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Abstract

There is a consensus within the scientific community that nitrogenous fertilizers are 
almost indispensable in today’s agriculture. However, the geometric increase in nitrog-
enous fertilizer applications and the associated environmental concerns call for focus on 
more sustainable alternatives. Biological dinitrogen (N

2
) fixation (BNF) is one of the most 

sustainable approaches to meeting crop nitrogen (N) demands. The BNF is, especially, 
important in low value crops (e.g., forages) and in developing economies. However, just 
like synthetic N fertilizers, BNF has issues of its own. Among the issues of great impor-
tance is the low and highly variable proportion of fixed N

2
 transferred to non-N

2
-fixing 

plants. The proportion of transfer ranges from as low as 0% to as high as 70%, depending 
on a myriad of factors. Most of the factors (e.g., N fertilizer application, species, and culti-
var selection) are management related and can, therefore, be controlled for improved N

2
 

fixation and transfer. In this chapter, we discuss current trends in BNF in selected legume 
crops, the global economics of BNF, and recent reports on N

2
 transfer in agricultural 

production systems. Additionally, factors affecting N
2
 transfer and management consid-

erations for improving N
2
 fixation and transfer are discussed.

Keywords: biological nitrogen fixation, nitrogen transfer, fertilizers, legumes,  
grass-legume mixtures

1. Introduction

Plants require N in relatively large quantities to grow and reproduce. In fact, N is the third 
most important factor in the growth and development of crop plants [1]. This made N one 
of the most important nutrients in agricultural production systems. The important role N 
plays in global food production is evident in the ever-increasing amounts of N fertilizers 
applied annually. It has been estimated that approximately 100 Tg of synthetic N fertilizers 

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
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were applied in 2009 [2]. The geometric increase in N fertilizer use worldwide is in part, 
attributable to the need to produce enough food to feed the over 7 billion people currently 
living on earth. Although there is a consensus within the scientific community that N fertil-
izers are almost indispensable in today’s agriculture, there are great concerns with the use of 
N fertilizers. Some of these include pollution of surface and underground waters, greenhouse 
gas (e.g., nitrous oxide: N

2
O) emissions, and low N use efficiency (NUE). There is, therefore, 

a multi-pronged approach to N management in global food production. While N fertilizers 
are being increasingly applied to crops to increase crop productivity, there are calls for more 
sustainable approaches to meeting N demand of crops such as climate-smart agriculture and 
sustainable intensification.

The BNF, the process whereby micro-organisms use nitrogenase enzyme to convert atmo-

spheric inert N
2
 to plant usable forms [3, 4], was the main source of N prior to the industrial 

revolution [5]. It is generally agreed that BNF is one of the most sustainable approaches to 
meeting crop N demands. For example, it has been estimated that NUE increases exponen-

tially with increasing levels of biologically fixed N
2
 in soils while NUE decreases linearly 

with increasing levels of applied synthetic N fertilizers [2]. There are concerns about the best 
approach for quantifying inputs of fixed N

2
. Conservative estimates based on harvested areas 

and yields from 2005 Food and Agricultural Organization (FAO) database on world crop pro-

duction (FAOSTAT) showed that 2.95 and 18.5 Tg N was fixed annually by pulses and oilseed 
crops, respectively [6]. Soybean (Glycine max (L.)) fixed 16.4 Tg N, representing 77% of total 
N

2
 fixation by legume crops in 2005 [6]. Although BNF contributes ~25 Tg N which is dwarfed 

by the ~100 Tg contributed by synthetic N fertilizers [2], the importance of BNF to the global 
N budget is substantial.

Just like synthetic fertilizers, BNF has issues of its own. Among the issues of great importance 
is the transfer of fixed N

2
 to non-N

2
-fixing plants. The proportion of biologically fixed N

2
 

transferred to neighboring plants can range from as low as 0% to as high as 73%, depending 
on a myriad of factors [1]. The biology, chemistry, and processes involved in BNF have been 
extensively described in the literature [7–12]. Therefore, in this chapter, we discuss briefly the 
organisms involved in BNF and then proceed to current trends in global N

2
 fixation and value 

of BNF transfer in agricultural production systems with special emphasis on N
2
 fixation from 

Rhizobia-legume symbiosis. Finally, we summarize current findings on N transfer in agri-
cultural systems, discuss the factors responsible for low and variable transfer of biologically 
fixed N2, and provide some suggestions for improved transfer of fixed N

2
.

2. Biological dinitrogen fixation: importance and economics

Several micro-organisms can convert inert atmospheric N
2
 to plant usable forms. These organ-

isms may exist in association and symbiosis with host plants or independent of a host plant 
(Table 1). Organisms relying solely on atmospheric N

2
 as their N source for growth are referred 

to as diazotrophs [7]. Biological N
2
 fixation is a significant source of N in agricultural and natural 

ecosystems. The N input from BNF is particularly important in low value crops (e.g., forages) 
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and developing economies, where farmers either have limited access to synthetic N fertilizers 
or are unable to afford N fertilizers. In fact, forage accumulation and profitability from grass-
legume mixtures have been reported to be equal or greater than N-fertilized grass monocul-
tures [13–15]. Aside direct N input from BNF, N from BNF reduces the amount of synthetic N 
fertilizers applied in agriculture and natural ecosystems. This, in turn, reduces cost of produc-

tion, greenhouse gas (GHG) emissions, and pollution of surface and underground waters. Low 
NUE and N recovery are major issues associated with use of N fertilizers [16, 17]. In a compre-

hensive analysis, Lassaletta et al. [2] showed that the efficiency of N use of biologically fixed 
N

2
 is greater than synthetic N. Among the micro-organisms involved in BNF, N

2
 fixation from 

Rhizobia-legume symbiosis is a significant source of N in agriculture. Needless to say, BNF from 
associative and free-living bacteria and diazotrophs are important in natural ecosystems and 
water-logged production areas (e.g., paddy fields) [6].

2.1. Amount and value of N
2
 fixed by legumes

The amount of N
2
 fixed from Rhizobia-legume symbiosis varies greatly depending on many 

factors. These include, but not limited to, plant species and cultivar, residual soil N, Rhizobia 

strains, and environmental conditions. Generally, perennial forages fix greater amounts of N
2
 

compared to annual forages since they live longer in the field [18]. For example, estimated 
total BNF from alfalfa (Medicago sativa L.), red clover (Trifolium pratense L.), and white clover 
(Trifolium repens L.) are 465, 252, and 102 kg N ha−1 year−1 while from faba bean (Vicia faba L.), 
field pea (Pisum sativum L.), and lentil (Lens culinaris Medik.) are 165, 111, and 52 kg N ha−1 year−1, 
respectively [19]. Estimates of N

2
 fixation from selected crops has shown that in 2014, up to 29 

Micro-organism Properties and importance

Rhizobia Symbiosis with roots of legumes (nodules); important source of N for legumes; proper 
Rhizobia strains required for effective nodulation and N

2
 fixation

Frankia (Actinomycetes) Symbiosis with non-legume angiosperms (e.g., Alnus, Myrica, Alder, Casuarina); 
important source of N in agroforestry

Anabaena Autotrophic; mostly aquatic but can be terrestrial; symbiosis with non-legumes (e.g., 
Azolla sp.); important in paddy rice (Oryza sativa L.) production; can be utilized as 
green manure

Bradyrhizobium Aerobic, heterotrophic, free-living N
2
-fixer

Azospirillum Microaerophilic; heterotrophic; free-living N
2
-fixer or in association with grass roots; 

can be important source of N for non-legumes

Acetobacter Heterotrophic; endophytic, can be important source of N for sugarcane (Saccharum 

officinarum L.) and some tropical grasses

Azotobacter Aerobic; heterotrophic; free-living N
2
-fixer

Cyanobacteria Autotrophic; free-living N
2
-fixer (e.g., Escherichia coli) or symbiotic; symbiosis with 

lichens (fungi), cycads, etc.

†Modified from [3, 7, 18].

Table 1. Properties of selected micro-organisms involved in biological N
2
 fixation in agriculture and natural ecosystems†.
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Tg N was fixed by eight crops (Figure 1). Soybean (Glycine max (L.) Merr.) alone contributed 
23.4 Tg, representing 81% of total N

2
 fixed by these crops (Figure 1). While these might not be 

precise estimates, there is a clear indication that the contribution N
2
 fixation to the global N 

budget is enormous. Though N
2
 fixation from peas, lentils, common bean (Phaseolus vulgaris L.), 

faba bean, cowpea (Vigna unguiculata (L.) Walp.), chickpeas (Cicer arietinum L.), and groundnut 

Figure 1. Estimates of global trends in biological N
2
 fixation for selected legume crops. The N

2
 was estimated based on 

harvested areas and yield data from Food and Agricultural Organization (FAO) database on world crop production 
(FAOSTAT) [21]. This follows the procedure described by [6].
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(Arachis hypogaea L.) is dwarfed by soybean (because of the larger area planted to soybean) 
based on these estimates, the contribution of N

2
 fixation from these crops (e.g., cowpea) to 

farmers in developing countries is substantial. Unlike forages, grains from grain legumes are 
harvested and removed from the field. Thus, grain legumes usually remove more soil N than 
forages [18]. The uncertainties associated with estimating N

2
 fixation from forages, extensively 

grazed savannas, sugarcane (Saccharum officinarum L.), and rice (Oryza sativa L.) production 

Figure 2. Trends in global economics of biological N
2
 fixation. Value of fixed N

2
 was calculated based on estimated N

2
 

fixation (Figure 1) and price of urea fertilizer from 2005 to 2014 reported by the World Bank [20].
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systems have been acknowledged [6]. Nonetheless, the estimated annual N
2
 fixation from these 

systems are 5 Tg from rice, <4 Tg from non-legume crops, 12–25 Tg from pasture and fodder 
legumes, 0.5 Tg from sugarcane, and <14 Tg from extensive savannas. It is worth mentioning 
that biologically fixed N

2
 must be transferred to neighboring and subsequent non-N

2
-fixing 

crops in the cropping systems for optimum benefits. Nitrogen transfer in cropping systems is 
often low. Thus, all the estimated N

2
 fixed (Figure 1) may not be transferred to neighboring and 

subsequent non-N
2
-fixing crops.

The economic value of N
2
 fixation is extraordinarily large. Of course, the value of biologically 

fixed N
2
 is directly related to the amount N

2
 fixed. Using estimates of N

2
 fixation from Figure 1 

and cost of urea N fertilizer from the World Bank [20], it is estimated that in 2014, the value of 
N fixed by these eight crops is about 18.5 billion US dollars (Figure 2). Of this amount, about 
14.9 billion (81%) is contributed by soybeans.

3. Management considerations for improving biological dinitrogen 
fixation

There are several management practices that influence BNF in agricultural production sys-

tems. These include but not limited to N-fertilization [22], species [23], genotype and cultivar 
[24], and seeding ratios (intercropping systems). Adopting best management practices can, 
therefore, improve N

2
 fixation. In mixed swards, perennial ryegrass (Lolium perenne L.) compe-

tition for available soil N was reported to be important in determining N
2
 fixation in birdsfoot 

trefoil (Lotus corniculatus L.), alfalfa, and white clover [25]. Species may differ in their reli-
ance on soil N and fixed N

2
. In a red clover-grass-forbs mixture, grass relied mostly on fixed 

N
2
, while forbs relied on soil N [23]. Selecting compatible cultivars (Figure 3) and species 

may improve N
2
 fixation and N

2
 transfer in agricultural production systems [26]. For example, 

the proportion of N
2
 derived from BNF was 75–94% in white clover monoculture compared 

to 85–97% in white clover-ryegrass mixtures [27]. The relatively greater N
2
-fixation in grass-

legume mixtures compared to legume monocultures might be attributable to greater competi-
tion for soil N from non-N

2
-fixing plants [28]. In an extensive review, Rouquette and Smith [29] 

asserted that BNF in forage legumes may vary depending on the legume cultivar, species, soil 
nutrient composition, prevailing environmental conditions, and climate. The myriad of factors 
influencing BNF might explain the varied amounts of N

2
 fixed by legumes even at same loca-

tions reported by many researchers [30–35]. For example, at the same location, the proportion 
of plant total N derived from BNF was reported to range from 12 to 96% on grazed plots [36]. 
Application of N fertilizers has been found to suppress BNF in legumes [22]. For example, the 
application of N fertilizer decreased atmospheric derived N

2
 of clover from 77 to 43% [37].

The strain of Rhizobia also determines the level of N
2
 fixation [38]. Most of these Rhizobia strains 

are highly specialized and due to this specialization and the intricacy of interaction between 
N

2
-fixing plant species and bacteria involved in N

2
 fixation, any disturbance or manipulation 

may be detrimental to the amount of N
2
 fixed [39]. Thus, inoculation with the right strains of 

Rhizobia would improve N
2
 fixation. There are three major constraints to BNF in grass-legume 
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mixtures and these include: low forage yield, low proportion of legumes in mixtures, and low 
reliance of the legume on N

2
 fixation [40]. To maintain optimal N

2
 fixation, sufficient legume 

populations must be maintained in grass-legume stands. This might be difficult to achieve 
because of the selective grazing of legumes by livestock (in grazing systems), poor soil condi-
tions, and pest and disease problems [28]. However, using optimal seed mass ratios and good 
grazing and haying practices may help maintain optimal legume proportions [15].

4. Transfer of biologically fixed nitrogen in agricultural production 
systems

Biologically fixed N
2
 satisfies the immediate N needs of the host plants. However, the fixed N

2
 

can be transferred to other crops in the cropping system, especially non-N
2
-fixing plants. The 

transfer is accomplished through three main routes, viz.: decomposition of nodules and sec-

ondary roots that are not thickened, exudates of soluble N compounds, and transfer mediated 
by mycorrhizal fungi [1, 41–43]. The transfer of N through nodule and root decomposition and 
exudation of N compounds is termed as rhizodeposition [44]. The proportion of biologically  

Figure 3. Established stands of meadow bromegrass (Bromus biebersteinii Roem. & Schult.) monoculture (a) and 50% 
meadow bromegrass: 50% sainfoin (Onobrychis viciifolia Scop.) (b), 50% meadow bromegrass:50% birdsfoot trefoil (c), 
50% meadow bromegrass:16.7% sainfoin:16.7% birdsfoot trefoil:16.7% alfalfa (d) seeding ratios in 2014 at the University 
of Wyoming Sheridan Research and Extension Center, WY, USA.
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fixed N
2
 transferred to neighboring or succeeding crop plants is highly variable [45]. This can 

range from as low as 0% to as high as 73%, depending on a myriad of factors [1]. In an exten-

sive review, rhizodeposition was reported to vary from 4 to 71% [44]. Review of literature 
from 2015 to 2017 on transfer of N in selected crops has shown that N transfer ranged from 0 
to 70% (Table 2). Among the three main N transfer routes, rhizodeposition through decompo-

sition of the nodules and roots represents the main pathway of N transfer.

Nitrogen transfer from signal grass (Brachiaria decumbens Stapf.) to stylo (Stylosanthes guia-

nensis (Aublet) Sw.) was reported to be mainly through decomposition of roots compared to 
root exudates and transfer mediated by mycorrhizae [46]. This might be particularly true for 
forage species since aboveground biomass is the economic part of the plant. Additionally, 
non-tree legumes have relatively greater proportion of fine roots that have faster turnover 
rate. It must be noted that despite the greater contribution of decomposition of the nodules 
and roots to N transfer, this transfer route is relatively slower compared to exudates of soluble 
N compounds and transfer mediated by mycorrhizae [1]. Nitrogen transfer from the tropical 
legume, gliricidia (Gliricidia sepium (Jacq.) Kunth ex Walp.) to yellow-blue stem (Dichanthium 

aristatum (Poir.) C.E. Hubb.) was reported to be mainly via root exudates [47]. In a short-term 
rhizodeposition study, 3.5 and 5.3% N was rhizodeposited through root exudates in white clo-

ver monocrop and white clover-perennial ryegrass mixture, respectively, over a 3-day period 
[42]. This significant N transfer within a short period is an indication of the importance of exu-

dation of N compounds in meeting N needs of crops, especially during early growing stages 
[42]. It is well documented that mycorrhizae can facilitate the transfer of biologically fixed N

2
 

Crop(s) Amount of N transferred  
(% of fixed N)

Reference(s)

Caragana (Caragana arborescens Lam.)-oat (Avena sativa L.) 38–45 kg ha−1 (60–70)§ [62]

Alfalfa-tall fescue (Schedonorus arundinaceus (Schreb.) Dumort.) 0–650 kg ha−1 (0–12)† [66]

White clover-perennial ryegrass 0–340 kg ha−1 (0–47)† [66]

Mung bean-oat 12.8 mg plant−1 (9.7) [68]

Soybean-maize 7.84 mg pot−1 (7.57) [53]

Soybean-maize 10.77–13.72 mg pot−1 (1.26–2.17) [55]

Faba bean-wheat 0.17 mg plant shoot−1 (14.9) [52]

Red clover-bluegrass (Poa pratensis L.) 35.85 mg plant−1 (1.5) [24]

Pigeon pea (Cajanus cajan (L.) Millsp.-coffee (Coffea arabica L.) 21.8 g kg−1 (na) [63]

Crotalaria-coffee 13.5 g kg−1 (na) [63]

Velvet bean (Mucuna pruriens (L.) DC.)-coffee 19.7 g kg−1 (na) [63]

Red clover-perennial ryegrass and forbs 25–58 kg ha−1 (9.5–15) [23]

na, could not be estimated from data.
§4 m distance from caragana shelterbelt.
†Cumulative over 3-year period.

Table 2. Amount of nitrogen (N) fixed and proportion transferred to soil or neighboring plants in agricultural systems.
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from N
2
-fixers to non-N

2
-fixing plants [48–51]. In a rice and mung bean (Vigna radiata L.) inter-

cropping study, arbuscular mycorrhizal fungi (AMF) inoculation increased N transfer from 
5.4 to 15.7% [49]. Proportion of fixed N

2
 transferred from faba bean to wheat (Triticum aestivum 

L.) was 50% when inoculated with AMF compared 15% in uninoculated stands [52]. Similar 
results were also reported in garden pea-barley (Hordeum vulgare L.) and soybean-maize (Zea 

mays L.) intercropping studies [48, 53]. The AMF-mediated transfer of N can be both unidi-
rectional and bidirectional [48, 54] and often along with a concentration gradient [47]. Thus, 
transfer of N from N

2
-fixing plants to non-N

2
-fixers is often expected to be greater than from 

non-N
2
-fixing plants to N

2
-fixers [55].

5. Factors affecting nitrogen transfer

It has long been acknowledged that since plant N composition is partitioned into various 
plant organs or parts, not all the N

2
 fixed by plants will be transferred to neighboring plants 

or succeeding plants in cropping systems [56]. However, there are a number of biotic and 
abiotic factors influencing N transfer in agricultural production systems [1]. Environmental 
factors such as water, temperature, and light have direct and indirect effects on N transfer in 
cropping systems. Soil moisture has a great influence on decomposition and it is required for 
the uptake of N. Thus, moisture stress affects both the mineralization of fixed N

2
 and uptake 

of mineralized N by plants. However, moisture stress promotes nodule senescence, implying 
that more nodule biomass will be available for mineralization during moisture stress condi-
tions [57]. Nitrogen is highly soluble. Thus, excess water can result in N leaching out of the 
rooting zone of plants making it unavailable for uptake. Flooding (e.g., low land rice produc-

tion systems) results in anaerobic conditions, and thus could result in gaseous N losses in the 
form of N

2
O [18]. Optimum light conditions (quality, quantity, and duration) and temperature 

have a direct effect on photosynthesis and hence, promote both N
2
 fixation and transfer. For 

example, nodule activity and N exudation from roots of soybean and sesbania (Sesbania can-

nabina (Retz.) Poir.) were the greatest at 30 and 35°C day and night temperatures, respectively 
[58]. Prolonged dark treatment affected nodule functioning in barrel medic (Medicago truncat-

ula Gaertn.) and induced nodule senescence [59]. This condition is common in intercropping 
systems (e.g., grass-legume mixtures) [1], especially in species with varied canopy heights.

A common practice in agricultural production systems is intercropping N
2
-fixing legumes 

with non-N
2
-fixing crops (Figure 3) [15]. This is particularly important in low value crops 

(e.g., forages) and in developing countries. In intercropping systems, the proximity of the N
2
-

fixing crop to the non-N
2
-fixing determines the amount of N transferred. The concentration of 

N in the rhizosphere is the greatest closer to the root surface [60]. Therefore, N transfer pre-

dominantly occurs in upper soil layers [23]. Since N uptake is along with concentration gra-

dients [47], close proximity between N
2
-fixing legumes and non-N

2
-fixing crops reduces the 

distance of travel for dissolved N compounds [1]. Close proximity is achieved either through 
direct root contact or mycorrhizal hyphae connections [61]. However, Issah et al. [62] reported 
that maximum oat productivity was obtained when grown 4 m from caragana shelterbelt 
compared to 2 m from the shelterbelt.
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Aside proximity, species (Table 2) of N
2
-fixing legumes as well as the non-N

2
-fixing crops 

(when grown in mixtures) influence the amount of N
2
 fixed and transferred to neighboring 

crops. The amount of N transferred to Arabian coffee (Coffea arabica L.) ranged from 13.5 to 
21.8 g kg−1 depending on the N

2
-fixing legume (Table 2) [63]. There was no observable N trans-

fer from berseem clover (Trifolium alexandrinum L.) to annual ryegrass (L. perenne L. subsp. 
multiflorum [Lam.] Husnot) when gown in mixtures [64]. This was attributed to the greater 
efficiency of annual ryegrass in the uptake of available soil N which resulted in berseem clo-

ver becoming reliant on fixed N
2
 [64]. In an alfalfa-Bermudagrass (Cynodon dactylon (L.) Pers.) 

intercrop, alfalfa fixed 80 to 222 kg N ha−1 year−1 and transferred about 18 kg N ha−1 year−1 to 

Bermudagrass [65]. Alfalfa fixed twice as much N as white clover but transferred only 59 kg N 
ha−1 compared to 147 kg N ha−1 transferred by white clover over a 3-year period [66]. Although 
decomposed alfalfa roots released greater N than that of birdsfoot trefoil, the opposite was 
true for decomposed nodules [41]. There was no transfer of N from any of seven legumes 
[snail medick (M. scutellata L.), common vetch (V. sativa L.), squarrosum clover (T. squarrosum 

L.), hairy vetch (V. villosa Roth), sulla (Hedysarum coronarium L.), and fenugreek (Trigonella 

foenum-graecum L.)] to annual ryegrass under Mediterranean conditions [67]. N transfer is 
also influenced by crop cultivars. For example, red clover cultivars differed in amount of 
N transferred to Kentucky bluegrass [24]. Compatibility of species grown in mixed swards 
affects the amount of N

2
 fixed and the proportion transferred. A recent study has shown that 

grass N demand in grass-legume mixtures might be more important than legume N supply 
in determining N transfer efficiency [26].

Other factors such as age or stage of growth [68], season or year [69–71], proportion of N-fixing 
species [71], compatibility [45], and stand persistence [35] affect N transfer in cropping sys-

tems. For example, N in naked oats (Avena nuda L.) derived from N
2
 fixed by mung bean was 

7.6% at pod setting and increased to 9.7% at maturity [68]. The proportion of N transferred 
from red clover to Kentucky bluegrass was reported to have increased over time [24]. This is 
particularly true for perennial forages because of relatively low N

2
 fixation in establishment 

year compared to well-established stands [1]. It is generally expected that as the proportion of 
legumes in mixed swards increases, N

2
 fixation and transfer increases [1]. However, in a con-

tinental-scale field study with two perennial N
2
-fixing legumes (red clover and white clover) 

and four perennial grasses (perennial ryegrass, Timothy (Phleum pratense L.), Kentucky blue-

grass, and orchardgrass (Dactylis glomerata L.)), it was reported that N gained in mixed swards 
increased with increasing legume proportion up to 30% [71]. This supports the assertion by 
[26] that grass N demand in grass-legume mixtures might be more important than legume N 
supply in determining N transfer efficiency. In an annual garden pea-barley intercropping 
system, greatest N transfer was obtained in 1:1 garden pea: barley compared to 2:1 system [72].

6. Conclusions

It is generally agreed that BNF is one of the most sustainable sources of N in agricultural 
production systems. The BNF is especially important in low value crops (e.g., forages) 
and in developing economies. Estimated N

2
 fixation from selected crops showed that the  
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contribution of N
2
 fixation to the global N budget is enormous. Though N

2
fixation from peas, 

lentils, common bean, faba bean, cowpea, chickpeas, and groundnut is dwarfed by soybean 
(because of the larger area planted to soybean) based on these estimates, the contribution of 
N

2
 fixation from these crops (e.g., cowpea) to farmers in developing countries is substantial. 

Unlike forages, grains from grain legumes are harvested and removed from the field. Thus, 
grain legumes usually remove more soil N than forages. There are, however, several issues 
related to BNF that are of concern to the scientific community. Among the issues of great 
importance is the low and highly variable proportion of fixed N

2
 transferred to non-N

2
-fixing 

plants. Proportion of fixed N
2
 transferred to non-N

2
-fixing plants ranges from as low as 0% 

to as high as 70%, depending on a myriad of factors. This was not different than the range 
of values reported from previous reviews. However, most of the factors (e.g., N fertilizer 
application, species, and cultivar selection) are management related and can, therefore, be 
controlled for improved N

2
 fixation and transfer. Most Rhizobia strains are highly specialized 

and due to this specialization, inoculation with the right strains of Rhizobia would improve N
2
 

fixation. One of the constraints to BNF in grass-legume mixtures is low proportion of legumes 
in the mixtures. It is, therefore, important to maintain sufficient legume populations in the 
grass-legume systems for optimal N

2
 fixation. This might, however, be difficult to achieve 

because of the selective grazing of legumes by livestock (in grazing systems). Nonetheless, 
using optimal seed mass ratios and good grazing and haying practices may help maintain 
optimal legume proportions.
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