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Abstract

This chapter presents serial link robots laminated with a plastic film, a derivation of the
equations of motion of the laminated robots, and numerical simulation. Recently, to
become capable of wide application for several serial link robots that work outside,
waterproofing and dustproofing techniques are required. We have proposed a robot
packaging method to improve waterproof and dustproof properties of serial link robots.
Using the proposed packaging method, rigid links with some active joints are loosely
laminated with plastic film to protect the links from dust and water. In the next step of
our research, we must derive the equations of motion of the laminated robots for the
design and performance improvement from the viewpoint of high speed and high
energy efficiency. We assume a plastic film as a closed-loop link structure with passive
joints in this chapter. A rigid serial link (fin) connected with a motor-actuated joint
moves a closed-loop link structure with passive joints. We numerically investigate the
influence of the flexural rigidity of a plastic film on the motion of the rigid fin. This
research not only contributes to the lamination techniques but also develops a novel
application of waterproofing and dustproofing techniques in robotics.

Keywords: closed-loop mechanism, equations of motion, serial link robot, flexible
mechanism, vacuum packaging, fish-like robots

1. Introduction

This chapter presents a description of equations of motion of serial link robots laminated with

plastic film. Serial link robots are designed as a series of links connected by motor-actuated

joints. Typical applications of serial link robots are serial manipulators, which are the most

common industrial robots, such as pick-and-place assembly robots [1, 2] and welding robots

[3, 4]. A salient feature of serial link robots is their large workspace in comparison with the

robot size [5]. Additionally, serial link robots consist of simple structures. For that reason, they

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



have also been used as various applications as humanoids [6, 7], robotic hands [8, 9], biped

robots [10, 11], robotic legs [12, 13], snake robots [14, 15], fish-like robots [16, 17], and a

jumping robot [18]. Kinematics of a serial link robot itself has remained a hot topic in robotics

and has been studied for the last few decades [19].

Recently, to become capable of wide applications for several serial link robots that must be

used outdoors, waterproofing and dustproofing techniques must be improved. These tech-

niques have been developed for ocean engineering and field engineering for the past few

decades. For example, most underwater robots have waterproof and pressure-tight housings

made of metal such as stainless steel or titanium alloy [20–22]. In another waterproofing

method used in ocean engineering, called the pressure equalization method, waterproof hous-

ings are filled with an insulating fluid such as an industrial oil or a cleaning fluid used for

semiconductors. This method has been applied to underwater equipment of several types such

as undersea batteries of a submarine [23] and light devices.

We have proposed a robot packaging method to improve waterproofing of a serial link robot

[24]. In the robot packaging method, a serial link mechanism connected with motor-actuated

joints is packaged in plastic film in a chamber of a vacuum packaging machine, so that the

serial link robot is laminated with a plastic film (Figure 1). We applied the packaging method

to fabrication of a fish-like robot (Figure 2(a)). The body (the float in Figure 2(b)) and fin (the

oscillation plate in Figure 2(b)) are connected via a servo motor in series. The outer plastic film

is inflected by the motion of the inside fin. The fish-like robot generates thrust using the body

inflection underwater. This packaging method is applicable not only to a rotary joint

Figure 1. Concept of a serial link robot laminated with plastic film.

Figure 2. Concept of a fish-like robot laminated with plastic film.
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mechanism but also to a prismatic joint mechanism. A ball-screw mechanism was packaged in

plastic film to fabricate an attitude control system for underwater robots [25].

In the robot fabricated using the packaging method, the rigid links and the plastic film are

loosely laminated. The serial link in the plastic film is packaged in the chamber of the vacuum

packaging machine after the decompression process. No adhesion exists between the rigid link

and the plastic film. However, the rigid link and the plastic film contact mutually with little

slippage between them after depressurization during the robot packaging method. To move

the serial link with an actuator in the plastic film, the actuator torque must overcome the static

frictional force between the links and the film. We encapsulate an insulating fluid to improve

lubricity between the links and the film. Therefore, we must consider not only the material

properties of the plastic film but also the effects of the insulating fluid to improve the perfor-

mance of the serial link robots.

In the next step of our research, we must derive equations of motion to achieve performance

improvements such as thrust force and energy efficiencies of the laminated robot system. Over

the past few decades, several researchers have studied models of laminated structures. In

magnetics, modeling of hysteresis losses [26–28], eddy current losses [29, 30], and temperature

effects [31] for magnetic laminations have been proposed under some conditions. Depending

on those conditions, a 1-D model [32], a 2-D finite-element model [33], and a 3-D finite-element

model [34] have been selected to analyze the laminated structure performance. However, we

must derive the equations of motion and analyze the motions of laminated structures includ-

ing a serial link robot from the viewpoint of robotics. In this chapter, we propose equations of

motion of the laminated robot underwater. In addition, based on the equations of motion, we

numerically estimate the influence of flexural rigidity of plastic films for the motion perfor-

mance of the serial link robot.

This research not only contributes to lamination techniques but also develops a novel applica-

tion of waterproofing and dustproofing techniques for application to robotics. Several tech-

niques using an elastic material such as silicone have been applied to robots for waterproofing

[35], impact absorption [36, 37], and decoration [38]. In terms of most of the robots that are

covered with an elastic material, the actuator force and torque must overcome the elastic force

during motions of the robot body. Thin plastic films can be flexible, but they have lower

elasticity for bending than other elastic materials such as silicone. Therefore, we can select a

low-force and torque actuator to inflect the robot body laminated with a thin plastic film.

This chapter is organized as follows: Section 2 briefly outlines the concept of a serial link robot

laminated with a plastic film. This plastic film has flexible and nonextendable properties,

which are useful for vacuum packaging in food industry. Also Section 2 takes applications of

two serial link robots, such as fish-like robots we have proposed. Section 3 discusses derivation

of the equations of motion of the serial link robots including a plastic film that laminates the

robot body. Here, we assume that the plastic film has a closed-loop link structure with passive

joints. A serial link as a fin connected by a motor-actuated joint drives the closed-loop link

structure (the plastic fin) with passive joints. We consider equations of motion to estimate the

motion characteristics of the proposed robot system. Section 4 presents validation of the

equations of motion through several simulations. Section 5 presents a summary our future

work and conclusions.
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2. Application

In this section, we briefly describe the concept of lamination of a serial link robot for water-

proofing and pressure tightness. In robotics, piezoelectric actuators have been used to drive

several robots as a useful application of lamination techniques [39, 40]. We used a vacuum

packaging machine to laminate a serial link robot with a plastic film. We designated this

fabrication as “robot packaging.”

2.1. Robot packaging method

Figure 3 presents the “robot packaging” process as an example of fabricating a fish-like robot.

The entire robot body was covered by a flexible plastic film. The process is divisible into four

steps: (a) encapsulation of the internal components, including a microcontroller, a drive circuit,

a battery, a servomotor, and an oscillation plate, in a plastic film bag; (b) pouring of an

insulating fluid, specifically industrial oil or cleaning fluid for semiconductors, into the plastic

bag; (c) depressurization of the inside of the robot using a vacuum packaging machine. This

process reduces the quantity of air in the film bag; and (d) sealing of the plastic film by a sealer

within the chamber of the vacuum packaging machine after depressurizing.

This plastic film has flexible and nonextendable properties, which is used for vacuum packag-

ing in food industry. This packaging method corresponds with the method used in the food

industry [41]. The internal components including electrical circuits in the body of the robot

are not shortened by the insulating fluid surrounding the circuits. Using this method, we can

Figure 3. Fabrication process by robot packaging.
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readily fabricate the entire body of a serial link robot laminated with a plastic film at low cost

and in a short time. The body can also be lighter than other underwater systems.

2.2. Fish-like robot laminated with a plastic film

As shown in Figure 2, we proposed a fish-like robot as a prototype hardware laminated using

a plastic film, which was fabricated using a vacuum packaging machine. In the prototype

robot, we applied an insulating fluid (Fluorinert FC-3283; 3 M Corp.) filled in the body. The

insulating fluid is generally used as a cleaning fluid for semiconductors. The specific gravity of

the insulating fluid is approximately 1.83, which is heavier than water. Therefore, we used a

copolymer foam (NiGK Corp.) not only for the frame structure of the body but also for

generating buoyancy. The specific gravity of the foam is approximately 0.2, which is a much

lighter fluid than water.

We also applied a servomotor (SG51R; Tower Pro) to the prototype robot actuator. In this

prototype, we used a microcontroller (Arduino Nano ver. 3.1). A styrene board of 80 mm

height, 40 mm width, and 2 mm thickness was used as an oscillation plate to generate the

thrust force of the prototype robot in water. The plastic film (poly bag TL12-38; Fukusuke

Kogyo Co. Ltd.) covering the internal contents of the robot was multilayered for use in food

packaging. This film is sealed by thermal adhesion of a vacuum packaging machine. We made

use of a TM-HV made by Furukawa Mfg. Co., Ltd. as a vacuum packaging machine. In this

prototype, the depressurization time is 15 s. The sealing time is 4.0 s. A battery (9 V) is used as

the power source for driving the electrical circuits and servomotor.

After design, the prototype size without the film was approximately 185 mm long, 80 mm

high, and 18 mm wide. After fabrication, the prototype including the film in Figure 2 was

230 mm long, 90 mm high, and 18 mm wide. Additionally, it weighed approximately 290 g,

including 80 ml of the insulating fluid, thereby realizing almost neutral buoyancy of the body.

Under these conditions, the oscillation plate driven by the servo motor was moved 10 deg. in

the left and right directions at a frequency of approximately 2.0 Hz (Figure 4).

3. Modeling

This section presents a discussion of the derivation of the equations of motion of a serial link

robot laminated with a plastic film. The laminated robot consists of a rigid link fin, a plastic

film, and an enclosed insulating fluid as illustrated in Figure 5. In this section, we assume that

Figure 4. Swimming test of our prototype at narrow space.
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the plastic film is modeled as a multi-DOF closed-loop structure with passive joints that are

actuated indirectly by a motor mounted on the base of the fin.

3.1. Rigid fin

The equation of fin motion in Figure 5 is expressed simply as shown below.

I €θ ¼ τ (1)

In this equation, scalar I represents the inertia of the rigid fin and the enclosed fluid, θ stands

for the active joint angle of the fin, and the scalar τ includes an actuator torque and external

torque related to the contact force from the film and additional inertia of the enclosed fluid.

To simplify the mathematical model of the contact force between the fin and the plastic film,

we introduce a penalty method [42]. The penalty method treats elasticity and damping force

for slight penetration between two objects. Here, we assume a small penetration between the

fin and the joints of the links, as shown in Figure 6(a). Contact force f pi based on the penalty

method is calculated as

f pi ¼ KpiDi � Bpi
_Di (2)

where Di denotes the small penetration between the fin and the plastic film at a contact point.

Kpi and Bpi represent the elasticity and damping constant coefficients, respectively. As a result,

the external torque τp generated by the contact forces f pi can be calculated as

τp ¼

X

i
li � f pi

� �

(3)

where vector li represents the position for contact force f pi.

In addition, the inertia of the enclosed fluid is included as well as the rigid inertia in the

mathematical model because the rigid link fin carries the enclosed fluid during the fin motion.

Figure 5. Modeling of a serial link robot laminated with a plastic film: (a) serial link robot laminated with a plastic film;

(b) plastic film is modeled mathematically as a closed-loop link structure with multi-DOFs consisting of passive joints.
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As illustrated in Figure 6(b), a small area Ai of a trapezoid is determined by four points (or a

triangle determined by three points at the tip of the fin,) and the center of the mass is used to

estimate the fluid inertia. Mass MFi and inertia IFi of the fluid in a small area are obtained

quantitatively as

MFi ¼ Aidr, IFi ¼ MFil
2
Fi (4)

where d, r, and lFi represent the depth of area Ai, the density of the insulating fluid, and the

moment arm for the mass MFi, respectively. Consequently, the equations of the fin motion can

be rewritten as follows.

IR þ IFð Þ€θ ¼ τA þ τp (5)

Therein, IR signifies the inertia of the rigid fin. IF ¼
P

jIFi, τA stands for the actuator torque.

3.2. Plastic film

In this chapter, the plastic file is modeled as multi-DOF links with passive joints and with a

closed kinematic loop constraint as illustrated in Figure 7. We use a method based on Lagrange-

D’Alembert formulation on reduced system described in an earlier report [43, 44] to derive

equations of motion of the closed-loop links.

First, a link of one of the closed-loop links, that is, is cut and a tree system (two serial link

structures) is formed, as portrayed in Figure 7. Equations of motion of the serial link structures

can be obtained easily using Newton-Euler method or Direct Lagrangian method. Because a

plastic film is generally very light, the mass of the links can be negligible. Therefore, the

equations of the motion of the multi-DOF serial link structures are only represented by passive

joints with elasticity and damping effects:

BR
_θR þ KR∆θR ¼ τR (6)

BL
_θL þ KL∆θL ¼ τL (7)

Figure 6. (a) Contact force between the fin and the plastic film based on the penalty method, and (b) calculation of the

additional inertia of the enclosed fluid in the plastic film.

Dynamic Modeling of a Serial Link Robot Laminated with Plastic Film
http://dx.doi.org/10.5772/intechopen.72441

79



Therein, vectors θR ¼ θR1;⋯;θRnþ1½ �T and θL ¼ θL1;⋯;θLn½ �T denote the passive joint angle

vectors of the film, the vectors ∆θR ¼ tan ∆θR1

2 ;⋯; tan ∆θRnþ1

2

h iT
and ∆θL ¼ tan ∆θL1

2 ;⋯; tan
�

∆θLn

2 �T , where ∆θRi and ∆θLi represent the rotational displacement for a joint. The matrices

BR ¼ diag bR1;⋯; bRnþ1ð Þ and BL ¼ diag bL1;⋯; bLnð Þ represent the damping matrices,

KR ¼ diag kR1;⋯; kRnþ1ð Þ and KL ¼ diag kL1;⋯; kLnð Þ are constant matrices related to the flex-

ural rigidity and curvature of the plastic film. τR and τL represent the external torque related

to the hydrodynamic effect acting on the film and the contact force between the rigid fin and

the film, respectively.

Based on reports of the literature [43, 44], the equations of motion of the closed-loop structure

is obtainable as

Φ
T BR

_θR þ KR∆θR

BL
_θL þ KL∆θL

" #

¼ Φ
T τR

τL

� �

(8)

where Φ
T is the 2n� 2ð Þ � 2nþ 1ð Þ matrix which comprises the Jacobian matrix of the con-

straint equations. Matrix Φ
T reduces the number of the equations from (2nþ 1) to (2n� 2Þ.

The following part of this discussion explains the external torque τR and τL. When forces f i
apply to their links, the torque is given as the following.

τR

τL

� �

¼

P

iJ
T
Ri θRið Þf Ri

P

jJ
T
Lj θLj

� �

f Lj

" #

(9)

In that equation, JRi and JLi are the Jacobian matrices of a contact point where a force is applied.

Here, we consider forces related to the hydrodynamic effects and the contact forces between

the plastic film and the rigid fin.

As described before, the contact force between the rigid fin and the film is derived based on the

penalty method. The force applied to the film is expressed as

Figure 7. Mathematical model of the closed-loop link structure for a plastic film.
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f 0pi ¼ �f pi ¼ � KpD� Bp
_D

� �

(10)

where f 0pi is the reaction force of f pi in Figure 6(a). Using Eq. (9), the torque related to the

interference between the film and the fin is

τpR

τpL

� �

¼

P

iJ
T
Ri θRið Þf 0piR

P

jJ
T
Lj θLj

� �

f 0pjL

" #

(11)

Finally, we assume that the hydrodynamic damping force acts as an external force on each link

of the film. The hydrodynamic force acting on a link is modeled as shown below (Figure 8):

fDi ¼
1

2
CdrwSi v⊥ij jv⊥i (12)

In this equation, Cd represents the drag force coefficient, rw stands for the surrounding water

density outside the film, Si is the representative area of the ith link, and v⊥i is the relative flow

velocity that is perpendicular to the ith link. We presume that the film moves in still water. The

velocity of a link can be approximated by the following.

v⊥i ¼ Ri θið ÞJTi θið Þ _θi (13)

For vector θi ¼ θR1;⋯;θRi½ �T or θi ¼ θL1;⋯;θLi½ �T, matrix Ri is the rotational matrix to calcu-

late the velocity perpendicular to the link. Ji is the Jacobian matrix of the ith link. However, we

assume that v⊥i ¼ 0 fDi ¼ 0
� �

when the ith link of the plastic film moves toward the rigid fin in

the insulating fluid because the encapsulated insulating fluid in the plastic film moves with the

fin and the film. Therefore, the relative velocity v⊥i between the film and the insulating fluid is

almost zero.

Consequently, the external torque related to the contact forces and the hydrodynamic forces is

summarized as shown below.

τR

τL

� �

¼

P

iJ
T
Ri θRið Þf 0piR þ

P

kJ
T
Rk θRkð ÞfDkR

P

jJ
T
Lj θLj

� �

f 0pjL þ
P

kJ
T
Rk θRkð ÞfDkR

" #

(14)

In the model shown in Figure 5, three constraint equations related to the position xE; yE
� 	T

and

orientation θE of the two serial link structures should be considered. The constraint reduces the

degrees of freedom of the serial link structures from 2nþ 1 to 2n� 2. In other words, when

configuration singularity does not occur, angular velocities _θi;
_θj;

_θk

� 	T
of any three joints of

the closed-loop structure can be expressed by angular velocities of the 2n� 2 other joints.

_θi;
_θj;

_θk

� 	T
¼ J θR;θLð Þ _q (15)

Therein, _q is the 2n� 2 vector composed of all joint angular velocities except for _θ i, _θ j, _θk and

J θR;θLð Þ is the 3� 2n� 2ð Þ matrix derived from the constraint equations.
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Consequently, the equations of film motion are rewritten as shown below.

B0 þ JT θR;θLð ÞB
0 0

J θR;θLð Þ
h i

_q þ ΦT KR∆θR

KL∆θL

� �

¼ ΦT τR

τL

� �

(16)

Therein,

B0 ¼
B0
R 0

0 B0
L

� �

,B
0 0

¼ diag bi; bj; bk

 �

(17)

where B0
R and B0

L denote the 2n� 2ð Þ � 2n� 2ð Þ matrices excluded the i, j, kth rows and col-

umns from BR and BL, respectively . The characters bi, bj, bk are the damping coefficients for the

i, j, kth joints.

We use Eqs. (5) and (16) of the rigid fin and film motion for numerical simulation of the motion

of the fin robot laminated by the plastic film.

4. Simulation

This section presents numerical simulation of the two-dimensional motion of the fin robot

laminated by the plastic film. The purpose of the simulator is to design the laminated robots

and to estimate their motion performance. A graphical simulator was developed for this purpose

using software (Visual Studio 2010; Microsoft Corp.) and OpenGL library. The code was written

in C language. The derived equations of the motion were solved numerically using the Runge-

Kutta-Gill method by which the time step size was 0.001 s.

4.1. Numerical conditions

Table 1 presents the physical parameters of the laminated robot. We investigated the fin

motion in three flexural rigidities of the plastic film. One was the value of the flexural rigidity

of the film (3.14 gf cm2) used to fabricate the fish robot (Figure 2). The other two values were 10

Figure 8. Model of the hydrodynamic damping force acting on the ith link.
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times and 100 times the value of 3.14 (31.4 gf cm2 and 314 gf cm2). The plastic film had 41

passive joints to imitate a flexible film. The initial angles of the entire joints were set at 0 rad

except for the following.

θR1 ¼
92:86241π

180
,θR17 ¼

14:59520π

180
,θR21 ¼

145:08480π

180
,θL1 ¼

87:13760π

180
,θL17 ¼ �

14:59520π

180
(18)

Based on the penalty method, the contact forces f pi between the rigid fin and the entire joints of

the plastic film were calculated using f pi ¼ KpiDi � Bpi
_Di where Kpi ¼ 300 and Bpi ¼ 0:1 in the

simulation.

The desired angle θd tð Þ [rad] for the rigid fin motion was given as

θd tð Þ ¼
π

2
�

π

18
sin 2πftð Þ (19)

Frequency f of the fin motion was set at 2 Hz. For this desired angle, we made use of a

conventional Proportional Derivative (PD) feedback controller τA ¼ KP θd tð Þ � θ tð Þ½ � � KD
_θ

where KP ¼ 30 and KD ¼ 0:1. We assumed that a commercial waterproof servomotor (SG51R;

Tower Pro) was used for the fin motion and assumed that the actuator had small lower and

upper torque limits: �0:0588 < τ < 0:0588 [Nm].

We presume that the relative flow velocity v⊥i for the calculation of the hydrodynamic force

can be expressed approximately by the angular velocities _θR and _θL and joint angles θR and

θL. There is no disturbance of water flow in the simulation.

4.2. Numerical results

We conducted a numerical simulation to investigate the fin motion of different flexural rigid-

ities of the plastic film. Figure 9 presents an illustration of how the fin changes in time series in

the cases of (a) 3.14, (b) 31.4, and (c) 314 gf cm2. Figures 10 and 11 portray plots of the tracking

Moment of inertia of the fin [kg m2] IR 0.0004033

bRi and bLi in Eqs. (6) and (7) bRi , bLi 0.004

kRi and kLi in Eqs. (6) and (7) kRi, kLi 0.001231

Position of the right 1st joint lR; 0ð Þ 0:001; 0ð Þ

Position of the left 1st joint lL; 0ð Þ �0:001; 0ð Þ

Link length of the fin [m] dl 0.005

Fin depth [m] d 0.1

Density of insulating fluid [kg/m3] r 1830

Water density [kg/m3] rW 1000

Representative area [m2] Si ¼ d� dl 0.0005

Drag coefficient CD 1.3

Table 1. Parameters used for simulation.
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data for the desired trajectory in Eq. (19) and the torque patterns in each case. For the value of

3.14 gf cm2 in (a) that was the actual value for the prototype robot, the fin achieved smoothly

reciprocating motion in the range of � 8 degrees at 2 Hz in the simulation. The actual

prototype robot in Figure 4 also achieved approximately 10-deg. reciprocating motion at 2 Hz

in the tank test. In (b), the flexural rigidity was 10 times different, no great difference in

performance was found between the case (a) and the case (b). Result in (c) shows that higher

flexural rigidity tended to prevent the fin motion. These numerical results demonstrate that the

low torque actuator can inflect the robot body laminated by the thin plastic film with lower

flexural rigidity.

Figure 9. Two-dimensional simulation in three flexural rigidities of the plastic film. (a) 3.14, (b) 31.4, and (c) 314 gf cm2.

Figure 10. Tracking performance for the desired fin angle. (a) 3.14, (b) 31.4, and (c) 314 gf cm2.
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5. Conclusion

This chapter described the equations of motion of serial link robots laminated with a plastic film.

We have proposed robot packaging method to improve waterproofing and dustproofing of serial

link robots. To improve lubrication between the links and the film, we encapsulated an insulating

fluid in the plastic film. Considering these conditions, we derived the equations of motion of the

laminated robot to be useful for hardware design, motion analysis, and performance improvement

such as thrust force and energy efficiency. In the derivation of the equations of motion, we assumed

the plastic film as a closed-loop link structure with passive joints. Through numerical simulation

based on the derived mathematical model of the fish-like robot, we estimated the motion perfor-

mance of the fin in different flexural rigidities. We confirmed that the low torque actuator can

inflect the laminated body because of the thin plastic film with lower flexural rigidity. Future work

includes design of robots laminated with a plastic film using our mathematical model.
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