, the DFM, the

ANN, and the AR benchmark. As expected based on the in-sample results, the FAANN

model stands out in forecasting both short and long horizons with a sizable reduction in

Model 3 months 6 months 12 months Average

FAANN 0.9053 0.9121 0.8227 0.8800

DFM 0.9655 0.9661 0.9532 0.9616

ANN 0.9566 0.9556 0.9215 0.9446

AR 1.7743 1.7924 1.8187 1.7951

Note: See note to Table 2.

Table 3. Out-of-sample (January 2007–December 2011) RMSE for gold mining share prices.

Model 3 months 6 months 12 months Average

FAANN 0.7465 0.6373 0.5359 0.6399

DFM 0.9501 0.9153 0.9438 0.9364

ANN 0.9693 0.9160 0.8869 0.9241

AR 0.1862 0.1949 0.2314 0.2041

Note: The last row reports the RMSE for the AR benchmark model; the remaining rows represent the ratio of the RMSE

for the forecasting model to the RMSE for the AR. Bold entries indicate the forecasting model with the lowest RMSE.

Table 2. Out-of-sample (January 2007–December 2011) RMSE for deposit rate.
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RMSE relative to the AR benchmark model of 10–18%. The average of the RMSE reduc-

tion over the forecast horizons is 12%. On average the FAANN outperforms the ANN and

DFM models with reduction in RMSE of 6 and 8%, respectively.

• Long-term interest rate: for estimation purpose the same package and algorism that are

used with previous variables are implemented. Thus, the optimal network in abbreviated

form is N 8�3�1ð Þ. Table 4 results show the performance of the FAANN model where the

model produces more accurate forecasts compared to all competing model on both the

single-level forecast horizons and the average of these horizons. Compared to the AR

benchmark, the FAANN provides a reduction in the RMSE range from 45–27%, while the

average RMSE reduction is around 38%. The performance of the FAANN model stands

out followed by the ANN and the DFM with average reduction in RMSE of 9 and 5%,

respectively, relative to the AR benchmark model. Comparing the FAANN performance

to the ANN and the DFM, the FAANN model RMSE reduction is around 28 and 32%,

respectively.

4.3. Out-of-sample forecast evaluation of the combined forecasts of the DFM and ANN

models

Table 5 reports the results of combining forecasts of the DFM and ANN models. We aim of

using the DFM and ANN models in particular to merge their advantages where the ANN

model with its flexibility to account for potentially complex nonlinear relationships that is not

easily captured by traditional linear models, and the DFM model can accommodate a large

number of variables. Similar to Table 2, Table 5 shows the ratio of the RMSE for a given

combining method to the RMSE for the AR benchmark model. We found that the AR bench-

mark model poorly performs compared to all combining methods. Generally, the nonlinear

ANN combining method outperforms all other combining methods for all variables at all

forecasting horizons; hence, it offers a more reliable method for generating forecasts of the

variables of interest. Compared to the AR, the nonlinear ANN combining method provides a

large reduction in RMSE of around 7–20% relative to the AR model overall forecasting hori-

zons and variables. The nonlinear ANN combining method also beats the best individual

forecasting of the DFM and the ANN models for all variables and overall forecasting horizons

with sizable reductions in RMSE of around 1–15% of the RMSE of the best individual forecasts.

We note in addition that the discount MSFE with δ = 0.9 as a combining method performs

Model 3 months 6 months 12 months Average

FAANN 0.7281 0.6051 0.5498 0.6277

DFM 0.9834 0.9042 0.9584 0.9487

ANN 0.9893 0.8981 0.8306 0.9060

AR 0.2052 0.2140 0.2308 0.2167

Note: See note to Table 2.

Table 4. Out-of-sample (January 2007–December 2011) RMSE for long-term interest rate.
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nearly as well as the best individual model for all variables and forecasting horizons. The

combining method of variance–covariance (VACO), on average, performs less accurate com-

pared to other combining methods’ overall forecasting horizons and variables. We note that

the combined forecasts produce more accurate forecasts for long horizons which we attributed

to the contribution of the nonlinear model in the combination as nonlinear models produce

more accurate forecast in the long horizon.

4.4. Comparison of forecasting performance of combination of models or information and

combination of forecasts

Here, we compare the forecasting performance of the combination of models (information)—

the FAANN model—with the best forecast combinations of the ANN and DFM models.

Combination method h = 3 h = 6 h = 12

Deposit rate

AR 0.1862 0.1949 0.2314

Mean 0.915 0.890 0.851

VACO 0.921 0.892 0.846

DMSFE, δ = 0.95 0.923 0.903 0.848

DMSFE, δ = 0.90 0.905 0.884 0.837

ANN 0.907 0.882 0.835

Gold mining share prices

AR 1.7743 1.7924 1.8187

Mean 0.946 0.942 0.937

VACO 0.943 0.946 0.951

DMSFE, δ = 0.95 0.945 0.941 0.937

DMSFE, δ = 0.90 0.945 0.942 0.936

ANN 0.921 0.929 0.911

Long-term interest rate

AR 0.2052 0.2140 0.2308

Mean 0.951 0.923 0.902

VACO 0.952 0.942 0.922

DMSFE, δ = 0.95 0.956 0.953 0.954

DMSFE, δ = 0.90 0.951 0.952 0.935

ANN 0.827 0.815 0.804

Note: See note to Table 2.

Table 5. Forecast combining results of the DFM and ANN-RMSE for variables (January 2007–December 2011).
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Table 6 presents the RMSE ratios of the FAANN model and the best forecast combination to

the AR benchmark model over the out-of-sample period. Compared to the DFM, the results

indicate that the FAANN model generates accurate forecasts for all variables and with all

forecast horizons. The improvement of the FAANN model is compared to the DFM between

2 and 10% reduction in RMSE for all variables and horizons. Thus, these results indicate the

superiority of augmentation of factors to nonlinear method (FAANN) over the linear one

(DFM) across the three different series and three different time horizons.

To confirm the RMSE results, the test of equal forecast accuracy of Diebold and Mariano [14] is

used to evaluate forecasts. The test of equal forecast accuracy employed here is given by

S ¼ dffiffiffi
bV

p
dð Þ
, where d ¼ 1

T

PT

t¼1

e21t � e22t
� �

is the mean difference of the squared prediction error

and bV d
� �

is the estimated variance. Here, e21t denotes the forecast errors from the FAANN

model, and e22t denotes the forecast errors from the AR benchmark model or the best combined

forecasts of DFM and ANN. The S statistic follows a standard normal distribution asymptot-

ically. Note, a significant negative value of S means that the FAANN model outperforms the

other model in out-of-sample forecasting. Table 7 shows the result of the Diebold and Mariano

test between the FAANN and the AR benchmark and between the FAANN and the best

combined forecasts of DFM and ANN. The test results confirm that the FAANN models

provide the lowest RMSEs. In summary the FAANN models provide significantly better fore-

casts at the 5% and 10% level compared to the AR and the best combined forecasts of DFM and

ANN models.

Forecasting model h = 3 h = 6 h = 12

Deposit rate

AR (benchmark model) 0.1862 0.1949 0.2314

FAANN 0.7465 0.6373 0.5359

Combined forecasts of DFM and ANN 0.907 0.882 0.835

Gold mining share prices

AR (benchmark model) 1.7743 1.7924 1.8187

FAANN 0.9053 0.9121 0.8227

Best combined forecasts of DFM and ANN 0.921 0.929 0.911

Long-term interest rate

AR (benchmark model) 0.2052 0.2140 0.2308

FAANN 0.7281 0.6051 0.5498

Best combined forecasts of DFM and ANN 0.827 0.815 0.804

Note: See note to Table 2.

Table 6. Forecast results of the best combination of DFM and ANN model and FAANN-RMSE for variables (January

2007–December 2011).
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5. Conclusion

In this chapter we aim to evaluate the forecasting performance of the model combination and

forecast combination for the ANN and DFM models. In the model combination, we merge the

factors that were extracted from a large dataset—288 series in our case—with ANN which

produces the FAANN model. For the forecast combination, we used different linear and

nonlinear combination methods to combine the individual forecasts of the DFM and the

ANN models. Using the period of January 1992 to December 2006 as in-sample period and

January 2007 to December 2011 as out-of-sample period, we compare the forecast performance

of the FAANN with DFM, ANN, and AR benchmark model for 3-, 6-, and 12-month-ahead

forecast horizons for three variables, namely, for deposit rate, gold mining share prices, and

long-term interest rate. The study has provided evidence using both the RMSE and Diebold

and Mariano test as the comparison criteria that FAANN models best fit the three considered

variables over the 3-, 6-, and 12-month-ahead forecast horizons.

Tables 2–4 show the ability of the model combination—FAANN model—to produce accurate

forecast that outperforms DFM and ANN and their best forecast combination results. The

results seem not contradicted with in-sample model forecast performance as in Table 1. The

FAANN model outperformed the AR benchmark model with large reduction in RMSE of

around 25–46% considering all variables and forecast horizons. Compared to the DFM and

ANN models, the FAANN model produces more accurate forecasts that yielded a decrease in

RMSE of around 6–43% and 5–40%, respectively. We attribute the superiority of the FAANN to

the flexibility of ANN to account for potentially complex nonlinear relationships that are not

easily captured by linear models and the contribution of the factors to the model. On the other

hand, the ANN and the DFM outperformed the AR benchmark with a reduction in the RMSEs

of around 1–17% and 2–10%, respectively, for all variables and across all forecast horizons.

Table 6 shows comparison results of the forecasting performance of the combined models—

the FAANN—and the best forecast combination of the DFM and the ANN models. The results

Model/variable Forecasting horizons

3 months 6 months 12 months

Deposit rate

FAANN vs. AR

FAANN vs. best combined forecast from DFM and ANN

�2.095**

�1.944*

�2.108**

�1.799*

�3.159**

�2.064**

Share prices for gold mining

FAANN vs. AR

FAANN vs. best combined forecast from DFM and ANN

�2.420**

�1.812*

�2.527**

�1.673*

�2.753**

�1.961**

Long-term interest rate

FAANN vs. AR

FAANN vs. best combined forecast from DFM and ANN

�2.402**

�1.741*

�2.339**

�2.138**

�2.429**

�1.861**

Note: ** and * indicate significant value at the 5 and 10% levels, respectively.

Table 7. Diebold-Mariano test (January 2007–December 2011).
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indicate that the combined models or information produced forecasts that are better than the

best combined forecasts of the DFM and the ANN models. In other words, the nonlinear

model that uses large dataset of economic and financial variables in addition to the lags of the

interested variable improves the forecasting performance over models that are estimated

separately—the DFM and the ANN. We also observed that the FAANN residual decreases as

the forecast horizon increases.
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