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Abstract

The wear and failure mechanism for multilayered nanostructured coatings has a num-
ber of significant differences from the one typical for monolithic single-layered coatings.
In particular, while the strength of adhesion bonds at the “substrate-coating” boundary
is important for monolithic coatings, then for multilayered nanostructured coatings, the
strength of adhesion and cohesion bonds at interlayer boundaries and boundaries of
separate nano-sublayers becomes of significant significance. Meanwhile, the delamina-
tion arising in the structure of multilayered nanostructured coatings can have both
negative (leading to loss of coating uniformity and subsequent failure of coating) and
positive influences (due to decrease of internal stresses and inhibition of transverse
cracking). Various mechanisms of formation of longitudinal cracks and delaminations
in coatings on rake tool faces, which vary based on the compositions and architectures
of the coatings, are studied. In addition, the influence of internal defects, including
embedded microdrops and pores, on the formation of cracks and delaminations and
the failure of coatings is discussed. The importance of ensuring a balance of the basic
properties of coatings to achieve high wear resistance and maximum tool life of coated
metal-cutting tools is shown. The properties of coatings and the natures of their failures,
as investigated during scratch testing and dry turning of steel C45, are provided.

Keywords: wear-resistant coatings, wear, crack, fracture, tool life, PVD coatings,
delamination, nanoscale structures
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1. Introduction

1.1. Background

Further increases in efficiency of machining and cutting speeds as well as tightening of reli-

ability requirements associated with greater levels of automation of production result in the

need to create new tool materials with enhanced performance characteristics. One way to

improve the performance characteristics of tool materials is to enhance their surface properties

by applying modified coatings [1]. In turn, the properties of modified coatings continue to be

improved, and their architecture and elemental composition become more complicated. In

particular, multilayered composite coatings, nanostructured and gradient coatings, and coat-

ings with multicomponent elemental composition have been used extensively in recent years

[2]. The use of a multilayered architecture of coatings and the use of nanostructured technol-

ogy can significantly improve the performance characteristics of a new generation of coatings.

However, along with the use of such coatings come new problems that did not occur with

monolithic coatings of the first generation. In particular, problems arose concerning interlayer

delamination and formation of specific longitudinal cracks in the structure of coating. A large

number of studies examining problems of cracking have been conducted. The general assump-

tion is that the formation of microcracks is associated with the displacement of dislocations [3–

6]. A number of mechanisms for the formation of dislocation microcracks are well known [3, 4,

6]. In principle, those mechanisms provide for blocking of the progress of dislocation by some

obstacle (e.g., a grain boundary, a boundary of nanolayers, or inclusion). If in some slip plane

dislocations stop before a sufficiently powerful obstacle, then a cluster of dislocations is

formed, and it causes a high concentration of stresses at the obstacle. This concentration of

stresses results in formation of a dislocation microcrack. It should be noted that the problems

of crack formation and delamination in the structures of multilayered coatings have not been

studied as thoroughly as have other aspects of operation and wear of such coatings.

1.2. Literature review

Tabakov et al. [7, 8] considered mechanisms of cracking with respect to single-layer macroscale

coatings on the basis of systems composed of TiN, TiCN, (Ti,Zr)N, and (Ti,Zr)CN. They discov-

ered that coatings of a complex composition of (Ti,Zr)N and (Ti,Zr)CN are characterized by

better resistance to intensive cracking. Tabakov et al. also considered multilayered coatings with

macroscale structure: in particular, on the basis of systems composed of TiCN-(Ti,Zr)N-TiN,

TiN-(Ti,Zr)N-TiN, TiCN-(Ti,Al)N-TiN, and TiCN-(Ti,Мо)N-TiN [9]. These studies proved that

the introduction of zirconium nitride in the coating composition significantly reduces the ten-

dency to cracking. The problems of cracking and brittle fracture of coatings consisting of Ti-TiN-

(Ti,Cr,Al)N, Zr-(Zr,Cr)N-CrN, and Ti-TiN-(Ti,Cr,Al)N and Ti-(Al,Cr)N-(Ti,Al)N, Ti-(Al,Cr)N-(Ti,

Cr,Al)N, and Zr-(Al,Cr)N-(Zr,Cr,Al)N also were addressed in papers [10–16]. A detailed review

of existing papers in the field of crack formation in multilayered coatings, with classification of

types of cracks and analysis of the mechanisms of their formation, is given in [17]. The topic of

mathematical modeling of cracking in multilayered coatings with the use of an axis-symmetrical

finite element method (FEM) model was considered by Skordaris et al. [18]. Wu et al. [19, 20]

modeled cracking in single-layer coatings within the framework of linear elastic fracture

mechanics (LEFM). M’Saoubi et al. [21] investigated the nature of wear, including brittle fracture
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and cracking of physical vapor deposition (PVD)-coated (TiN, (Ti,Si)N, (Ti,Al)N, and (Al,Cr)N)

polycrystalline cubic boron nitride. Koseki et al. [22] examined the cutting performance of TiN-

coated cutting tools. Defects (e.g., droplets, voids) in the coating were found to be the starting

point of damage. The breakdown region is enlarged as the work material is caught in the

damaged portion of the coating. Kumar and Curtin [23] considered the probable mechanisms

of development and inhibition of cracks in microstructures: particularly at crack bridging by

ductile ligaments, crack deflection by second-phase particles, microcrack formation, and stress-

induced phase transformations. The same paper also includes an overview of methods for

modeling the development of cracks using FEM and incorporating cohesive elements at the

continuum level, as well as discrete dislocation methodology at the mesoscopic level, and

coupled atomistic/continuum methods that transition atomic level information to the micro-

scopic level. A large number of studies have been devoted to the investigation of causes and

conditions for the formation of delaminations in multilayered composite macrostructures. To

predict the occurrence of delaminations, the methods of layer-wise interface elements [24, 25],

classical finite element analysis (FEA) [25, 26], and the virtual crack closure technique (VCCT)

[27] are widely used. The issues concerning delamination of multilayered nanostructured coat-

ings are also discussed in details in [28].

1.3. Mechanisms of crack formation

Starting from the theory of crack formation [3–5], the concentration of local tensile stresses σld
in the head of a series of edge dislocations caused by the action of a number of edge stresses τ

can be determined using the following equation [29]:

σld ¼

ffiffiffiffiffi

d

2x

r

τ� τið Þ (1)

where 2d is the length of the slip band or the distance between the slip bands (the value may

also correspond to crystalline grain diameter), x is the distance from the strip to the head of the

cluster of dislocations, and τi is the stress of resistance to movement of dislocations (friction

stress). If the local stress reaches the theoretical strength of the crystalline body σtheor, deter-

mined by the equation

σtheor ¼

ffiffiffiffiffiffi

Eγ

a0

s

(2)

where a0 is the equilibrium distance between atoms, E is the modulus of elasticity, and γ is the

plastic shear deformation, then conditions arise for the formation of a dislocation microcrack.

Consequently, the criterion for the formation of a microcrack is as follows:

ffiffiffiffiffi

d

2x

r

τ� τið Þ ≥

ffiffiffiffiffiffi

Eγ

a0

s

(3)

The number of positive or negative dislocations in a flat cluster near an obstacle can be

expressed by an approximate formula (assuming E ≈ 2G, where G is the shear modulus):
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n ≈
τ� τið Þ

bE
(4)

Assuming the additional condition of x ≈ a0, from the joint solution of Eqs. (3) and (4), we obtain

the condition necessary for the formation of a microcrack under the dislocation mechanism:

τ� τið Þnb ¼ 2γ (5)

Analysis of the given conditions for the formation of a dislocation microcrack results in the

following conclusion. Local tensile stresses in the head of a number of dislocations are formed

primarily because of tangential stresses τ and are not related in any way to tensile stresses (i.e.,

only shear stresses are crucial for the initiation of a microcrack). The defects already existing or

emerging in the early stages of deformation of solid bodies result in the initiation and devel-

opment of the failure processes. Various mechanisms of failure are realized depending on the

structural and stress strain states of a solid body and also depending on the external medium

[3, 6, 30]. The following are the most common mechanisms of microfailure of metals (Figure 1):

1. Viscous fracture (Figure 1a). This mechanism of failure is caused by the formation of

micropores near inclusions or particles of the second phase, their growth, localization of

microplastic deformation in the crosspieces between the pores, and, in the final stage, the

fusion of micropores and the break of the bridges. The model and criterion for the

formation of micropores are as follows: a micropore is formed when the cohesive stresses

(bond stresses between the inclusion particles and the matrix) reach a critical stress. The

existing models for the formation, growth, and fusion of micropores can be used to

analyze micromechanisms of viscous fracture of a solid body in front of a crack tip. When

the stresses in front of the inclusions (before a crack tip) reach critical values, the micro-

pores are being formed. Further growth of micropores and localization of plastic defor-

mation results in plastic blunting of crack tip, merging of micropores with crack tip, and

subsequent growth of a viscous crack (Figure 2). In multilayered composite nanostruc-

tured coatings, such a mechanism of cracking can occur primarily in the formation of

delaminations at interlayer boundaries, as well as at the boundaries of nano-sublayers.

2. Transcrystallite cleavage (Figure 1b). This mechanism is characterized by failure of a solid

body (spread of a crack) along certain crystallographic planes. In polycrystalline bodies,

the process of transcrystallite cleavage is realized not in one crystallographic plane, but

through the distribution and subsequent integration of a multitude of microcracks of the

cleavage that arises in a certain family of crystallographic grain planes. As a rule,

transcrystallite cleavage is of a brittle nature, although plastic deformation processes are

also possible. The described mechanism can be typical for the formation of cracks in

monolithic single-layer coatings (TiN, ZrN, etc.), as well as in monolithic layers of multi-

layered coatings. In coatings with nano-sublayers, the development of cracks under the

above mechanism is significantly constrained by the boundaries of nano-sublayers.

3. Intercrystallite fracture (Figure 1c). This mechanism consists of the initiation and propa-

gation of microcracks along grain boundaries. This failure mechanism is related to the fact

that the fracture energy necessary for propagation of a crack along the grain boundaries is

lower than the corresponding energy of the transcrystallite cleavage. In the coatings,
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intergranular fracture can occur in monolithic single-layer coatings (in particular, trans-

verse cracks in the columnar crystalline structure of TiN are formed under the above

mechanism). As a rule, several mechanisms of failure take place simultaneously, and as a

consequence, a mixed type of failure occurs. Typically, three types of loading or displace-

ment of the points of crack surfaces under the influence of an external load are considered

[3, 4, 6]. The first type (type 1) includes the formation of normal detachment cracks,

characterized by movement of the points of the crack surface under the action of a load

in the direction perpendicular to the plane of the crack. In this case, the crack tends to

open. Cracks of the transverse type (type 2) are cracks in which points of surfaces are

displaced across the front of the crack (leading edge of the crack). Finally, longitudinal

shear cracks (type 3) are characterized by displacement of the points of the crack surface

along its front. It should be noted that these types of loading can be combined, thus

forming complex types of loading. The conditions of operation of multilayered nanostruc-

tured modified coatings for a metal-cutting tool are most typically characterized by

loading of type 1 (typical for the rake face of the tool, due to the constant formation and

failure of adhesion bridges with the tool being machined) and type 2 (typical for the flank

face of the tool, due to longitudinal compressive stresses and the resulting plastic defor-

mation of a substrate). To describe the delamination process, it is also possible to use

strain energy release rate (SERR), which represents energy dissipated during fracture per

unit of newly created fracture surface area [31]. Delamination growth rates were corre-

lated with the SERR by means of the Paris relation [32, 33]:

Figure 1. Mechanisms of failure: (a) viscous fracture, (b) transcrystallite cleavage, and (c) intercrystallite fracture.

Figure 2. Pattern of the micromechanism of growth of a viscous crack: (a) inclusions at the crack tip, (b) growth of

micropores in front of the crack tip, and (c) micropores merging with the crack tip.
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dBd

dN
¼ Cf Gð Þnp (6)

where B is delamination length (mm), N is the number of cycles, C is the Paris coefficient for

delamination growth, G is the strain energy release rate (N/mm), np is the Paris exponent for

delamination growth, and C and n are empirically determined parameters that depend on the

materials and the temperature (and possibly other factors). As yet, no consensus has been

reached on the correct form of f(G). In particular, f(G) can be represented as SERR at maximum

fatigue load, Gmax, and within the SERR range, ∆G. In turn, ∆G can be determined from the

following formula [25]:

ΔG ¼
ffiffiffiffiffiffiffiffiffiffi

Gmax

p

�
ffiffiffiffiffiffiffiffiffiffi

Gmin

p

� �2
(7)

The dependence (1) also can be represented by [26] as follows:

dBd

dN
¼ C Gmaxð Þnp (8)

where Gmax is the strain energy release rate at maximum fatigue load (N/mm).

Thus, the task of the present work is to study the process of delamination between layers of

multilayer coatings and between nano-sublayers of nanostructured coatings. These processes

have a significant impact on the overall performance of modifying coatings and products with

such coatings (in particular, metal-cutting tools). An important feature of this work is that not

only laboratory samples but also cutting tool samples that underwent cutting tests in real

production conditions were considered. The peculiarities of delamination were investigated

depending both on the elemental composition of the coatings and on their architecture (total

coating thickness and thickness of the nanolayers).

2. Materials and methods

2.1. Deposition method

For deposition of nanoscale multilayered composite coatings (NMCC), a vacuum-arc VIT-2

unit [2], which was designed for the synthesis of coatings on substrates of various tool mate-

rials, was used. The unit was equipped with an arc evaporator with filtration of vapor-ion flow.

In this study, the process, termed filtered cathodic vacuum-arc deposition (FCVAD) [10–16],

was used for deposition of coatings on the tools to significantly reduce the formation of the

droplet phase during formation of the coating. The use of the FCVAD process does not cause

structural changes in carbide and provides the following:

• High adhesive strength of the coating in relation to the carbide substrate.

• Control of the level of the “healing” of energy impact on surface defects in carbide in the

form of microcracks and micropores and formation of favorable residual compressive

stresses in the surface layers of the carbide material.
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• Formation of the nanoscale structure of the deposited coating layers (grain size, sublayer

thickness) with high density due to the energy supplied to the deposited condensate and

transformation of the kinetic energy of the bombarding ions into thermal energy in local

surface volumes of carbide material at an extremely high rate of approximately 1014 K s�1.

When choosing the composition of NMCC layers, in forming the coating of the three-layered

architecture [2, 10], the Hume-Rothery rule was used. This rule states that the difference in

atomic dimensions in contacting compounds should not exceed 20% [34]. The parameters used

at each stage of the deposition process of NMCC are shown in Table 1.

An uncoated carbide tool and a carbide tool with “reference” coating TiN, deposited via standard

vacuum-arc technology of arc-PVD, were used as objects for comparative studies of tool life.

2.2. Microstructural studies

For microstructural studies of samples of carbide with coatings, a raster electron microscope

FEI Quanta 600 FEG was used. The studies of chemical composition were conducted using the

same raster electron microscope. To perform X-ray microanalysis, characteristic X-ray emis-

sions resulting from electron bombardment of a sample were examined. The hardness (HV) of

coatings was determined by measuring the indentation at low loads according to the method

of Oliver and Pharr [35], which was conducted on a micro-indentometer microhardness tester

(CSM Instruments) at a fixed load of 300 mN. The penetration depth of the indenter was

monitored so that it did not exceed 10–20% of the coating thickness to limit the influence of

the substrate. The adhesion characteristics were studied on a Nanovea scratch tester, which

represents a diamond cone with apex angle of 120� and radius of top curvature of 100 μm. The

tests were conducted with the load linearly increasing from 0.05 to 40 N. Crack length was

5 mm. Each sample was subjected to three trials. The obtained curves were used to determine

two parameters: the first critical load, LC1, at which the first cracks appeared in the coating,

and the second critical load, LC2, which caused the total failure of the coating.

2.3. Study of cutting properties

A study of the cutting properties of the tool made of carbide with developed NMCC was

conducted using a lathe CU 500 MRD for longitudinal turning of steel C45 (HB 200). In the

experiment, the cutters featured mechanical fastening of inserts made of carbide (WC + 15%

Process pN (Pa) U (V) IAl (A) IZrNb (A) ITi (A) ICr (A)

Pumping and heating of vacuum chamber 0.06 +20 120 80 65 75

Heating and cleaning of products with gaseous plasma 2.0 100 DC/900 AC

f = 10 kHz, 2:1

80 — — —

Deposition of coating 0.36 �800 DC 160 75 55 70

Cooling of products 0.06 — — — — —

Note: ITi = current of titanium cathode, IAl = current of aluminum cathode, IZrNb = current of zirconium-niobium cathode,

ICr = current of chromium cathode, pN = gas pressure in chamber, and U = voltage on substrate.

Table 1. Parameters of stages of the technological process of deposition of NMCC.
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TiC + 6% Co) with square shapes (SNUN ISO 1832:2012) and with the following figures for

the geometric parameters of the cutting part: γ = �8�, α = 6�, K = 45�, λ = 0, and R = 0.8 mm.

The study was performed for the following cutting modes: f = 0.2 mm/rev, аp = 1.0 mm, and

vc = 250 m min�1. Flank wear-land values (VBc) were measured with a toolmaker ’s micro-

scope MBS-10 as the arithmetic mean of four to five tests. A value of VBc = 0.4 mmwas taken

as failure criterion. The study included statistical processing of tests of wear of cutting tools,

sample mean value of wear, and sample mean square deviation of tool wear, which are

random variables with different values in repeated experiments. Of note, during the exper-

iments, outlying results were excluded. To exclude outlying results of the experiments,

Irwin’s criterion was used. To do that, the value of Irwin’s criterion Kλ was defined, if the

outlying result was the maximum value VBmax:

Kλ ¼ VBc � VBmaxð Þ=Kσ (9)

and if the doubts were provoked by the wear value with minimum value VBmin:

K ¼ VBc � VBminð Þ=Kσ (10)

The calculated value Kλ was compared to the critical value KλΑ, defined theoretically for a

given level of significance level Α and selection criterion n. If Kλ < KλΑ, then deviation of

questionable value VBc was considered as valid.

3. Results and discussion

3.1. Adhesion characteristics

The classical test that enables determination of the strength of the adhesive bond of a coating

with a substrate by the scratch-test method also can be used for qualitative evaluation of the

strength of the adhesive bond between individual coating layers and cohesive bond between

nano-sublayers. The tests were conducted on a Nanovea scratch tester. The indenter was a

diamond cone with an apex angle of 120� and radius of top curvature of 100 μm. The tests were

performed with a load linearly increasing from 0.05 N to the final load (40 N). Crack length was

5 mm. Each sample was subjected to three trials. The obtained curves were used to determine

two parameters: the first critical load LC1, at which first cracks appeared in NMCC, and the

second critical load LC2, which caused the total failure of NMCC. Typical types of failure are

presented in Figure 3 (standard coating TiN), Figure 4 (NMCC Zr-ZrN-(Nb,Zr,Ti,Al)N), and

Figure 6 (NMCC Ti-TiN-(Ti,Al)N). All investigated coatings showed a sufficiently high level of

adhesion bonds with substrate. Numerous research efforts and the experience of the authors of

this paper show that a scratch test does not have a unique correlation with the tool life of a

coated tool [1]; the test allows only “rejecting” coatings with insufficient strength of adhesion

bonds. However, this test enables a study of the nature of the coating failure, particularly from

the point of view of delaminations that occur in its structure. Let us consider the nature of the

failure of the single-layer monolithic TiN coating (Figure 3). A fairly smooth scribing groove is

clear, with a clearly visible area of brittle fracture of the outer area of the coating. On the edges

of the groove, cracks and splintered areas of the coating are visible. Patterns of failure of
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NMCC Zr-ZrN-(Nb,Zr,Ti,Al)N (Figure 4) and (NMCC Ti-TiN-(Ti,Al)N) (Figure 5) are charac-

terized by a number of significant differences. The failures of those coatings occur under the

mechanism of “wedging spallation.”Meanwhile, NMCC Zr-ZrN-(Nb,Zr,Ti,Al)N shows exten-

sive interlayer delaminations, whereas in NMCC Ti-TiN-(Ti,Al)N, similar delaminations are

less pronounced, and delaminations between nano-sublayers also occur. Generally, this picture

correlates with the nature of the failure of those coatings observed during cutting tests.

Figure 3. The nature of failure of coating TiN along a longitudinal crack, caused by a diamond indenter at critical

(breaking) load [28]. Vsc, scribing direction. (1) “Substrate-coating” boundary, (2) boundary of the brittle fracture zone of

the coating, (3) boundary of the scribing groove, and (4) splintered section of the coating.

Figure 4. The nature of failure of NMCC Zr-ZrN-(Nb,Zr,Ti,Al)N along a longitudinal crack, caused by a diamond

indenter at critical (breaking) load. Vsc, scribing direction [28]. (1) The boundary of the wedging spallation zone, (2) the

delamination boundary between the intermediate and wear-resistant layers, (3) the boundary of “adhesion coating layer-

substrate” delamination, and (4) the boundary of the coating zone, pressed by the tip of the scratch tester.
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The study of the scribing process for nanostructured coatings of large thickness (exceeding

10 μm) is of particular interest. In this case, it is possible to observe both coating failure caused

by violation of adhesion bonds between layers and cohesive bonds between nano-sublayers

and failure of a coating as a whole, when failure is not accompanied by delamination. Signs of

failure of coating Ti-TiN-(Ti,Al)N (with coating thickness 13 μm) at scribing are shown in

Figures 6 and 7.

In particular, Figure 6 shows both violation of the interlayer interface between layers TiN and

(Ti,Al)N and persistence of strong adhesion bonds between nano-sublayers of layer (Ti,Al)N. At

zoom in, it is possible to notice in Figure 7 that in some cases, at critical loads, there is also failure

of cohesive bonds between nano-sublayers, and that fact results in formation of a kind of

“terraces,” i.e., flat microsites with surface structure of a nano-sublayer. It is also possible to see

signs of a tear-out of microdroplets embedded in the coating structure. Figure 7 shows the

“terrace-like” structure of failure zone of a nanostructured coating. A general structure of the

coating under the study and the nature of cracking in it during the cutting tests are shown below,

in Figure 20.

Figure 5. The nature of failure of NMCC Ti-TiN-(Ti,Al)N along a longitudinal crack, caused by a diamond indenter at

critical (breaking) load [28]. Vsc, scribing direction.

Figure 6. The nature of failure of NMCC Ti-TiN-(Ti,Al)N (coating thickness 13 μm) along a longitudinal crack, caused by

a diamond indenter at critical (breaking) load [28].
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3.2. Determination of basic properties of NMCC under cutting tests

This study was focused on the NMCC containing nitrides of Ti, Al, Cr, Zr, and Nb in its

composition. For the detailed studies of various properties, NMCC were selected based on

the following conditions:

• If earlier studies show significant increase in cutting properties and reliability of the tool

[10–16].

• If the thermodynamic criterion ΔrG (Gibbs free energy change per mole of reaction)

favored the formation of the NMCC.

To accomplish the research tasks, NMCC of various compositions were selected to meet the

above conditions and were deposited using the FCVAD technology. The thicknesses of the

coatings used in the studies were 2.4–5.0 μm. A wide range of thicknesses were selected on

the basis of previous studies (in particular [10–16]), indicating the improvement in cutting

performance with increase in coating thickness. The basic properties of the NMCC under

study are presented in Table 2. Curves obtained by mathematical processing of the experi-

mental data are shown in Figure 8.

The NMCC Ti-TiN-(Ti,Al)N shows better resistance for approximately 19 min of operation due

to its high surface hardness; however, subsequently, the tool with such a coating begins to

experience intensive wear. This fact can be related to the start of intense cracking and wear of

this coating. As a result, the tool with NMCC Zr-ZrN-(Zr,Cr,Al)N showed better resistance,

and it was characterized by a balanced combination of sufficiently high hardness and resis-

tance to brittle fracture. Let us consider in detail the mechanism of cracking and failure of

coatings, paying special attention to such aspects of those processes as longitudinal cracks and

Figure 7. The nature of failure of NMCC Ti-TiN-(Ti,Al)N (coating thickness 13 μm) along a longitudinal crack, caused by

a diamond indenter at critical (breaking) load [28].
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delaminations (interlayer delaminations and delaminations between nano-sublayers) form.

Basic mechanism for the formation of longitudinal cracks and delaminations can be distin-

guished in a nanostructured multilayered coating because of the tearing force related to the

adhesion interaction between the outer boundary of the coating and the material being

machined (Figure 9), which has a prevailing fatigue characteristic and results in the formation

of fatigue cracks due to the alternating processes of formation and failure of adhesion bridges

in the system of “coating-material being machined.” The considered mechanism is more

typical for coatings on the rake face of the tool.

The action of the mechanism shown in Figure 9 can result not only in the formation of longitu-

dinal cracks and delaminations but also in the destruction of the surface layers of the coating

and, consequently, in the deterioration of the tool life of the metal-cutting tool (Figure 10).

# Composition of

NMCC

Tool life Tc (min)

VB = 0.4 mm

Sublayer

thickness (nm)

Total thickness

(μm)

Adhesion,

LC2 (N)

Hardness, HV

(GPa)

1 Uncoated 8 — — — 18

2 TiN 18 — 2.8 31 30

3 Zr-ZrN-(Zr,Cr,Al,

Nb)N

24 200 3.8 >40 34

4 Zr-ZrN-(Nb,Zr,Ti,

Al)N

31 45–60 3.3 >40 34

5 Ti-TiN-(Ti,Al)N 28 65–90 5.0 >40 38

6 Zr-ZrN-(Zr,Cr,Al)

N

37 15–45 3.4 39 36

Table 2. The basic properties of NMCC and periods of tool life of the carbide tools under study with the NMCC under

study.

Figure 8. Dependence of wear VB on cutting time for dry turning of steel C45 at ap = 1.0 mm, f = 0.2 mm/rev, and

vc = 250 m/min. (1) Uncoated, (2) TiN, (3) Zr-ZrN-(Zr,Cr,Al,Nb)N, (4) NMCC Zr-ZrN-(Zr,Cr,Al)N, (5) NMCC Ti-TiN-(Ti,

Al)N, and (6) Zr-ZrN-(Zr,Cr,Al)N.
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An important distinctive feature of the development of longitudinal cracks in nanostructured

coatings is the formation of bridges in the process of cracking due to the alternation of less

plastic sublayers with more plastic ones in the coating structure. Such bridges inhibit the

development of a crack by exerting a positive influence on coating crack resistance and,

consequently, on the tool life of a cutting tool (Figure 11). This mechanism of inhibition of

Figure 9. The mechanism of formation of longitudinal cracks and delaminations in a nanostructured multilayered

coating during cutting due to the tearing force associated with adhesion interaction between the outer boundary of the

coating and the material being machined [28].

Figure 10. An example of the failure of the upper layer of NMCC Zr-ZrN-(Zr,Cr,Al)N because of the tearing force related

to the adhesion interaction between the outer boundary of the coating and the material being machined (steel C45) [28].
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cracking is fairly close to the mechanism of action of bridges from a particle of a more plastic

phase embedded in the brittle phase described, in particular, by Kumar and Curtin [23]. It

should be noted that the studies of the propagation of longitudinal cracks in monolithic

coatings revealed no such bridges. The strength of the bridges depends on the composition of

the coating layers. In particular, in layers of (Zr,Cr,Al)N (Figure 11a), the bridges show

significantly higher strength and ductility than in (Zr,Nb,Ti,Al)N (Figure 11b), where the

bridges show a tendency to failure.

No such bridges are observed in NMCC Ti-TiN-(Ti,Al)N, and that may be connected with the

high hardness and brittleness of the layer (Ti,Al)N. The failure of NMCC Ti-TiN-(Ti,Al)N often

occurs in accordance with a pronounced “brittle fracture” scenario with the formation of a

network of longitudinal and transverse cracks (Figure 12).

In the case of insufficiently strong adhesion bond between the coating layers or cohesive bonds

between its nano-sublayers, delaminations of the classical form are formed between the layers

of the coating or between its nano-sublayers. In particular, Figures 13 and 14 show obvious

delamination between the intermediate TiN layer and the wear-resistant (Ti,Al)N layer. In the

structure of the coating presented in Figure 14, transverse cracks and delaminations also occur

between nano-sublayers of the wear-resistant layer. In addition, it is possible to note a rela-

tively positive role of delamination (1) as a factor of inhibition of transverse cracks (3). The

transverse cracks (3) are decelerated at the boundary of the intermediate and wear-resistant

layers, and they are not spreading in the intermediate TiN layer (Figure 14).

Figure 11. Deceleration of a longitudinal crack in NMCC Zr-ZrN-(Zr,Cr,Al)N (a) and Zr-ZrN-(Zr,Nb,Ti,Al)N (b) due the

formation of bridges of more plastic nanolayers [17, 28].

Figure 12. Failure of NMCC Ti-TiN-(Ti,Al)N with the formation of a network of longitudinal and transverse cracks [28].
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The patterns of formation of longitudinal cracks and delaminations often appear to be com-

plex. In particular, Figure 15 shows the mechanisms of cracking and delamination in NMCC

Zr-ZrN-(Zr,Cr,Al)N. The area of this picture that is marked as AREA I contains a crack of a

complex kind, combining delamination between the substrate and the adhesion layer Zr,

Figure 13. Interlayer delamination in the structure of NMCC Ti-TiN-(Ti,Al)N [28].

Figure 14. Interlayer delamination (1), delamination between nano-sublayers (2), and transverse cracks (3) in the struc-

ture of NMCC Ti-TiN-(Ti,Al)N [28].

Figure 15. An example of formation of longitudinal cracks and delaminations in NMCC Zr-ZrN-(Zr,Cr,Al)N [28].
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passing into a transverse crack that cuts the adhesive layer, and turning into a series of

delaminations between nano-sublayers of the intermediate coating layer. The initial factor

stimulating the formation of this crack is microroughness of the substrate, formed by high

carbide grain. In contrast, the area indicated as AREA II contains an example of extended

delamination, reaching a width of 200–300 nm. The formation of this delamination resulted in

(1) chipping of microcomponents of the coating, (2) formation of bridges of more plastic

nanolayers, and (3) the crack development boundary.

Various defects in coatings (in particular, embedded microdrops and pores) can play an impor-

tant role in the formation of longitudinal cracks and delamination. Figure 16 shows how a crack

reaches a macro droplet and forms branches. Meanwhile, one of the branches of the crack passes

through a macro droplet, while the second crack branch traverses it along the contour. This

photomicrograph reveals a separation of the material being machined from the coating; this

separation indicates a low adhesive bond between the materials. Meanwhile, no separation of

the coating from the tool material occurs due to a strong adhesive bond between them.

Another example of the effect of a microdroplet embedded in the structure of the coating on

the formation of delaminations is shown in Figure 17. Here, a crack is formed directly above a

microdroplet, and several parallel delaminations exist in the area adjacent to a microdroplet.

These occurrences may be related to internal stresses arising during the coating deposition.

Figure 16. An example of development of a longitudinal crack in NMCC Zr-ZrN-(Zr,Cr,Al)N [28].

Figure 17. An example of development of a longitudinal crack in NMCC Ti-TiN-(Ti,Al)N [28].
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Let us consider separately the process of delamination and failure in coating Zr-ZrN-(Zr, Cr,

Al, Nb)N with thickness of sublayers of about 200 nm (Figure 18a). Due to thick sublayers, this

coating cannot be called “nanostructured.” This coating is characterized by a large number of

delaminations, arising especially in the fracture zone adjacent to a wear crater. No bond

bridges are formed between sublayers (Figure 18 Area A), while delaminations are an impor-

tant factor in failure of coating (Figure 18c).

Let us individually consider delaminations formed in NMCC of heavy thickness (usually

exceeding 8 μm) because of heavy internal compressive stresses. Such delaminations can be

formed with equal probability in the coating both on the rake and flank face of a tool. An

example of formation of delaminations in “thick” NMCC is presented in Figure 20. It is

possible to observe four clear delaminations located at approximately equal distance (about

20 nano-sublayers) from each other. Meanwhile, the delamination closest to the substrate (area

A on Figure 20) passes exclusively along the boundary between the sublayers. At the same

time, delaminations B, C, and D are rather longitudinal cracks because they also are character-

ized by breaks in the structures of nano-sublayers (Figure 19).

Various internal defects in “thick” NMCC (in particular, microdroplets embedded in the struc-

ture of the coating) become particularly important and result in local fracture of the coating

because of the formation of multiple delaminations that weaken the coating structure and

ultimately result in the formation of a transverse crack (Figure 20). As a result of the distortion

of the coating structure associated with the curvature of the nano-sublayers because of rounding

Figure 18. The process of delamination and failure in coating Zr-ZrN-(Zr,Cr,Al,Nb)N: general structure (a), destruction of

the coating in the area of the crater wear boundary (b), boundary region “coating-adherent” (c).
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of an embedded microdroplet, internal stresses arise, which in turn result in the formation of

corresponding delaminations and longitudinal cracks. Because (Ti,Al)N is a very hard, yet brittle

compound, the chipping of fragments of nano-sublayers and formation of a transverse crack

occur in the coating structure weakened by delaminations.

Figure 19. An example of the formation of delaminations in NMCC Ti-TiN-(Ti,Al)N (total thickness of the coating is

10.3 μm) [28].

Figure 20. Formation of a transverse crack in the structure of NMCC Ti-TiN-(Ti,Al)N as a result of weakening of the

structure of NMCC by multiple delaminations formed under the influence of internal stresses [28].
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4. Conclusions

This study of the nature of the formation of longitudinal cracks and delaminations in multi-

layered nanostructured coatings reveals the following:

1. Two important mechanisms result in formation of transverse cracks and delaminations:

a. Tearing force associated with adhesion interaction between the outer boundary of the

coating and the material being machined (typical for the rake face of the tool).

b. Tearing force associated with plastic microdeformations in the surface layer of the

tool substrate (more typical for the flank face of a tool).

2. The nature of the formation of longitudinal cracks and delaminations varies significantly

for different coating compositions. In coatings with more plastic nanolayers, bridges can

be formed, which inhibit the development of cracks. This can be clearly observed in

NMCC Zr-ZrN-(Zr,Cr,Al)N and to a lesser extent in NMCC Zr-ZrN-(Zr,Nb,Ti,Al)N, while

in coatings with more hard and brittle nanolayers (e.g., (Ti,Al)N), such bridges are not

formed, and coatings are destructed under the mechanism of brittle failure.

3. Such coating defects as embedded microdrops and micropores can stimulate the develop-

ment of longitudinal cracks and delaminations.

4. The following factors reduce the probability of formation of longitudinal cracks (delami-

nation):

a. Reduction of adhesion interaction between the outer boundary of the coating and the

material being machined.

b. Increase of adhesion bonds between coating layers and cohesive bonds between the

nano-sublayers.

c. Decrease in the level of plastic microdeformations of the tool substrate, in particular,

through heat strengthening and/or diffusion saturation with alloying elements.

5. In general, coatings with thickness of sublayers of more than 100 nm do not form bond

bridges which inhibit cracking. In such coatings, delamination develops more actively and

leads to failure of coating structure.

6. NMCC of relatively large thickness (larger than 8 μm) may experience delamination

during the deposition as a result of significant internal stresses. The presence of such

delamination can contribute to brittle fracture of coatings, particularly NMCC based on a

hard and brittle compound (Ti,Al)N.
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