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Abstract

Forward osmosis, or simply, osmosis, refers to a process by which a solvent moves
across a semipermeable membrane due to the difference in the solute concentration
established across the membrane. Because of its spontaneous nature, forward osmosis
has received immense attention during the last few decades, particularly for its diverse
applications, which include municipal wastewater treatment, seawater desalination,
membrane bioreactor, potable water purification, food processing, drug delivery, energy
generation, and so forth. Of many parameters that determine the performance of the
forward osmosis process, the most fundamental factor that impacts performance is
temperature. Considering the importance of the temperature on the forward osmosis
process, there have been only a limited number of studies about the effect of tempera-
ture on the osmosis-driven process. In this chapter, we discuss the temperature effect
on the forward osmosis process from two main aspects. First, we provide an extensive
and in-depth survey on the currently available studies related to the anisothermal
osmosis phenomena. Second, we then discuss a state-of-the-art theoretical framework
that describes the anisothermal forward osmosis process that may shed light on achiev-
ing an enhanced performance via temperature control.

Keywords: forward osmosis, temperature, thermal effect, concentration polarization,
water flux, solute flux, membrane scaling

1. Introduction

Osmosis, one of the most fundamental transport processes responsible for homeostasis in living

organisms, has a rich history of applications—ranging from food preservation to water treatment

and drug delivery. Osmosis occurs when a solute concentration difference is established across a

semipermeable membrane. Due to the chemical potential imbalance, the water molecules will

spontaneously migrate across the membrane toward the higher solute concentration side.

Such a process has been regarded as one of the most central mechanisms that dictates the

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



membrane-based water treatment technologies. The most widely utilized process, in our opin-

ion, is reverse osmosis (RO) for solute removal, which requires an external hydraulic pressure to

overcome the osmotic pressure difference across the membrane. In contrast to RO, the process

that exploits the spontaneous transport of solvent molecules driven by the osmotic phenomenon

is referred to as forward osmosis (FO) or direct osmosis (DO), which is, in principle, the same as

the original osmosis.

FO was first conceptualized by Batchelder as a means for water treatment since the 1960s [1].

Since then, there has been a growing interest in applying FO to wastewater treatment technol-

ogies either as a stand-alone or in combination with other technologies such as membrane

distillation, thermal distillation, or reverses osmosis [2]. Particularly, FO has been utilized in

space stations for wastewater reclamation due to its excellent long-term stability and low

energy consumption [3, 4]. Not limited to wastewater treatment, FO has also been explored

extensively for many useful applications such as seawater desalination [5–7], portable hydra-

tion bags [8], food processing [9–11], pharmaceutical systems [12–14], and energy conversion

[15, 16].

Unlike RO, FO is purely an osmosis-driven process, which is thermodynamically spontaneous.

The osmotic pressure difference Δπ, which is a driving force for the FO process, may be

expressed using van’t Hoff’s law as

Δπ ¼ RTΔC (1)

for weakly interacting molecules, where ΔC is the solute concentration difference, R is the gas

constant, and T is the temperature. From the equation, it can be noted that the temperature is

one of the most critical factors determining the rate of osmosis. In addition, temperature

further changes viscosity, diffusivity, and density, which are important parameters in momen-

tum and energy transfer phenomena. Despite the importance of temperature on FO process

and despite the fact that there exist a number of papers that address the temperature effect, the

reported data are widely scattered and does not show an agreeable consensus. In this chapter,

we aim to provide a holistic understanding of the temperature effect on an osmotic phenom-

enon. Our intention is not to give an exhaustive review of the FO process in detail but to focus

on the temperature effect and hopefully to provide insight for better control over the osmotic

phenomenon. Readers who wish to learn about the FO process more in detail may refer to the

following review papers [2, 8, 17].

2. Operating principle

2.1. Mechanism

In the FO process, the solvent (water) transport is driven solely by osmotic pressure difference

without the need of any external hydrostatic pressure, allowing for lower energy consumption

compared to RO. To extract water from the feed solution, the osmotic pressure at the opposite

side of the membrane must be higher, which requires a highly concentrated solution; this

concentrated solution is typically referred to as the draw solution. Draw solutes need to be
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inert and easily removable. A semipermeable membrane separates the feed solution and the

concentrated draw solution where the chemical potential difference allows the water to flow

through the membrane while leaving behind the solutes in the feed stream. Regions of high

and low solute concentrations refer to those of low and high solvent chemical potentials,

respectively. As the semipermeable membrane restricts the solute transport and maintains

chemical potential differences of both solute and solvent, water migrates from its high solvent

chemical-potential region (i.e., of low solute concentration) to low solvent chemical-potential

region (i.e., of high solute concentration). Such a water transport leads to dilution of the draw

solution where the diluted draw solution can be further recycled such that the initial solute

concentration is recovered. Particularly for desalination applications, the solutes in the draw

solution (osmotic agent or draw solutes) are chosen to be inert, nontoxic, and easily removed to

obtain the desalinated water with ease. One example includes NH4CO2, which can be easily

removed by decomposing at a moderately elevated temperature (e60
�

C) followed by low-

temperature distillation [18, 19]. Extra energy is, however, necessary to re-dissolve NH4CO2 into

the draw solution for a continuous FO operation.

2.2. Concentration polarization

The water flux across the membrane results in concentration of the feed solution and dilution

of the draw solution since the membrane mainly allows passage of water molecules. This

phenomenon, referred to as concentration polarization (CP), has an adverse impact on the

efficacy of the FO process since such an effect reduces the effective osmotic pressure difference

across the membrane, thus hindering water transport.

CP is highly influenced by the morphology of the membranes. The membranes used in the FO

process consist of a thin, dense layer that rejects the solutes (active layer) followed by a coarse,

thick porous layer (support layer or porous substrate) to reinforce the mechanical stability

against fluid pressure and shear. This configuration makes the membrane asymmetric in which

the orientation of the membrane with respect to the direction of the water flux (i.e., from low to

high osmotic pressure) leads to significantly different transport dynamics [20].

Typically in the FO process, the active layer is placed against the feed stream in order to

minimize fouling since the support layer is more susceptible to colloidal fouling due to the

large pores. This configuration is called FO mode, as shown in Figure 1(a). However, the

downside of placing it in this way is that there is a significant dilutive internal concentration

polarization (ICP) in the thick porous substrate. This is because the support layer is in

contact with the concentrated draw solution hindering the solute diffusion, which signifi-

cantly reduces the water flux (Figure 1(a)).

In contrast, when the active layer is placed against the draw stream, one can expect a higher

water flux since this configuration can avoid the dilutive ICP at the expense of accelerated

membrane fouling. This configuration is called the pressure-retarded osmosis (PRO) mode, as

shown in Figure 1(b), typically realized in standard PRO systems. To avoid any confusion, we

will refer to the membrane configuration in which the active layer is placed against the feed

solution as the FO mode, whereas the opposite case is the PRO mode during FO processes.
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3. System temperature effect on FO

The first quantitative experiments on temperature-dependent osmosis go back almost a cen-

tury ago [21]. Traxler demonstrated the osmosis of pyridine by using a thin rubber sheet as a

semipermeable membrane within a uniform system temperature, ranging from 5 to 85�C

(Figure 2(a)). He showed that as the temperature is increased, the transport of pyridine across

the membrane is also increased (Figure 2(b)). In this chapter, such a uniform temperature will

be refered to as ‘system temperature’ indicating the absence of local or transmembrane tem-

perature gradient.

From the van’t Hoff equation, the osmotic pressure is directly proportional to the system

temperature, which is an indispensable factor for the FO process. However, temperature not

only influences the osmotic pressure but also impacts many other key properties that are

important to the transport process such as viscosity, diffusivity, solubility, density, and so forth.

Such a change in the properties not only influences the water flux but also alters the solute

rejection/diffusion and membrane fouling. In this section, we provide a summary of how the

system temperature influences the water transport, solute rejection, and membrane fouling.

We note that the experimental studies that will be covered in the following sections employ a

circulating crossflow type setup (in contrast to a dead-end type as seen in Traxler’s experi-

ments in Figure 2).

3.1. Water flux

The most direct consequence of raising the system temperature is the increased water flux

across the membrane due to lowered water viscosity and increased water diffusivity, which

effectively increases the water permeability across the membrane. Since the transport of water

through the active layer of the membrane follows the solution-diffusion mechanism [22], it is

Water flux

Active
layer Support layer

Feed solution Draw solution

Dilutive ICPConcentrative ECP

πD

πD,i

πF,i

πF

Water flux

Active
layer Support layer

Feed solutionDraw solution

Dilutive ECP
Concentrative 

ICP

πD

πD,i

πF,i

πF

(a) (b)

Figure 1. Influence of CP on the osmotic pressure distribution in the FO process. The membrane is configured in (a) FO

mode and (b) PRO mode.
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commonly believed (and also observed) that the diffusivity D exhibits an Arrhenius relation,

that is, D � exp �s=Tð Þ, where s is an empirical constant related to the activation energy [23,

24]. However, we also note a counterexample where Petrotos et al. failed to show such a

behavior [25].

On the basis of our survey, the available literature related to the temperature-dependent FO

reported increased water flux with temperature. Table 1 provides a summary of experimental

conditions and resulting water flux from the available literature [23–31]. Here, we define a new

quantity to indicate how much solvent flux increases with respect to the system temperature,

as indicated in the last column of Table 1:

jM ¼
Jw,M � Jw,0
TM � T0

, (2)

where Jw,M and Jw,0 are the water fluxes at a given maximum system temperature TM and at

base temperature T0, respectively. The survey shows that raising the temperature does increase

the water flux, but the extent of such an increase varies across the literature, especially

depending on the membrane orientation. This observation implies that the CP phenomena

are uniquely influenced by the temperature, leading to variations in the water flux.

Figure 2. The first quantitative experiments reported on the effect of temperature on the osmosis phenomenon. (a) A

schematic of the experimental setup that allows temperature control via a thermostat. (b) Transport of pyridine across a

rubber membrane under various temperature conditions. Reprinted with permission from Ref. [21]. © 1928 American

Chemical Society.
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McCutcheon and Elimelech were the first to study the influence of temperature on the CP

phenomena [29]. Raising the temperature increases the water flux because of the decreased water

viscosity in solutions (and/or solubility) and increased water solubility and diffusivity within the

membrane. At the same time, however, the higher flux also increases both the ICP and ECP,

which essentially limit the water flux as a feedback hindrance. Therefore, such a self-limiting

behavior driven by two counteracting effects leads to the fact that the temperature has a “mod-

est” effect on the water flux at high water flux conditions [29]. This self-hindering effect of the

solvent flux is unavoidable in most membrane separation processes. It is similar to the fact that,

in RO, applying high pressure initiates increasing permeate flux, which will eventually bring

more solutes from the bulk phase to the membrane surface, enhancing the CP. Therefore, addi-

tional gain of the RO permeate flux is not as much as anticipated when the pressure is increased.

The change in the temperature influences the CP phenomena in different ways depending on

the orientation of the membrane. This is because the formation of the ICP, which is the most

critical factor that limits the driving force, is dependent on the membrane configurations. In

the PRO mode, the concentrative ICP is developed in the feed side (see Figure 1(b)). By

reducing the ICP using deionized water as the feed, the water flux was shown to be highly

dependent on the temperature, confirming the impact of ICP on the FO process [29].

In the presence of solutes in the feed side so that the ICP is present, however, the water flux

was shown to be almost insensitive to the temperature, at least in the operating temperature

range (20–40�C). This behavior is attributed to the coupled interaction between ICP and ECP.

Reference Feed solution

(concentration)

Draw solution

(concentration)

Membrane1 Mode2 Temperature

(�C)

Jw,0

(LMH)

jM
3

(LMH/�C)

[25] Tomato juice (0.13 M) NaCl (3.9 M) PA 26–58 1.5 0.030

[26] NaCl (0–86 mM) KCl (0.5–3 M) CT FO 25–45 19 0.43

[27] Deionized water NaCl (0.5 M) CT 20–40 5.5 0.14

PA 17 0.49

[23] Sucrose (0–1.65 M) NaCl (2–4 M) CT 20–30 24 0.91

Sucrose (0–0.7 M) NaCl (4 M) PA 2.5 0.15

[28] NaCl (0.1 M) NaCl (1 M) CT PRO 20–40 11 0.89

FO 9.4 0.59

[29] NaCl (0–1 M) NaCl (1.5 M) CT PRO 20–40 43 1.4

FO 18 0.63

[24] NaCl (60 mM) Na2SO4 (1.5 M) CT 25–45 15 0.35

[30] NaCl (0.2–0.5 M) NH4HCO3 (3 M) CE PRO 30–50 5.4 0.10

[31] Deionized water NaCl (1.2 M) CT FO 20–30 14 0.61

1PA: polyamide; CT: cellulose triacetate; CE: cellulose ester
2FO mode: active layer placed against feed solution; PRO mode: active layer placed against draw solution
3jM = Jw,M � Jw,0 / TM � T0; Jw,M: water flux at maximum temperature TM; Jw,0: water flux at base temperature T0

Table 1. A summary of influence of temperature on the water flux.
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Although the increased solute diffusion at higher temperature mitigates the concentrative ICP

in the support layer so that the water flux can be increased, such an increased water flux carries

more solutes from the feed bulk phase to the vicinity of the support layer surface and enhances

the dilutive ECP, thereby reducing the osmotic driving force. Therefore, the two opposing

effects on the water transport effectively limit the enhancement of the water flux such that the

temperature has a marginal effect on the overall water flux. If both water and solute diffusiv-

ities increase in a similar behavior, the net diffusive transport must be more or less the same.

In the FO mode, however, the water flux was shown to be significantly influenced by the

temperature. Overall, the water flux was observed to be lower than the PRO mode due to the

presence of the dilutive ICP. This was proven mathematically using the method of proof by

contradiction [32]. Such a low water flux effectively suppresses the extent of concentrative ECP

in the feed side. Also, the influence of concentrative ECP on the water flux is less important

than the dilutive ECP in the draw solution side because the initial solute concentration in the

bulk phase is much lower at the feed solution than the draw solution. This implies that the ECP

has a minor effect on the driving force in the FO mode. Therefore, when the membrane is

placed in the FO mode, the water flux is significantly influenced by the temperature since the

ICP is the only major factor that determines the driving force.

One assumption McCutcheon and Elimelech had made while analyzing their data were the

insignificant solute diffusion across the membrane [29], which otherwise leads to further ICP.

Obviously, commercially available membranes are known to permit diffusion of the solutes,

which can impact the formation of the CP effect. Since the solute diffusion is also sensitive to

the temperature, the transmembrane solute flux should also lead to a change in the water flux.

We discuss the effect of temperature on the solute diffusion and rejection in the following section.

3.2. Diffusion and rejection of solutes

It is of general consensus that the transmembrane solute diffusion increases with temperature.

A number of groups have recently investigated experimentally the temperature effect on the

transmembrane solute diffusion and the solute rejection [26–28].

Xie et al. recognized that the effective size of the solute molecules was the most important

parameter for the transmembrane solute diffusion [27], which was predicted theoretically using

the integral equation theory [33]. Hydration of charged organic solutes results in an increase in

the effective solute size, which directly influences the solute diffusion and rejection rate, as it was

well understood that the rejection of the charged organic solutes would be much higher than the

neutral organic solutes. In this regard, neutral solutes were more likely to diffuse across the pores

than the charged solutes in both the cellulose triacetate membranes and polyamide membranes.

This implies that increasing the temperature leads to higher solute diffusion due to the increased

solute diffusivity. Moreover, increasing the temperature leads to faster dissolution of the solutes

into the membrane such that even hydrophobic neutral solutes absorb into the membrane at an

order of magnitude higher rate at elevated temperatures.

Notably, the ratio between the water flux Jw and the solute flux Js was shown to be more or less

constant regardless of the system temperature [27]. Such a constant ratio implies that the
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structural properties may not change, at least in the operating temperature range (20–40�C). In

fact, although it is documented in the literature that the RO membrane properties such as pore

sizes may change when the temperature is above 40
�

C [34], it was reported in various FO

studies that the membrane structural properties do not change significantly below 45
�

C [26,

27]. However, it is more reasonable to say that the structural properties of FO membranes

change with temperature in a way that the ratio between solvent and solute fluxes remain

almost constant. In a solution-diffusion model, permeabilities of solvent and solutes, A and B,

respectively, are believed to increase with membrane temperature. The permeate concentration

is controlled by only their ratio, A=B. If A and B increase with T while A=B remains less

sensitive to T, then the solute diffusion can be seen phenomenologically insensitive to temper-

ature. This is because although higher T increases both the solute and solvent fluxes, it is only

the ratio that influences the concentration of solutes passing through the membrane. This topic

is discussed theoretically in detail in Section 5.

Meanwhile, You et al. showed that the transmembrane solute diffusion was also shown to be

dependent on the membrane orientation regardless of the temperature in which the PROmode

was shown to exhibit higher solute flux across the membrane than the FO mode, which is

similar to the behavior of the water flux [28].

3.3. Membrane scaling

Membrane scaling occurs when the solute concentration is high enough to initiate precipita-

tion. This is directly related to solute rejection and the CP phenomena, implying that mem-

brane scaling should also be temperature-dependent.

Zhao and Zou studied how the temperature influences the membrane scaling over time, which

is important in long-term operations [24]. Due to the fast water flux at elevated temperature,

Figure 3. Temperature-dependent membrane fouling and associated water flux decline. (a–d) Scanning electron micro-

scope images of the (a) virgin and (b–d) fouled membranes at various temperatures; (b) 25
�

C; (c) 35
�

C; (d) 45
�

C; and (e)

water flux ratio over time at each temperatures. Reprinted with permission from Ref. [24]. © 2011 Elsevier.
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increase in the final concentration of the feed solution (i.e., concentration after 28 hours of

running) was accelerated by more than 100% when the temperature was raised from 25 to

45�C, which led to faster membrane scaling. Concentrative polarization is also enhanced when

the water flux is increased, which results in an accelerated membrane scaling. This was

confirmed by directly visualizing the fouled membrane by using a scanning electron micro-

scope (Figure 3(a)–(d)) and also by measuring the decrease in flow rate over time (Figure 3(e)),

showing faster decline of water flux over time at elevated temperatures due to the scaling. In

addition to higher solute concentration near the membrane surface driven by the temperature-

enhanced solvent flux, the changes in solubility limits for inorganic species may contribute to

the accelerated fouling behavior.

4. Transmembrane temperature gradient in FO

One step further, we can also consider a case where the temperature is unevenly distributed

across the membrane. In such a case, the temperature gradient may allow independent

control of transport on either side of the membrane. In practice, temperature gradients can

occur frequently; temperature of the feed solution can increase due to the heat released from

the hydraulic pumping or when the solution is pretreated. Likewise, the temperature of the

draw solution may change due to the post-treatment process for recovery and recycling of

draw solutes such as thermal and membrane distillation. Since heating only on one side of

the solution requires lower energy than heating up the entire system, imposing a tempera-

ture gradient across the membrane may offer an energy-efficient control over the osmotic

phenomena.

In the presence of a temperature gradient, van’t Hoff’s law (of Eq. (1)) cannot be used directly

to calculate the osmotic pressure difference since it relies on the assumption of the constant

system temperature. A full theory accounting for the temperature gradient in osmosis may

result in highly nonlinear effects on the FO performance. Furthermore, the temperature gradi-

ent may provide an additional complexity to the coupled mass and heat transfer phenomena

within the membrane. In this section, we provide a summary of how the temperature differ-

ence between the feed and the draw solution influences the FO performance, including the

water transport and solute diffusion/rejection.

4.1. Water flux

Although the temperature dependence on the water flux shows an agreeable consensus as

shown in Table 1, the anisotropic temperature effect is shown to differ largely across various

studies. When the temperature on either side of the solutions is increased, the water flux

becomes higher than that at the base temperature, but lower than when the temperatures of

both sides of the solutions are increased. It is, however, left unclear which side of the solution

has more influence on the FO process when heated as this does not have an agreeable consen-

sus. Table 2 provides a summary of the effect of temperature difference on the FO process

under various experimental parameters. For simplicity, we define
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jF ¼

Jw,MF � Jw,0
TMF � T0

(3)

and

jD ¼

Jw,MD � Jw,0
TMD � T0

(4)

as included on the right-hand side of Table 2. Eqs. (3) and (4) refer to the water flux increase

per temperature change when the feed side or the draw side is heated only, respectively.

Phuntsho et al. calculated using a commercial software (OLI Stream Analyzer) where the

osmotic pressure difference across the membrane can be higher when the draw side is heated

in contrast to heating the feed side [26]. However, the temperature difference not only changes

the osmotic pressure difference but also gives spatial nonlinearity to other important transport

properties such as the solution viscosity as well as solvent/solute diffusivity in bulk phases and

their solubilities in the membrane phase, which may impact the CP phenomena in various

ways depending on the membrane orientation.

In general, regardless of either the feed or draw, raising the temperature on either side leads to

increase in both the water flux and the solute flux. Xie et al. stated that raising the feed solution

temperature leads to enhanced diffusivity of the water molecules, whereas raising the draw

solution temperature leads to decreased draw solution viscosity and increased draw solute

diffusivity, both of which lead to increased water flux and reverse solute flux [27]. However,

the degree to which the water flux and solute flux are increased varies across the literature [10,

26–28, 31, 35, 36] (see Table 2).

Reference Feed solution Draw

solution

Membrane Mode Temperature

(�C)

Jw,0

(LMH)

jF
1

(LMH/�C)

jD
2

(LMH/�C)

[10] Pineapple juice

(0.37 M)

Sucrose (40

wt%)+NaCl

(12 wt%)

CT 25–45 1.2 0.045

[26] NaCl (0–86 mM) KCl (0.5–3 M) CT FO 25–45 19 0.048 0.12

[27] Deionized water NaCl (0.5 M) CT 20–40 5.5 0.045 0.065

PA 17 0.125 0.175

[35] NaCl (0–0.5 M) NH4HCO3

(1–4 M)

CT PRO 25–45 2.5 0.028

FO 1.9 0.018

[28] NaCl (0.1 M) NaCl (1 M) CT PRO 20–40 11 0.54 0.19

FO 9.4 0.41 0.18

[36] Anthocyanin (24 μM) NaCl (6 M) CT PRO 25–40 4.9 0.013

FO 13 0.53

[31] Deionized water NaCl (1.2 M) CT FO 20–30 14 0.22 0.54

1jF = Jw,MF � Jw,0 / TMF � T0; Feed side heated. Jw,MF: water flux at the maximum feed temperature TMF.
2jD = Jw,MD � Jw,0 / TMD � T0; Draw side heated. Jw,MD: water flux at the maximum draw temperature TMD.

Table 2. A summary of influence of temperature difference on the water flux.
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Phuntsho et al. showed that increasing the draw solution temperature resulted in more water

flux compared to increasing the temperature of the feed solution [26]. Their membrane was

oriented in the PRO mode where the active layer was facing the draw solution. They argued

that increasing the draw temperature led to reduced solution viscosity and increased draw

solute diffusivity. This change resulted in the reduction of dilutive ICP on the draw side,

thereby increasing the water flux. Again, such a behavior is attributed to the fact that the

dilutive ICP plays a more significant role than the concentrative ECP in determining the water

flux [26]. Such a preferential water flux increase due to the increased draw temperature was

also observed by Xie et al. [27] and Cath et al. [31].

You et al. showed, however, that regardless of the membrane orientation, the water flux

increased more when the feed solution temperature is increased rather than the draw solution

[28], which is in a disagreement with the observations made by Phuntsho et al. [26], Xie et al.

[27], and Cath et al. [31]. You et al. argued that the water diffusion kinetics is more important

than the thermodynamic driving force (i.e., osmotic pressure difference) of the solution in

determining the water flux, thus the feed temperature governs the water flux rather than the

draw solution temperature [28].

Interestingly, in Nayak and Rastogi’s study [36], the water flux in the FO mode was shown to

be higher than the water flux in the PROmode particularly when the molecular size of the feed

solute is large enough such that the external concentration polarization cannot be ignored.

They also showed that this is indeed true for concentrating anthocyanin, which is a large sugar

molecule. In their work, the water flux in the FO mode was measured to be 260% higher than

that in the PRO mode.

4.2. Solute diffusion/rejection

As mentioned in the preceding section, Xie et al. showed that the neutral solutes are more

likely to diffuse through the membrane than the charged ones due to their smaller hydrody-

namic size [27]. In this sense, transmembrane temperature differences barely influenced the

solute rejection rate for the charged solutes, whereas the neutral solutes were significantly

influenced by the temperature difference. It was shown that raising the draw temperature

(from 20 to 40�C) led to more neutral solute rejection, even more compared to the isothermal

condition at base temperature (20�C) [27]. The reason being is that raising the draw tempera-

ture leads to increased water flux, which contributes to the increased solute rejection. At the

same time, keeping the feed temperature low reduces the deposition of the solutes on to the

membrane, thus preventing the neutral feed solutes from dissolving into the membrane and

diffusing across the membrane [27].

5. Theoretical perspectives

To the best of our knowledge, effects of temperature and its gradient on the osmosis phen-

omena and FO processes have been investigated only phenomenologically without fundamen-

tal understanding. The theoretical research is currently in a burgeoning state in explaining the

transmembrane temperature gradient effect on the FO performance. In this section, we first

briefly review the conventional FO theories [37, 38] based on the solution-diffusion model and
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van’t Hoff’s law. Then, we revisit statistical mechanics to identify the baseline of the osmosis-

diffusion theories, where the isothermal condition was first applied. We then develop a new,

general theoretical framework on which FO processes can be better understood under the

influence of the system temperature, temperature gradient, and chemical potentials.

5.1. Revisit to the solution-diffusion model

The solution-diffusion model is widely used to describe the FO process, which was origi-

nally developed by Lonsdale et al. to explain the RO phenomena using isothermal-isobaric

ensemble [39]. In the model, the chemical potential of water is represented as a function of

temperature, pressure, and solute concentration, i.e. μw ¼ μw T;P;Cð Þ, and its transmembrane

gradient is

Δμw ¼

ð

∂μw

∂C

� �

T,P

dCþ

ð

∂μw

∂P

� �

T,C

dP, (5)

where the integration is over the membrane region. From the basic thermodynamic relation-

ship,

ð

∂μw

∂P

� �

T,C

¼ Vw (6)

is used where Vw is the molar volume of water. In the isothermal-isobaric equilibrium

Δμw ¼ 0
� �

, the applied pressure ΔP is balanced with the transmembrane difference of the

osmotic pressure, i.e. ΔP ¼ Δπ. This condition gives

0 ¼

ð

∂μw

∂C

� �

T,P

dCþ VwΔπ (7)

and hence we derive Δμw ¼ Vw Δp� Δπð Þ. It is assumed that the water transport within the

membrane is phenomenologically Fickian, having the transmembrane chemical potential dif-

ference of water as a net driving force. The water flux is given as

Jw ¼
DwCw

RT

dμw

dx
≃

DwCw

RT

Δμw

δm
, (8)

which becomes

Jw ¼ A Δp� Δπð Þ, (9)

where A ¼ DwCw=RTδmð Þ is the solvent permeability that can be obtained experimentally. The

solute flux is similarly given as

Js ¼ �Ds
dC0

dx
≃Ds

ΔC0

δm
¼ Ds

ΔC0

ΔC

� �

ΔC

δm
¼

DsKm

δm
ΔC ¼ BΔC, (10)
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where ΔC0 and ΔC are the concentration differences across the interior and exterior of the

membrane, respectively, and Km ¼ ΔC
0

=ΔC is the partition coefficient, which is assumed to be

constant, and B ¼ DsK=δmð Þ is the solute permeability.

Figure 4(a) shows a schematic representing the PRO and FOmodes altogether. Concentrations in

the PRO and FOmodes are denoted as C and n, respectively. In the PROmode, C1 and C5 are the

draw and feed concentrations, and C2, C3, and C4 are concentrations at interfaces between the

draw solution and the active layer, the active layer and the porous substrate, and the porous

substrate and the feed solution, respectively. In the FO mode, n1 and n5 are the draw and feed

concentrations, respectively, and similarly, n2, n3, and n5 have the meanings corresponding to

those in the PRO mode. To systematically compare the performances of the PRO and FOmodes,

we set n1 ¼ C1 and n5 ¼ C5, which are the draw (Cd) and feed (Cf ) concentrations, respectively.

Solvent and solute fluxes in the PRO mode are denoted as JPROw and JPROs , and those of the FO

mode are JFOw and JFOs , respectively. In each mode, solvent and solute fluxes are oriented in

opposite directions, influencing each other’s driving forces. The active layer and porous sub-

strate have thicknesses of δm and δs, respectively, as located in regions of �δm < x < 0 and

0 < x < δs, respectively. Solute molecules migrate with molecular diffusivity D0 in the porous

substrate that is characterized using its thickness δs, porosity ε, and tortuosity τ.

In the PRO mode, the solvent flux (in magnitude) is

Jw ¼ A π2 � π3ð Þ (11)

where π2 and π3 are osmotic pressures at concentration C2 and C3, respectively. In a steady

state, the water flux Jw is constant in both the active and porous regions. The solute flux in the

active layer is:

Js ¼ B C2 � C3ð Þ for � δm < x < 0 (12)

porous substrate

PRO mode FO mode

layer

(b)

(a)

active 

C2

C4

C3

n3

n5

n4 JFO
w

JFO
s

n2

C1

T1

T2

T3

T4

T5

JPRO
s

JPRO
w

n1(= C1)
−δm δs

C5

x = 0

Figure 4. A schematic representation of (a) concentration polarization across a skinned membrane during FO process in

the PRO and FO modes, represented using the solid and dashed lines, respectively and (b) arbitrary temperature profile

increasing from the active layer to the porous substrate.
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and that in the porous substrate:

Js ¼ �
e

τ
D
dC

dx
� JwC for 0 < x < δs: (13)

In a steady state, Js of Eqs. (12) and (13) are equal to each other. Flux equations for the FOmode

can be easily obtained by replacing subscript 2 by 4 in Eqs. (11) and (12) and replacing C by n

in Eqs. (12), (13). Fluxes of the PRO and FO modes are calculated as

JPROw ≃

1

K
ln

Bþ Aπd � JPROw

Bþ Aπf

� �

(14)

and

JFOw ≃

1

K
ln

Bþ Aπd

Bþ Aπf þ JFOw

" #

, (15)

respectively, where πd and πf are the osmotic pressure of the draw and feed concentrations,

respectively, and

K ¼
δsτ

D0e
¼

S

D0
(16)

is interpreted as the characteristic mass transfer resistance, proposed by Lee et al. [37]. Follow-

ing the convention of standard mass transfer theory, K�1 can be interpreted as the mass

transfer coefficient of FO processes. In Eq. (16), S ¼ δsτ=eð Þ, defined as the structural parameter

having units in length, represents the actual path length of molecules passing through the

tortuous porous substrate, which is by definition longer than the thickness δs. For mathemat-

ical simplicity, one can write the flux equation for both modes:

Jw ¼
1

K
ln

Bþ Aπd � φJw
Bþ Aπf þ 1� φð ÞJw

� �

(17)

where

φ ¼
1 for PRO mode

0 for FO mode

�

(18)

is an integer to toggle between the two modes. Any theoretical development can be initiated

from Eq. (17) to consider universally both the FO and PRO modes, and then a proper value of

φ can be chosen.

5.1.1. Underlying assumptions and approximations

In the theory, there are several key assumptions during derivations of Eqs. (14) and (15). These

assumptions are summarized in the following for the PRO mode for simplicity, but conceptu-

ally are identical to those in the FO mode.
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1. Mass transfer phenomena are described using the solution-diffusion model in which the

solvent and solute transport are proportional to the transmembrane differences in the osmotic

pressures and solute concentrations, respectively [39]. If one sees these combined phenomena

as diffusion, the solvent transport can be treated as semibarometric diffusion. In other words,

under the influence of pressure, the solute transport can be treated as Fickian diffusion, driven

by the concentration gradient. In a universal view, the net driving forces of the solvent and

solutes are their chemical potential differences.

2. In the flux equations, πd and πf are, respectively, overestimated and underestimated because

their ture values are those at the draw-membrane and feed-membrane interfaces, i.e. π2 and π4,

which are difficult to obtain. This approximation does not cause obvious errors if the flow veloci-

ties of the draw and feed solutions are fast enough to suppress formation of any significant

external concentration polarizations. A necessary condition, which is less discussed in theories, is

the high diffusivity or low molecular weight of solutes.

3. The osmotic pressure is presumed to be linear with the solute concentration C. In the PRO

mode, one can indicate

π2 � π3 ¼
π2 � π3

π2 � π4

� �

π2 � π4ð Þ ¼
1� C3=C2

1� C4=C2

� �

π2 � π4ð Þ (19)

using π2 � πk ¼ π2 1� Ck=C2ð Þ for k ¼ 3, 4. Eq. (19) can be erroneous if the draw concentration

is extraordinarily high or pair-wise interactions between solutes are very strong so that the

weak solution approach fails. A study on nonlinearity of π with respect to C can be found

elsewhere [37, 38].

4. Rigorously saying, mass transport phenomena are assumed to be in a steady state and equilib-

rium thermodynamics are used to explain the filtration phenomena. Although the FO phenome-

non occurs in an open system, transient behavior is barely described in the literature.

5. In the porous substrate, the bulk porosity is assumed to be uniform,which implies isotropic pore

spaces. Moreover, the interfacial porosity between the active and porous layers is assumed to be

equal to the bulk porosity. An in-depth discussion on the interfacial porosity can be found else-

where [40]. In the same vein, the tortuosity is a characteristic geometric constant of the substrate,

which is hard to measure independently. More importantly, tortuosity is included in the definition

of the structural parameter S, which is used to fit the experimental data to the flux equations.

6. The solute diffusivity D0 is assumed to be constant, that is, independent of the solute

concentration such that the concentration profile is further implied to be linear within the

porous substrate.

7. Finally, temperatures of the draw and the feed streams are assumed equal although hydraulic

and thermal conditions of these two streams can be independently controlled. As a consequence,

heat transfer across the membrane is barely discussed in the literature.

In practice, solvent and solute permeability A and B are measured experimentally in the RO

mode using feed solution of zero and finite concentrations, respectively. The applied pressure

is selected as a normal pressure to operate the RO, and the solute concentrations are usually in

the range of that of a typical brackish water. Variations in A and B with Cd and Cf are
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presumed to be negligible, similar to those of RO cases. In Eq. (17), Jw is directly related to the

interfacial concentration, i.e. C3 and n3 in the PRO and FO modes, respectively, and therefore it

can be predicted only if K is known. Mathematically, one FO flux equation has two unknowns,

which are Jw and K. In most cases, the permeate flux Jw is measured experimentally and then

used to back-calculate K. This experiment-based prediction often results in an imbalance of

mass transfer [41, 42]. A recent study assumes that the interfacial porosity between the active

and porous layers is different from the bulk porosity of the porous substrate, which success-

fully resolves the origin of the imbalance between theoretical and measured K values [40].

This chapter aims to explain how the temperature across the FOmembrane, which consists of the

active and porous layers, may affect the performance of the mass transfer at the level of statistical

physics. The transmembrane temperature gradient prevents from using the abovementioned

assumptions and approximations, which are widely used in the FO analysis. First, the SD model

is purely based on isothermal-isobaric equilibrium in a closed system. Second, the external

concentration polarizations in the draw and feed sides cannot be neglected at the same level

because the temperature gradient causes a viscosity difference across the membrane. Third, the

weighting factor connecting π2 � π3 and π2 � π4 cannot be represented only by concentrations

but instead should include temperatures at the interfaces. Fourth, even if one can achieve a

perfect solute rejection, i.e. B ¼ 0, steady heat transfer across the membrane should be included

since porous membrane is not a perfect thermal insulator. Fifth, the temperature gradient may

change the (effective) properties of the active and porous layers such as A, B, e, and τ in principle

and the molecular diffusivity D0 ! D Tð Þ. Sixth, Fick’s law should include additional thermal

diffusion or temperature effects for determining the collective diffusion. Seventh, of great neces-

sity is a novel, quantitative equation to calculate the osmotic pressure under the gradients of

concentration as well as temperature, which generalizes van’t Hoff’s equation (1).

5.2. Heat transfer

Figure 4(b) shows an arbitrary temperature profile across the FO membrane, increasing from

the active layer side to the porous layer side. In bulk phases of the active and porous sides,

temperatures are maintained at T1 and T4, respectively. For simplicity, we set T1 < T4. Stream

temperature on the active side increases to T2, and within the membrane, temperature elevates

from T2 to T3. Since the active layer is often made thin, a linear variation of temperature can be

readily assumed. From the active-porous interface to the porous layer surface to the solution,

the temperature increases from T3 to T4. A similar external temperature polarization occurs in

the PL-side bulk phase, generating the temperature change from T4 to T5. The overall temper-

ature profile is conceptually akin to the concentration profile in the FO mode. Having the same

bulk temperatures, i.e. T1 and T5, the flow direction can noticeably change values from T2 to

T4. For logical consistency, a steady state is assumed while investigating the heat transfer

across the FO membrane in this chapter. Thus, heat fluxes of the four regions are

qBA ¼ hBA T2 � T1ð Þ (20)

qAL ¼ hAL T3 � T2ð Þ (21)

qPL ¼ hPL T4 � T3ð Þ (22)
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qBP ¼ hBP T5 � T4ð Þ, (23)

where subscripts BA and BP indicate bulk phases in the active and porous layer sides, respec-

tively, and AL and PL mean the active layer and porous layer, respectively. The net tempera-

ture difference across the membrane is T4 � T2, which is to be approximated as T5 � T1. In the

steady state, the heat flux q should be equal in each region, that is, q ¼ qBA ¼ qAL ¼ qPL ¼ qBP.

Dividing each equation of (20)–(23) by the heat transfer coefficient h0s, one derives

q ¼ heq T5 � T1ð Þ (24)

1

heq
¼

1

hBA
þ

1

hAL
þ

1

hPL
þ

1

hBP
: (25)

Note that Eq. (24) assumes that the heat transfer is solely based on thermal conduction without

thermal convection, that is, transfer rate of heat by solvent flux. In the FO process with the

transmembrane thermal gradient, Eqs. (21) and (22) should be revised as

qAL ¼ hAL T3 � T2ð Þ �HwJw (26)

qPL ¼ hPL T4 � T3ð Þ �HwJw, (27)

where Hw and Jw are the enthalpy and flux of the solvent, respectively, and the sign is plus

when the concentration and temperature profiles both increase and decrease together, other-

wise it is negative. For example, for the temperature profile shown in Figure 4, the FO

concentration profile has the same trend to that of the temperature, and therefore signs in

Eqs. (26) and (27) are positive. In this case, Eq. (25) needs to be modified to

1

heq
¼

1

hBA
þ

1

h0AL
þ

1

h0PL
þ

1

hBP
, (28)

where

h0AL ¼ hAL �
HwJw

T3 � T2
(29)

h0LL ¼ hPL �
HwJw

T4 � T3
(30)

This heat balance analysis is very similar to that of membrane distillation [43, 44], but the FO

process does not have any solvent phase transition so that the latent heat is not considered.

5.3. Mass transfer mechanisms

5.3.1. Anisothermal osmotic pressure

In statistical mechanics, Gibbs energy is the master function of the isothermal-isobaric ensem-

ble. Consider a box in which two regions are separated by a semipermeable membrane. In
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equilibrium, the maximum entropy condition requires that the chemical potential divided by

the temperature should be constant, i.e.

Δ
μ T;P;Nð Þ

T

� �

¼ 0, (31)

which converts to the constant chemical potential for the isothermal environment, i.e. Δμ ¼ 0

for constant T. Note that in the conventional solution-diffusion model, the chemical potential

of water μw in the external phase is assumed as a function of solute concentration C and

pressure P. From Eq. (31), van’t Hoff’s osmotic pressure difference is derived as

Δπ ¼ RTΔC, (32)

which can perhaps be extended intuitively to Δπ ¼ RΔ CTð Þ in the temperature gradient. Here

we assume that the membrane properties do not change significantly with solute concentration

C and local temperature T. In the presence of a concentration gradient only, van’t Hoff’s

equation indicates that water (solvent) molecules tend to move from a lower solute concentra-

tion region to a higher solute concentration region. This is due to the water chemical potential

being higher in the lower C region. Now we replace the concentration gradient by the temper-

ature gradient. Diffusion of water molecules is purely based on their kinetic energy as propor-

tional to T and the temperature gradient across the membrane, as shown in Figure 4(a). For

simplicity, we consider only the active layer of which A and B values are assumed to be

insensitive to temperature. Therefore, similar to the direct contact membrane distillation, two

solutions of high and low temperatures are in contact with the membrane surfaces. Since

solutes are absent, the water motion is purely diffusive under the chemical potential gradient

induced by the temperature gradient. Water molecules in the high temperature region move

faster than those in the low temperature region. Therefore, water transfer must follow the

direction of the temperature gradient. If one side of the membrane has a solution of both high

temperature and concentration, then the net osmotic pressure must be less than that of the

concentration gradient only, that is,

Δπ ¼ aΔC� bΔT (33)

where a must be equal to RT and b is a positive constant. To the best of our knowledge,

a Tð Þ ¼ RT has not been rigorously proven, and b cð Þ is so far unknown. The theoretical devel-

opment of the anisothermal osmotic pressure, π ¼ π C;Tð Þ, as a natural extension from van’t

Hoff’s equation is of urgent importance to the current literature in water transport theories,

which are to be utilized not only in desalination and fresh water production but also in a broad

applications of separation and filtration.

5.3.2. Anisothermal diffusion

Fick’s law is a phenomenological equation based on experimental observations. The equation

states that the diffusive flux J is proportional to the concentration gradient

J
!
¼ �D ∇

!
C: (34)
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In the dilute limit, the diffusivity is independent of concentration C, i.e. D 6¼ D Cð Þ, and if the

solute molecules are Brownian, D is proportional to temperature T: D∝T. If and only if the

molecular motion is dragged by the viscous force, which is directly related to their relative

velocity to the solvent (often stationary), then the drag force can be written as

eFdrag ¼ �β v
!
, (35)

where v
!

is the molecular velocity relative to that of the solvent medium, and β is the drag

coefficient independent of v
!
. The Brownian diffusivity is proven to be D ¼ kBT=β, where kB is

Boltzmann’s constant. Stokes proved that β ¼ 3πηwdp where ηw is the solvent viscosity and dp

is the particle (molecule) diameter.

In the presence of the spatial variation of T, Eq. (34) is generalized as [45]

J
!
¼

D

T
∇
!

CTð Þ: (36)

Thus, substitution of the Stokes-Einstein diffusivity into Eq. (36) gives

J
!
¼

kB
β
∇
!

CTð Þ ¼
1

β
∇
!

πð Þ, (37)

which is valid if the solvent viscosity ηw is a weak function of T such as water. For a homoge-

neous system, the diffusive flux may in general be

J
!
¼ �α ∇

!
μ� β ∇

!
T, (38)

where one can write the chemical potential gradient as

∇
!
μ ¼

∂μ

∂C

� �

P,T

∇
!
Cþ

∂μ

∂T

� �

C,P

∇
!
T þ

∂μ

∂P

� �

C,T

∇
!
P: (39)

Substitution of Eq. (39) into (38) gives

J
!
¼ �D ∇

!
Cþ kT ∇

!
lnT þ kP ∇

!
lnP

� 	
, (40)

which defines the thermal diffusion coefficient kTD, where kT is the thermal diffusion ratio,

which is a dimensionless quantity. The coefficient kPD is the barodiffusion coefficient. In the

dilute limit, kT vanishes as it is proportional to C. The barodiffusion is often negligible as the

diffusion is characterized in a stationary fluid that will have finite velocity if the hydraulic

pressure is applied.

5.3.3. Solute diffusivity matters

In the conventional isothermal theory of FO, one can write a conceptual relationship between

the water flux and the transmembrane osmotic pressure difference as [33]
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Jw ∝DlnΔπ, (41)

which clearly indicates that Jw increases with bothD and Δπ, but Δπ increases much slower than

D due to the logarithmic dependence. To double the flux Jw, there are two mathematical choices:

D ! 2D (linear) and Δπ ! Δπð Þ2 (geometric in a specific unit, or ΔC ! ΔCð Þ2). The first way of

increasing the solute diffusivity is related to finding or developing novel draw solutes, while the

second option is practically challenging as it makes the draw recovery more energy consuming.

Especially when selecting the draw solutes, their diffusivity is the most critical parameter in FO

processes, as solutes of high diffusivity significantly decrease the ECP and ICP.

If we write intuitively the anisothermal osmotic pressure as

Δπ ¼ RTmΔC� bΔT (42)

across the membrane with ΔT ¼ T1 � T2 and Tm ¼ 1
2 T1 þ T2ð Þ, it would be interesting to know

the particular transmembrane temperature difference that can nullify the net osmotic pressure

gradient:

ΔT ¼ b�1RTΔC: (43)

As both T1 and T2 increase while keeping ΔT constant, Δπ increases. Moreover, increased Tm

may noticeably enhance the solvent as well as solute diffusion. This thought process strongly

supports the experimental literature in FO research, equivocally showing that the solvent flux is

proportional to the system temperature. Note that Eq. (41) includes the permeability coefficients

of solvent (A) and solute (B). As we discussed in the previous section, we know

∂A

∂T
and

∂B

∂T
≳0 (44)

so that both the solvent and solute fluxes increase with the mean temperature Tm of the

membrane where ΔT is maintained constant.

On the basis of our investigation, temperature effects on the osmotic phenomena are not as

simple as expected from the linear van’t Hoff equation, but highly correlated through the

temperature-dependent material constants of solvent η;Að Þ, solutes D;Bð Þ, and their strong

linkage to the osmotic pressure: π ! π C;Tð Þ.

6. Concluding remarks

This chapter provides a comprehensive review on the effect of temperature on the FO process.

Although the motivation for studying the temperature effect comes from the fact that osmosis is a

thermodynamically spontaneous process, changing the system temperature either locally or glob-

ally can offer more effective ways of engineering the FO process with lower energy consumption.

However, as evidenced by the scattered data across the literature and a lack of theoretical

descriptions, more robust and systematic studies are warranted for deeper understanding of the
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phenomena. For example, most of the temperature-dependent FO studies relate the changes in

the water and the solute flux to the change in the physical properties of the bulk solution only,

neglecting any changes in the membrane properties such as water permeability A, solute perme-

ability B, and mass transfer resistance K. Furthermore, a holistic theory accounting for the effect of

transmembrane temperature gradient on the FO process is still missing, hence to be constructed in

the near future.
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