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Abstract

The reliability analysis of more complicated structures usually deals with the finite
element method (FEM) models. The random fields (material properties and loads)
have to be represented by random variables assigned to random field elements. The
adequate distribution functions and covariance matrices should be determined for a
chosen set of random variables. This procedure is called discretization of a random
field. The chapter presents the discretization of random field for material properties
with the help of the spatial averaging method of one-dimensional homogeneous
random field and midpoint method of discretization of random field. The second part
of the chapter deals with the discretization of random fields representing distributed
loads. In particular, the discretization of distributed load imposed on a Bernoulli beam
is presented in detail. Numerical example demonstrates very good agreement of the
reliability indices computed with the help of stochastic finite element method (SFEM)
and first-order reliability method (FORM) analyses with the results obtained from
analytical formulae.

Keywords: FORM, SFEM, discretization, random fields, reliability

1. Introduction

In general, the safety of a structure is analyzed in the space ΩX ¼ X ∈Rnf g of basic random

variables X. For a given failure mode or serviceability requirement, represented by the limit

state surface g Xð Þ ¼ 0, the space ΩX is divided into the safe subset, ΩS ¼ X ∈Rn
; g Xð Þ > 0f g,

and the failure subset, ΩF ¼ X ∈Rn
; g Xð Þ ≤ 0f g. If all random variables are continuous with

the multivariate joint probability density function f
X
xð Þ, the failure probability is given by the

integral

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Pf ¼

ð

ΩF

f x xð Þdx (1)

The integral (Eq. (1)) can be evaluated exactly for a few cases with the most important one: the

linear limit state surface and multidimensional normal distribution function of variables X.

Development of reliability methods resulted in variety of powerful algorithms to estimate the

probability of failure for complicated mechanical and statistical models of structures. The first-

order reliability method (FORM) is the most popular approach applied in practice.

FORM algorithm starts with the nonlinear transformation. In general, non-normal random

vector X is transformed into a standard normal (Gaussian) vector Y with zero mean and unit

covariance matrix CYY ¼ I. The limit state surface g xð Þ ¼ 0 is mapped into a limit state surface

G yð Þ ¼ 0. Next, the design point y∗, that is, the point on the limit state surface with the

minimum distance to the origin of the Y space, is determined by solving the nonlinear optimi-

zation problem with a nonlinear constraint G yð Þ ¼ 0

β ¼ min
ffiffiffiffiffiffiffiffi

yTy
q

for y on G yð Þ ¼ 0 (2)

The hyperplane tangential to the limit state surface at the point y∗ is given by the formula

β� aTy ¼ 0 (3)

where a is a unit outward normal vector to the hyperplane and β is the distance between the

hyperplane and the origin (Figure 1). Since the random vector Y ¼ Y Xð Þ has standard normal

distribution, the first-order approximation of the failure probability is easily derived as follows

Pf ffi P β� aTY ≤ 0
� �

¼ Φ �β
� �

(4)

The nonlinear constrained optimization problem (Eq. (2)) can be solved with many standard

procedures as well as algorithms developed especially for this purpose, for example, algorithm

for the case of independent, non-normal random variables [1], algorithm for problems with

incomplete probability information [2].

All such solvers are iterative: for the assumed value of design point x∗kð Þ, the values of limit

state function g x∗kð Þ

� �

and its gradient ∇g x∗kð Þ

� �

are determined. Next, a new position of design

point x∗kþ1ð Þ is derived and the process continues until the convergence criteria are fulfilled. If

the safety of mechanical problem is described by the limit state function with analytical form,

then the gradient can be evaluated easily and one of the algorithms solving the optimization

problem (Eq. (2)) can be applied directly. However, if the stochastic variability of material

properties and loads is to be taken into account, SFEM approach must be applied.

In general, the limit state function g Xð Þ ¼ g R Xð Þ; S Xð Þð Þ can be represented in terms of two

vectors: resistance variables R and load effects S. The elements of resistance variables vector R
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(e.g., yield stress, allowable strain or allowable displacement), are prescribed to finite elements

or nodes and can be treated as deterministic or random variables. In the latter case, the vector

R corresponds to the part of the vector of basic random variables X. The vector of load effects S

(e.g., stresses, displacements and deformations) contains functions of basic random variables X

such as material properties, geometrical quantities or loads. The relation S ¼ S Xð Þ is called the

mechanical transformation. In most practical cases, the load effects S have to be evaluated by

using numerical algorithms, for example, FEM.

Two main problems are to be solved in order to apply FEM in FORM analysis:

• discretization of random fields of material properties and random fields of loads

• determination of the gradient of the limit state function ∇g x
∗ð Þ, when the load effect is

defined by means of the implicit mechanical transformation S ¼ S Xð Þ

The solution of the second problem is presented in many papers and books [3].

2. Probabilistic description of random fields

2.1. Basics definitions

The spatial probabilistic variability of physical quantities such as Young's modulus, thickness

of a plate and intensity of a distributed load can be described by means of random fields, w zð Þ,

where z is the vector of space coordinates. One-dimensional random fields can be defined for

beams, bars and columns, two-dimensional random fields for plates or shells, and three-

dimensional random fields for bodies.

Figure 1. Definition of the FORM reliability index β.
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For any specific location z, random field w zð Þ is a random variable with the cumulative

distribution function

Fw w zð Þð Þ ¼ P w zð Þ ≤w½ � (5)

which is called the first-order distribution of the random field w zð Þ:

The m� th order distribution, that is, the joint cumulative distribution function of the random

vector w ¼ w z1ð Þ;…;w zmð Þ½ �T, is defined as follows:

Fw…w wð Þ ¼ P w z1ð Þ ≤w1;…;w zmð Þ ≤wm½ � (6)

The first- and second-order probability density functions of the random field w zð Þ are defined

accordingly

f w w zð Þð Þ ¼
d

dw
Fw w zð Þð Þ

f ww w z1ð Þ;w z2ð Þð Þ ¼
∂
2

∂w z1ð Þ∂w z2ð Þ
Fww w z1ð Þ;w z2ð Þð Þ

(7)

Following the well-known definition [4] with the help of the first-order probability density

function (Eq. (6)) and the second-order probability density function (Eq. (7)), the second-order

representation of the random field is defined by using the following functions: the mean value

function μw zð Þ, the variance function σ2w zð Þ, the covariance function, Cw z1; z2ð Þ and the corre-

lation function rw z1; z2ð Þ.

A random field w zð Þ is called strict-sense homogeneous, if its statistics are invariant to the

translation of the origin and in particular, the n� th order density function has the property

f w…w w1 z1ð Þ;…;wn znð Þð Þ ¼ f w…w w1 z1 þ zð Þ;…;wn zn þ zð Þð Þ (8)

for any separation vector z.

A random field w zð Þ is called wide-sense homogeneous or second-order homogeneous if its mean

value and variance are constant,

μw zð Þ ¼ μw σ
2
w zð Þ ¼ σ

2
w (9)

and its covariance function as well as correlation function depends only on the separation

vector z,

Cw z, 0ð Þ ¼ Cw z1, z1 þ zð Þ ¼ Cw zð Þ for any z (10)

A random field that is homogeneous in time is referred to as stationary process.

2.2. Ensemble average versus spatial average of random field

In order to estimate the statistical parameters of a random field, the sample (realization) must

be collected in separate experiments. If the sample size is sufficiently large, the estimators of
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statistical parameters can be computed at each point of the random field domain. For example,

at the location z1, the estimator of mean value and the estimator of variance are equal to

ensemble averages

bμw z1ð Þ ¼
1

k

Xk

i¼1

w ið Þ z1ð Þ (11)

bσ2
w z1ð Þ ¼

1

k� 1

Xk

i¼1

w ið Þ z1ð Þ � bμ
w
z1ð Þ

h i2
(12)

where k is the number of realizations (also called as the sample size) and w ið Þ zð Þ is the i� th

measurement of a random field.

Ensemble averages usually depend on the location vector. However, if the limit of the ensem-

ble averages are invariant with respect to location

bμw z1ð Þ ¼ limk!∞
1

k

Xk

i¼1

w ið Þ z1ð Þ ¼ limk!∞
1

k

Xk

i¼1

w ið Þ z2ð Þ ¼ μw (13)

then the random field can be considered as homogeneous, in strict- or wide-sense, which

depends on the order of probability function invariant to location vector.

On the other hand, the spatial averages over the domain can be computed for every realization

(measurement) of random field. For example, the average taken along with any single realiza-

tion of a one-dimensional random field is equal to

μw i; Lð Þ ¼
1

L

ðL

0

w ið Þ zð Þdz (14)

and it usually depends on the character of field and the length of averaging interval L.

A homogeneous random field is called ergodic, if all statistical information can be obtained

from one realization of the random field. This means that ensemble averages are invariant with

respect to the location vector and the spatial averages are equal to the ensemble averages.

Thus, in case of a homogeneous one-dimensional random field, the ensemble and spatial

averages are equal in the limit

lim
k!∞

1

k

Xk

i¼1

w ið Þ zð Þ ¼ lim
L!∞

1

L

ðL

0

w ið Þ zð Þdz (15)

In general, it is usually difficult to prove that a random field is homogeneous, and it is even

more difficult to prove that a random field is ergodic. Great number of samples over a

sufficiently large domain should be collected. These conditions are rarely fulfilled. Thus, the

homogeneity and ergodicity is usually assumed. Most of the concepts and methods developed

in the reliability analysis are based on these assumptions.
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2.3. One-dimensional homogeneous random field

A one-dimensional homogeneous random field is often used in the reliability analysis of linear

elements such as beams, bars and frames.All the above-mentioneddefinitions are valid in this case.

The variance reduction function γ
w
Lð Þ , which has been presented in detail in [5, 7], describes the

correlation of the moving average wL zð Þ of one-dimensional homogeneous random field w zð Þ

wL zð Þ ¼
1

L

ð

zþL=2

z�L=2

w lð Þdl (16)

where L denotes the length of the averaging segment.

The mean value function and the variance function of the random field wL zð Þ are easy to

determine

E wL zð Þ½ � ¼ E w zð Þ½ � ¼ μ
w

(17)

Var wL zð Þ½ � ¼ σ2
L
¼ γ

w
Lð Þσ2

w
(18)

where γ
w
Lð Þ is the variance reduction function, and μ

w
and σ2

w
are mean value and variance

value of the one-dimensional homogeneous random field w zð Þ: The variance reduction func-

tion γ
w
Lð Þ demonstrates how fast the point variance σ2

w
is reduced under local averaging. This

dimensionless function has the following properties:

γ
w
Lð Þ ¼ γ

w
�Lð Þ ≥ 0 γ

w
0ð Þ ¼ 1 (19)

and is related to the correlation function rw zð Þ of the one-dimensional homogeneous random

field w zð Þ by the integral

γ
w
Lð Þ ¼

1

L
2

ð

L

0

ð

L

0

rw l1 � l2ð Þdl1dl2 ¼
2

L

ð

L

0

1�
l

L

	 


rw lð Þdl (20)

Another useful scalar measure of the correlation is the scale of fluctuation θw defined by the

limit value of the variance reduction function

θw ¼ limL!∞Lγw
Lð Þ (21)

It can be proved that the scale of fluctuation θw is related to the correlation function rw zð Þ

θw ¼ 2

ð

∞

0

rw lð Þdl (22)

The variance reduction function and the scale of fluctuation are especially useful in the

discretization procedure of the homogeneous random field.
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Table 1 presents four correlation models. It should be noticed that the rectangular and trian-

gular models are not proper correlation functions for the homogeneous random field, since

they do not fulfill the basic condition of weak-homogeneity. However, they are quite often

assumed, mostly as visualization tools. Triangular model demonstrates the meaning of the

scale of fluctuation in a simple way, that is, correlation between values of random field at points

separated by greater distance than the scale of fluctuation is equal to zero. The rectangular

model constitutes the upper limit for variance reduction functions. The simple form of the

exponential correlation function makes analytical computation of many integrals possible. On

the other hand, similarity between the squared exponential model and the triangular model

allows the simple physical interpretation of the scale of fluctuation, that is, the correlation

functions are equal to zero for a separation interval greater than the scale of fluctuation.

A special case of random field is the Gaussian random field, in which the random variables

w z1ð Þ,…, w znð Þ for any points z1,…, zn are jointly normal distributed. This random field is

completely determined by two functions such as the mean value function and the covariance

function. The n-th order probability density function has the joint normal density.

Figure 2 presents correlation functions and Figure 3 presents variance reduction functions for

the correlation models described in Table 1.

3. Discretization of random fields representing material properties

A vast amount of papers deal with the problem how to develop the accurate and numerically

efficient discretization methods for random fields of material properties.

Model Correlation function Variance function

Rectangular

r zð Þ ¼
1 zj j ≤ θ

2

0 zj j > θ

2

8

>

>

<

>

>

:

γ Lð Þ ¼
1 L ≤

θ

2

θ

L

� �

1� θ

4L

	 


L >
θ

2

8

>

>

<

>

>

:

Triangular

r zð Þ ¼ 1� zj j
θ

zj j ≤θ
0 zj j > θ

8

<

: γ Lð Þ ¼
1� L

3θ
L ≤θ

θ

L

� �

1� θ

3L

	 


L > θ

8

>

>

>

<

>

>

>

:

Exponential
r zð Þ ¼ exp �2 zj j

θ

� �

γ Lð Þ ¼ 1
2

θ
L

� �2 2L
θ
� 1þ exp �2 L

θ

� �� �

Squared exponential
r zð Þ ¼ exp �π z

θ

� �2
� �

γ Lð Þ ¼ 2θ
L Φ

L
ffiffiffiffi

2π
p

θ

� �

� 0; 5
h i

þ A

A ¼ θ2

πL2
exp �π L

θ

� �2
� �

� 1
h i

Note: θ is the scale of fluctuation; L is the separation (averaging) distance; and Φ zð Þ is the Laplace function.

Table 1. Description of four correlation models.
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Figure 2. Four correlation functions for correlation models defined in Table 1.

Figure 3. Four variance reduction functions for correlation models defined in Table 1.
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The variability of random field is usually more accurately represented, if the number of

random field elements or the number of series components is increased. However, greater

number of random variables leads to longer computation time for realistic problems. There-

fore, it has been an important issue to find out the optimal size of random field elements with

respect to the scale of fluctuation, that is the scalar correlation measure. The accuracy of

different methods is discussed by Zeldin and Spanos [9].

The reliability analysis of more complicated structures usually deals with FEM models. The

random fields (material properties and loads) have to be represented by random variables

assigned to random field elements. The adequate distribution functions and covariance matri-

ces should be determined for a chosen set of random variables. This procedure is called

discretization of a random field.

Two groups of methods for discretization of material random fields can be distinguished:

1. Random field elements

The value of a material property for any finite element is represented by a single random

variable, constant within a random field element. Mean value, standard deviation and covari-

ance as well as distribution function can be assigned to those random variables according to

different procedures:

• the spatial averaging method [10]

• the midpoint method [8, 9, 11]

• the interpolation method [13]

2. Random series

The random field is described in terms of series of deterministic functions and random coeffi-

cients. Two examples of this approach are as follows:

• series composed of deterministic shape functions and random variables [16]

• the Karhunen-Loeve orthogonal expansion [15, 17, 20]

Two discretization methods, namely the spatial averaging method and the midpoint method,

are presented in detail.

3.1. The spatial averaging method of one-dimensional homogeneous random field

The spatial averaging method has been developed by Vanmarcke [5]. We consider a one-

dimensional homogeneous random field w zð Þ that represents the spatial random variability of

a material property, for example, modulus of elasticity along beam. In general, the domain of

the random field can be divided into finite elements of lengths Li. The material property within

the i� th element is represented by a random variable which is assumed to be equal to the

spatial average over the i� th finite element

Discretization of Random Fields Representing Material Properties and Distributed Loads in FORM Analysis
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W i ¼
1

Li

ð

Li

0

w zð Þdz (23)

The mean value of a random variable W i is equal to the mean value of the random field w zð Þ

E W i½ � ¼
1

Li

ð

Li

0

E w zð Þ½ �dz ¼ μw (24)

and the variance of random variable W i is expressed in terms of the variance function γw Lð Þ of

the random field w zð Þ

Var W i½ � ¼ γw Lið Þσ2w (25)

The formula for the covariance between two random variables W i and W j related to the i-th

and j-th random elements is more complicated

Cov W i;W j

� �

¼
σ2w

2LiLj

X

3

k¼0

�1ð ÞkL2kγ Lkð Þ (26)

where the distances Lk are defined in Figure 4.

Eqs. (25 and 26) can be generalized for a random field defined in two- or three-dimensional

spaces [5]. Eq. (26) depends on the variance reduction function γw Lð Þ, which expresses a relation

between the variance of the spatial average and the size of the averaging interval L.

Figure 4. Definition of intervals used in the calculation of covariance between the spatial averages related to two random

field elements.
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Since full information about the variability of the random field is seldom available, Vanmarcke

[5–6] suggested using in the practical analysis the approximation of the variance reduction

function by its asymptotic form

γw Lð Þ ¼
1 L ≤θw

θw

L
L > θw

8

<

:

(27)

where θw is the scale of fluctuation.

FORM analysis demands the knowledge about distribution functions of basic random vari-

ables. The spatial averaging method results in the normal random variables for the Gaussian

random field w zð Þ, since the integration is a linear operation. However, for non-Gaussian

random field, it is difficult to derive the distribution function of a random variable W i defined

by Eq. (23).

Der Kiureghian [18] has suggested a heuristic model for the distribution of random variable

W i, which is based on the concept of the weighting the random field by the shape function,

which results in the weighted variance reduction function. Figure 5 shows that the weighted

variance function has much smaller values than the original variance reduction function. If the

averaging interval Li ¼ Llong is assumed many times longer than the scale of fluctuation θw, the

distribution of random variable W i tends to have the normal distribution according to the

central limit theorem. Then, the variance reduction function can be approximated as follows:

γw Llong
� �

≈
θw

Llong
≈
1

n
for Llong ≫θw (28)

where the parameter n≫ 1 should be determined by calculations or judgment.

According to Figure 3, which shows the variance functions of four models, as well as taking

into account Figure 5, n ≈ 10 could be assumed, which means that for the element length

which is 10 times longer than the scale of fluctuation, the normal distribution can be

assigned to the random variable W i. For shorter elements, non-normal distribution should

be considered. On the other hand, for very short element length, the distribution of random

variable W i is close to the first-order distribution of random field. Taking into account both

limits the approximate density distribution function of W i has been proposed by Der

Kiureghian [18]

fW i
wið Þ ¼ α

ffiffiffi

n
p

σw
w

wi � μw

σw=
ffiffiffi

n
p

� �

þ 1� αð Þf w zð Þ wið Þ (29)

where w uð Þ is the standard normal probability density function and f w zð Þ wð Þ is the first-order

probability density function of random field w zð Þ.

The weight parameter 0 ≤α ≤ 1 can be determined for the current length Li of random field

element by requiring that the variance of random variable W i with the approximate density
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function ((Eq. (29)) is equal to the variance of the spatial average of random field over the

length Li, that is, γw Lið Þσ2w. It can be shown that for the element of length Li

α ¼
n

n� 1
1� γw Lið Þ
� �

(30)

3.2. Midpoint method of discretization of random field

The midpoint method [3] corresponds to the interpolation method [13] with constant interpo-

lation function and is suitable for discretization of non-Gaussian random fields. In general, a

nonhomogeneous random field w zð Þ is discretized with the help of a set of random variables

defined as follows:

W i ¼ w z ið Þ
c

� �

(31)

where z
ið Þ
c determines the position of the centroid of the i-th element.

The mean value of random variable W i and the covariance between random variables

W i and W j are given below, correspondingly

Figure 5. The original and weighted variance reduction functions for the random field with exponential correlation

function.
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E W i½ � ¼ E w z
ið Þ
c

� �h i

Cov W i;W j

� �

¼ Cw z ið Þ
c ; z jð Þ

c

� �

(32)

where Cw z1; z2ð Þ is the covariance function of nonhomogeneous random field.

In the midpoint discretization method, the probability distribution of the random variable W i

is equivalent to the first-order distribution of the random field w zð Þ

FW i
wið Þ ¼ P W i ≤wi½ � ¼ P w z ið Þ

c

� �

≤wi

h i

¼ Fw wi z ið Þ
c

� �� �

(33)

Thus, in case of a homogeneous random field, the probability distribution function does not

depend on the location of the centroid of the i-th element, FW i
wið Þ ¼ Fw wið Þ.

3.3. Selection of the optimal size for random field mesh representing variability of a

material property

Both discretization procedures described in the previous section are based on assumption that

property (e.g., modulus of elasticity) is constant within a finite element, see [19].

In deterministic FEM, the variability of material properties is modeled by means of sufficient

number of finite elements. The structural finite element size is chosen with respect to the

gradient of the stress field.

In the same way, the variability of the random field is usually more accurately represented if

many random field elements are used in the analysis. However, finer random field mesh

increases the number of random variables, which leads to longer computation times for the

reliability analysis. Therefore, it has been an important issue to find out the optimal size of the

random field elements.

The scale of fluctuation of the random field has been shown to be a very important measure of

the correlation, since it governs the optimal size of a random field mesh. Der Kiureghian and

Ke [12] have shown that a sufficiently accurate value of the reliability index is obtained if the

random field element size is between one-half and one-quarter of the scale of fluctuation for

the midpoint method with the exponential correlation function. Hisada and Nakagiri [11] have

presented similar results.

If random field elements shorter than one-quarter of the scale of fluctuation are chosen, then

a singular correlation matrix can be obtained, indicating linear dependency of the random

variables. Then, the nonhomogeneous linear transformation to the set of uncorrelated, nor-

malized basic random variables must be proceeded by an extra transformation, which

decreases the dimension of the random variable space. However, this extra transformation

is not unique. Improper choice of the transformation can lead to numerical difficulties in the

iteration procedure for determining the reliability index. Therefore, too small random field

elements should be avoided. Liu and Liu [19] have derived a simple rule of thumb regarding

the selection of an appropriate random field mesh: a coarse mesh should be assumed in

an area where the gradient of the limit state function with respect to the random

variable representing random field is small and a finer random field mesh in an area with

large gradient.
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However, in many case a random element size equal to the scale of fluctuation may be

considered as adequate with respect to the reliability analysis accuracy.

4. Discretization of random fields representing distributed loads

Discretization of random field loads has not been a subject of many studies. The finite element

modeling introduces the well-known procedure for representing distributed forces p sð Þ by a

set of equivalent nodal forces. The random field of distributed loads has to be discretized

according to the structural finite element mesh. Thus, if the distributed loads are random, all

equivalent nodal forces become random variables. This approach seems obvious and it can be

applied directly to study the response variability of stochastic engineering problems [14]. How-

ever, if discretized random field load is a part of FORM calculations, then both the discretiza-

tion procedure for random field loads as well as FORM/FEM analysis should be modified in

order to get accurate results.

The general approach for the discretization procedure of the distributed body forces p sð Þ is

presented below [20]. A similar algorithm can be applied for other types of distributed loads

(surface forces and initial stresses). For the purpose of FORM analysis, it is convenient to

assume that the nodal forces for i-th element are random variables

Q ið Þ
p ¼

ð

V

N ið ÞTp sð ÞdV (34)

where N ið Þ is the displacement interpolation matrix for the i-th element in the local coordinate

system. Thus, the mean value vector of the load vector Q ið Þ
p is equal to

E Q ið Þ
p

h i

¼

ð

V

N ið ÞTE p sð Þ½ �dV (35)

The covariance matrix of the vectors of equivalent forces Q ið Þ
p and Q jð Þ

p corresponding to the i-th

and j-th finite elements has the form

Cov Q ið Þ
p ;Q jð Þ

p T
h i

¼

ð

V ið Þ

ð

V jð Þ

N ið ÞTCppN
jð ÞdV ið ÞdV jð Þ (36)

where the matrix Cpp contains the cross-covariance functions between different components of

the vector random field.

In general, a load effect can be an internal force, stress or strain at any point of structure which

does not coincide with a nodal point (or Gaussian integration point). Thus, the load effect
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S ið Þ sð Þ at a point s of i-th element can be represented as a sum of a general solution, S ið Þ
u (s) and a

particular solution, S ið Þ
p (s). The general solution S ið Þ

u (s) is the load effect as a function of geom-

etry, material properties and equivalent nodal forces applied at all nodal points. Whereas the

particular solution S
ið Þ
f (s) is the load effect at the point s of the i-th element due to the distrib-

uted body forces f ið Þ sð Þ and reactions Q ið Þ
p at the i-th element.

In the FORM analysis, the vector of basic random variables X also contains nodal equivalent

forces Q ið Þ
p (where the parameter }i} runs over all finite elements). Thus, in the search for the

most likely failure point, the current values of equivalent nodal forces Q ið Þ
p have to be deter-

mined at each iteration step of FORM algorithm. Those equivalent nodal forces, valid at a

specific step of FORM iteration, correspond to unknown functions of distributed body forces

p sð Þ. In order to determine the particular solution S ið Þ
p (s), the function of the distributed body

forces p ið Þ sð Þ within the i� th finite element must be known. One way to solve this problem is

to assume that the distributed body forces can be approximated with the help of shape

functions.

p ið Þ sð Þ ¼ N ið ÞTb (37)

The matrix b can be determined from the condition that the equivalent nodal force Q ið Þ
p at the

i-th finite element due to body forces p ið Þ sð Þ should be equal to the calculated equivalent nodal

forces in the FORM algorithm. The vector bk, which is the k-th column of the matrix b and

corresponds to the k-th component of the vector p ið Þ sð Þ, is determined by solving the system of

linear equations

ð

V

N
ið ÞT

k N
ið Þ
k dV

0

@

1

Abk ¼ Q ið Þ
p (38)

where N
ið Þ
k is the k-th row of the matrix N ið Þ:

In this way, the function of the distributed body forces p ið Þ sð Þ as well as the particular solution

S ið Þ
p (s) is determined as functions of nodal equivalent forces Q ið Þ

p .

For the distributed loads represented by the Gaussian random field, the components of vector

Q ið Þ
p , which are determined by means of a linear transformation (Eq. (34)), have the multi-

dimensional normal distribution. For the non-Gaussian random field, the probability distribu-

tion function F
Q

ið Þ
p

rð Þ of the vector of nodal equivalent forces Q ið Þ
p cannot be determined easily.

The first possible choice is to assume the normal distribution on the basis of the central limit

theorem. Another approximate solution has been developed [20] on the basis of the approach

presented by Der Kiureghian [18].
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5. Discretization of transverse distributed load for a Bernoulli-Euler beam

In case of Bernoulli-Euler beam, four shape functions are applicable

N1 sð Þ ¼ 1� 3 s
L

� �2
þ 2 s

L

� �3
N2 sð Þ ¼ s 1� s

L

� �2

N3 sð Þ ¼ s
L

� �2
3� 2

s

L

� �

N4 sð Þ ¼
s2

L

s

L
� 1

� � (39)

The nodal forces equivalent to the transverse distributed load q sð Þ are defined by the integrals

Qj ¼

ð

L

0

Nj sð Þq sð Þds j ¼ 1,…, 4 (40)

The distributed load q sð Þ is assumed to be a homogeneous random field, with constant mean

μq value, constant variance σ
2
q and the covariance function for the correlation function rq

Cov q sð Þ; q tð Þ
� �

¼ σ
2
qrq t� sj jð Þ (41)

Thus, the mean value of the nodal force Qi is just equal to

E Qi½ � ¼ μq

ð

L

0

Ni sð Þds (42)

and the covariance between nodal force Q
mð Þ
i at the m� th finite element and the nodal force

Q
nð Þ
i at the n� th finite element is defined by the double integral

Cov Q
mð Þ
i ;Q

nð Þ
j

h i

¼ σ
2
q

ð

s2m

s1m

ð

s2n

s1n

Ni sð ÞNj tð Þrq t� sj jð Þdsdt (43)

where s1m, s2m and s1n, s2n are the coordinates of the two ends of the finite elements, defined in

a common coordinate system.

If a beam is divided into N finite elements, then the random distributed load q sð Þ is modeled

by 4N random variables.

A typical limit state function for a beam can be defined at the m� th finite element

g mð Þ sð Þ ¼ R
mð Þ
b sð Þ �M mð Þ sð Þ (44)

where R
mð Þ
b sð Þ is the bending resistance at cross-section s (usually assumed as a basic random

variable) and M mð Þ sð Þ is the bending moment due to external loads at cross-section s, which is a

random function depending on the other basic random variables, for example, random nodal

equivalent forces Q
1ð Þ
1 ,Q

1ð Þ
2 ,Q

1ð Þ
3 ,Q

1ð Þ
4 ,…Q

Nð Þ
1 ,Q

Nð Þ
2 ,Q

Nð Þ
3 ,Q

Nð Þ
4 .
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The bending moment M mð Þ sð Þ can be represented as a sum

M mð Þ sð Þ ¼ M mð Þ
u sð Þ þM mð Þ

q sð Þ (45)

The general solution M mð Þ
u sð Þ depends on the nodal displacements, which are the functions of

all nodal forces Q
1ð Þ
1 ,Q

1ð Þ
2 ,Q

1ð Þ
3 ,Q

1ð Þ
4 ,…Q

Nð Þ
1 ,Q

Nð Þ
2 ,Q

Nð Þ
3 ,Q

Nð Þ
4 imposed to FEM model. The par-

ticular solution M mð Þ
q sð Þ is the bending moment within the m� th element due to the distrib-

uted load q sð Þ and reactions �Q
mð Þ
1 , �Q

mð Þ
2 , �Q

mð Þ
3 , �Q

mð Þ
4 at the m� th element,

M mð Þ
q sð Þ ¼ Q

mð Þ
2 �Q

mð Þ
1 s�

ð

s

s1m

q tð Þ s� tð Þdt (46)

At the k� th iteration step of FORM algorithm, the function of the distributed load is unknown

for the corresponding nodal forces. Therefore, the function of distributed load imposed on the

m� th finite element is assumed as a linear combination of the shape functions

q sð Þ ffi q mð Þ sð Þ ¼
X

4

i¼1

biNi sð Þ (47)

and the unknown coefficients bi, which have to be determined by requiring that the equivalent

nodal forces (Eq. (40)) for the function q mð Þ sð Þ defined by relation (Eq. (47)) should be equal to

the current equivalent nodal forces. The coefficients bi as well as the distributed load q mð Þ can

be obtained as functions of the current equivalent nodal forces Q
mð Þ
1 ,Q

mð Þ
2 ,Q

mð Þ
3 ,Q

mð Þ
4 at the

m� th finite element, by solving the system of linear equations

X

4

i¼1

ð

s2m

s1m

Ni sð ÞNj sð Þds

2

4

3

5b ¼ Q
mð Þ
j j ¼ 1,…, 4 (48)

Finally, the bending moment M mð Þ
q sð Þ is determined as a function of equivalent nodal forces

M mð Þ
q sð Þ ¼ m1 sð ÞQ

mð Þ
1 þm2 sð ÞQ

mð Þ
2 þm3 sð ÞQ

mð Þ
3 þm4 sð ÞQ

mð Þ
4 (49)

where

m1 sð Þ ¼ �s 1� 8
s

L
þ 20

s

L

� �2

� 20
s

L

� �3

þ 7
s

L

� �4
� �

m2 sð Þ ¼ 1� 60
s

L

� �2

þ 200
s

L

� �3

� 225
s

L

� �4

þ 84
s

L

� �5

m3 sð Þ ¼ �s 2
s

L
� 10

s

L

� �2

þ 15
s

L

� �3

� 7
s

L

� �4
� �

m4 sð Þ ¼ �30
s

L

� �2
þ 140

s

L

� �3
� 195

s

L

� �4
þ 84

s

L

� �5

(50)
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In order to determine the reliability index βFORM, the gradient of the limit state function

(Eq. (44)) has to be calculated. The partial derivatives of function (Eq. (44)) with respect to the

nodal forces are given below

∂g mð Þ

∂Q
nð Þ
i

¼ �
X

4

j¼1

∂M mð Þ
u

∂u
mð Þ
j

∂u
mð Þ
j

∂Q
nð Þ
i

if m 6¼ n i ¼ 1,…, 4 (51)

∂g mð Þ

∂Q
mð Þ
i

¼ �
X

4

j¼1

∂M mð Þ
u

∂u
mð Þ
j

∂u
mð Þ
j

∂Q
mð Þ
i

�mi sð Þ i ¼ 1,…, 4 (52)

where u
mð Þ
j is the nodal displacements in the local coordinate system of the m� th element and

the derivatives
∂u

mð Þ
j

∂Q
nð Þ

i

are computed with the help of the SFEM algorithm (Liu Der Kiureghian,

1991).

5.1. Example of discretization of random distributed load for a simply supported beam

The deterministic simply supported beam of length L is subjected to the transverse homoge-

neous random load q sð Þ with mean value μq and variance σ2
q. Assuming the exponential

correlation function with the scale of fluctuation θq,

r τð Þ ¼ exp �2
τj j

θq

� �

(53)

the mean value and the variance of the bending moment function can be derived analytically:

E M sð Þ½ � ¼ μq

s L� sð Þ

2
Var M sð Þ½ � ¼ σ2q A

θ4
q

8
þ B

Lθ3
q

4
þ C

L3θq

3

" #

(54)

where

A ¼ 1�
s

L

� � s

L
exp �2

L

θq

� �

� exp �2
s

θq

� �	 


þ
s

L

s

L
� exp �2

L� s

θq

� �

� 1

	 


þ 1

B ¼ � 1�
s

L

� � s

L
C ¼ 1� s

L

� �2 s
L

� �2

We consider the linear limit state function g sð Þ ¼ Rb �M sð Þ where Rb is the deterministic

bending moment capacity, constant along the beam.

If the random field q sð Þ is Gaussian, then the FORM reliability index is equivalent to the

Cornell reliability index
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β
FORM

sð Þ ¼ β
C
sð Þ ¼

Rb � E M sð Þ½ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var M sð Þ½ �
p (55)

On the other hand, the FORM reliability indices have been computed for the finite element

model of a simply supported beam. The distributed load random field q sð Þ has been

discretized according to the procedure described earlier.

The calculations have been carried out for the following data:

μq ¼ 1000 N=m, σq ¼ 200 N=m, Rb ¼ 5000 Nm, L ¼ 6 m and 5 cross-sections: s ¼ 1:02; 1:5;½

2:04; 2:52; 3� mð Þ. Three finite element sizes have been considered: Le ¼ 0:5; 1; 3 mð Þ. The scale

of fluctuation has been assumed as: θq ¼ 0:5; 1; 4; 100 mð Þ

The results of the FORM analysis presented in Table 2 are in very good agreement with the

reliability indices computed according to analytical formulae (Eq. (53–55)). Moreover, the

Finite element length Position of cross-section (m)

(m) 1.02 1.50 2.04 2.52 3.00

Scale of fluctuation = 0.5

Analytical 14.7350 7.3059 3.6040 2.1244 1.6821

0.5 14.7347 7.3055 3.6038 2.1243 1.6820

1.0 14.7345 7.3055 3.6038 2.1243 1.6820

3.0 14.7511 7.3166 3.6047 2.1247 1.6819

Scale of fluctuation = 1.0

Analytical 10.7242 5.3037 2.6112 1.5378 1.2172

0.5 10.7240 5.3036 2.6112 1.5377 1.2172

1.0 10.7239 5.3036 2.6112 1.5377 1.2172

3.0 10.7314 5.3092 2.6116 1.5378 1.2172

Scale of fluctuation = 4.0

Analytical 6.5774 3.2516 1.5997 0.9415 0.7451

0.5 6.5773 3.2517 1.5997 0.9415 0.7451

1.0 6.5773 3.2516 1.5997 0.9415 0.7451

3.0 6.5781 3.2523 1.5997 0.9415 0.7451

Scale of fluctuation = 100.0

Analytical 4.9153 2.4423 1.2062 0.7114 0.5633

0.5 4.9153 2.4423 1.2062 0.7114 0.5633

1.0 4.9153 2.4423 1.2062 0.7114 0.5633

3.0 4.9153 2.4423 1.2062 0.7114 0.5633

Table 2. Reliability indices computed according to analytical formula and FORM algorithm.
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reliability indices computed with the help of the described discretization procedure are insen-

sitive to the scale of fluctuation and the finite element size.

6. Conclusions

The reliability analysis of more complicated structures usually deals with the FEMmodels. The

random fields (material properties and loads) have to be represented by random variables

assigned to random field elements. The adequate distribution functions and covariance matri-

ces should be determined for a chosen set of random variables. This procedure is called

discretization of a random field.

The chapter presents the discretization of random field for material properties with the help of

the spatial averaging method of one-dimensional homogeneous random field, and midpoint

method of discretization of random field.

The second part of the chapter deals with the discretization of random fields representing

distributed loads. The discretization of distributed load imposed on a Bernoulli beam is

presented in detail. An example shows that the presented procedure for discretizing random

fields representing distributed loads is very efficient, that is, the reliability indices computed

with the help of SFEM and FORM analysis are in very good agreement with the results of

analytical calculations.
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