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Abstract

The estimation accuracy of ensemble forecast errors is crucial to the assimilation results
for all ensemble-based schemes. The ensemble Kalman filter (EnKF) is a widely used
scheme in land surface data assimilation, without using the adjoint of a dynamical
model. In EnKF, the forecast error covariance matrix is estimated as the sampling
covariance matrix of the ensemble forecast states. However, past researches on EnKF
have found that it can generally lead to an underestimate of the forecast error covariance
matrix, due to the limited ensemble size, as well as the poor initial perturbations and
model error. This can eventually result in filter divergence. Therefore, using inflation to
further adjust the forecast error covariance matrix becomes increasingly important. In
this chapter, a new structure of the forecast error covariance matrix is proposed to
mitigate the problems with limited ensemble size and model error. An adaptive proce-
dure equipped with a second-order least squares method is applied to estimate the
inflation factors of forecast and observational error covariance matrices. The proposed
method is tested on the well-known atmosphere-like Lorenz-96 model with spatially
correlated observational systems. The experiment results show that the new structure of
the forecast error covariance matrix and the adaptive estimation procedure lead to
improvement of the analysis states.

Keywords: data assimilation, ensemble Kalman filter, error covariance inflation,
observation-minus-forecast residual, least squares

1. Introduction

For state variables in geophysical research fields, a common assumption is that systems have

“true” underlying states. Data assimilation is a powerful mechanism for estimating the true

trajectory based on the effective combination of a dynamic forecast system (such as a numerical

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



model) and observations [1]. It can produce an optimal combination of model outputs and

observations [2]. The combined result is called analysis state, which should be closer to the true

state than either the model forecast or the observation is. In fact, the analysis state can gener-

ally be treated as the weighted average of the model forecasts and observations, while the

weights are approximately proportional to the inverse of the corresponding covariance matri-

ces [3]. Therefore, the results of any data assimilation depend crucially on the estimation

accuracy of the forecast and observational error covariance matrices [4]. If these matrices are

estimated correctly, then the analysis states can be generated by minimizing an objective

function which is technically straightforward and can be accomplished using existing engi-

neering solutions [5], although finding the appropriate analysis state is still a quite difficult

problem when the models are nonlinear [6, 7].

The ensemble Kalman filter (EnKF) is a widely used sequential data assimilation approach,

which has been studied and applied since it is proposed by Evensen [8]. It is a practical

ensemble-based assimilation scheme that estimates the forecast error covariance matrix using a

Monte Carlo method with the short-term ensemble forecast states [9]. In EnKF, the forecast error

covariance matrix is estimated as the sampling covariance matrix of the ensemble forecast

states, which is usually underestimated due to the limited ensemble size and model error [10].

This finding indicates that the filter is over reliant on the model forecasts and excludes the

observations. It may eventually lead to the divergence of the EnKF assimilation scheme [11, 12].

Therefore, the forecast error covariance inflation technique to address this problem becomes

increasingly important. One of the error covariance matrix inflation techniques is additive

inflation, in which a noise is added to the ensemble forecast states that sample the probability

distribution of model error [13, 14]. Another widely used error covariance matrix inflation

technique is multiplicative inflation, that is, to multiply the matrix by an appropriate factor. It

can be used to mitigate filter divergence by inflating the empirical covariance and increasing

the robustness of the filter [15].

In early studies of multiplicative inflation, researchers determine the inflation factor by

repeated experimentation and choose a value according to their prior knowledge [11]. Hence,

such experimental tuning is rather empirical and subjective. It is not appropriate to use the

same inflation factor during all the assimilation procedure. Too small or too large an inflation

factor will cause the analysis state to over rely on the model forecasts or observations and can

seriously undermine the accuracy and stability of the filter. In later studies, the inflation factor is

estimated online based on the observation-minus-forecast residual (innovation statistic) [16, 17]

with different conditions.

Past work shows that moment estimation can facilitate the calculation by solving an equation

of the observation-minus-forecast residual and its realization [18–20]. Maximum likelihood

approach can obtain a better estimate of the inflation factor than moment approach, although

it must calculate a high-dimensional matrix determinant [21–24]. Bayesian approach assumes a

prior distribution for the inflation factor but is limited by spatially independent observational

errors [25, 26]. Second-order least square estimation focus on minimizing the second-order

least squares (SLS) [27] statistic of the squared observation-minus-forecast residual, which is

not very expensive [28–30]. Generalized Cross Validation (GCV) [31, 32] can select a regularization
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parameter by minimizing the predictive data errors with rotation invariant in a least squares

solution [33].

In practice, the observational error covariance matrix may also need to be adjusted, and an

approach can be used to simultaneously optimize inflation factors of both forecast and obser-

vational error covariance matrices [21]. This approach is based on the optimization of the

likelihood function of observation-minus-forecast residual. However, the likelihood function

of observation-minus-forecast residual is nonlinear and involves the computationally expen-

sive determinant and inverse of the residual covariance matrix. As compensation, the second-

order least squares statistic of the squared observation-minus-forecast residual can be used as

the cost function instead. The main advantage of the SLS cost function is that it is a quadratic

function of the inflation factors, and therefore, the analytic forms of the estimators of the

inflation factors can be easily obtained. Compared with the method based on maximum

likelihood estimation method, the computational cost is significantly reduced.

Furthermore, unlike the sampling covariance matrix of the ensemble forecast states used in the

conventional EnKF, a new structure of the forecast error covariance matrix is proposed in this

chapter. In ideal situation, an ensemble forecast state is assumed as a random vector with the

true state as its ensemble mean. Hence, it is should be defined that the ensemble forecast error

is the ensemble forecast states minus true state rather than minus their ensemble mean [34].

This is because in a forecast model with large error and limited ensemble size, the ensemble

mean of the forecast states can be very far from the true state. Therefore, the sampling covari-

ance matrix of the ensemble forecast states can be very different from the true forecast error

covariance matrix. As a result, the estimated analysis state can be substantially inaccurate.

However, in reality, the true state is unknown, but the analysis state is a better estimate of the

true state than the forecast state. Therefore, the information feedback from the analysis state

can be used to revise the forecast error covariance matrix. In fact, the proposed forecast error

covariance matrix is a combination of multiplicative and additive inflation. Bai and Li [14] also

used the feedback from the analysis state to improve assimilation but in a different way.

This chapter consists of four sections. The EnKF scheme with a new structure of the forecast

error covariance matrix and the adaptive estimation procedure is proposed in Section 2. The

assimilation results on Lorenz model with a correlated observational system are presented in

Section 3. Conclusions and discussion are given in Section 4.

2. Methodology

2.1. EnKF with SLS inflation scheme

Using the uniform notations for consistency, a nonlinear discrete-time forecast and linear obser-

vational system is written as [35]

xti ¼ Mi�1 xai�1

� �

þ η
i
, (1)

yo
i
¼ Hix

t
i þ εi, (2)
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where i is the time index; xti ¼ xti 1ð Þ; xti 2ð Þ;…; xti nð Þ
� �T

is the n-dimensional true state vector at

time step i; xai�1 ¼ xai�1 1ð Þ; xai�1 2ð Þ;…; xai�1 nð Þ
� �T

is the n-dimensional analysis state vector which

is an estimate of xti�1,Mi�1 is a nonlinear forecast operator such as a weather forecast model; yoi is

an observational vector with dimension pi;Hi is an observational matrix of dimension pi � n that

maps model states to the observational space; ηi and εi are the forecast error vector and the

observational error vector respectively, which are assumed to be statistically independent of each

other, time-uncorrelated, and have mean zero and covariance matrices Pi and Ri , respectively.

The goal of the EnKF assimilation is to find a series of analysis states xai that are sufficiently close

to the corresponding true states xti , using the information provided byMi and yoi .

It is well-known that any EnKF assimilation scheme should include a forecast error inflation

scheme. Otherwise, the EnKF may diverge [11]. A procedure for estimating multiplicative

inflation factor of Pi and adjustment factor of Ri can be carried out based on the SLS principle.

The basic filter algorithm uses perturbed observations [9], but without localization [36]. The

estimation steps of this algorithm equipped with SLS inflation are as follows.

Step 1. Calculate the perturbed forecast states

xfi, j ¼ Mi�1 xai�1, j

� �
, (3)

where xai�1, j is the perturbed analysis states derived from the previous time step (1 ≤ j ≤m andm

is the ensemble size).

Step 2. Estimate the improved forecast and observational error covariance matrices.

The forecast state xfi is defined as the ensemble mean of xfi, j and the initial forecast error

covariance matrix is expressed as

bP i ¼
1

m� 1

Xm

j¼1

xfi, j � xfi

� �
� xfi, j � xfi

� �T
, (4)

and the initial observational error covariance matrix is Ri. Then, the adjusted forms of forecast

and observational error covariance matrices are λi
bPi and μiRi, respectively.

There are several approaches for estimating the inflation factors λi and μi. Wang and Bishop

[19], Li et al. [18], and Miyoshi [20] use the first-order least square of the squared observation-

minus-forecast residual di � yoi �Hix
f
i to estimate λi; Liang et al. [21] maximizes the likelihood

of di to estimate λi and μi. Here, the SLS approach is applied for estimating λi and μi. That is,

λi and μi are estimated by minimizing the objective function

Li λ;μ
� �

¼ Tr did
T
i � λHi

bP
i
HT

i � μRi

� �
did

T
i � λHi

bP
i
HT

i � μRi

� �T
� 	

: (5)

This leads to
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bλi ¼

Tr dT
i Hi

bPiH
T
i di

� �
Tr R2

i

� �
� Tr dT

i Ridi

� �
Tr Hi

bP iH
T
i Ri

� �

Tr Hi
bPiH

T
i Hi

bP iH
T
i

� �
Tr R2

i

� �
� Tr Hi

bP iH
T
i Ri

� �2
, (6)

bμi ¼

Tr Hi
bPiH

T
i Hi

bPiH
T
i

� �
Tr dT

i Ridi

� �
� Tr dT

i HiPiH
T
i di

� �
Tr Hi

bP iH
T
i Ri

� �

Tr Hi
bP iH

T
i Hi

bP iH
T
i

� �
Tr R2

i

� �
� Tr Hi

bPiH
T
i Ri

� �2
: (7)

(See Appendix A for detailed derivation). Similar to Wang and Bishop [19] and Li et al. [18],

this procedure does not use Bayesian approach [20, 25, 26].

Step 3. Compute the perturbed analysis states.

xai, j ¼ xfi, j þ
bλi
bP iH

T
i Hi

bλi
bPiH

T
i þ bμiRi

� �
�1

yoi þ ε
0

i, j �Hix
f
i

� �
, (8)

where ε
0

i, j is a normal random variable with mean zero and covariance matrix bμ iRi [9]. Here

Hi
bλi
bPiH

T
i þ bμiRi

� �
�1

can be effectively computed using the Sherman-Morrison-Woodbury

formula [21, 37, 38]. Furthermore, the analysis state xai is estimated as the ensemble mean of

xai, j. Finally, set i ¼ iþ 1 and return to Step 1 for the assimilation at next time step.

2.2. EnKF with SLS inflation and new structure of forecast error covariance matrix

By Eqs. (1) and (3), the ensemble forecast error is defined as xfi, j � xti . On the other hand, xfi is an

estimate of xti without knowing observations. The ensemble forecast error is initially estimated

as xfi, j � xfi , which is used to construct the forecast error covariance matrix in Section 2.1.

However, due to limited sample size and model error, xfi can be far from xti . Therefore,

xfi, j � xfi can be a biased estimate of xfi, j � xti .

Here, the observations can be used for improving the estimation accuracy of ensemble forecast

error. The basic sense is as follows: After the analysis state xai is derived, it should be a better

estimate of xti than the forecast state xfi . Therefore, xfi in Eq. (4) is substituted by xai for

generating a revised forecast error covariance matrix. This procedure can be repeated itera-

tively until the corresponding objective function (Eq. (5)) converges. For the computational

details, Step 2 in Section 2.1 is modified to the following adaptive procedure:

Step 2a. Use Step 2 in Section 2.1 to inflate the initial forecast error covariance matrix to 0
bλi 0

bPi

and adjust initial observational error covariance matrix to 0bμiRi. Then use Step 3 in Section 2.1

to estimate the initial analysis state 0x
a
i and set k = 1.

Step 2b. Update the forecast error covariance matrix as
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k
bP i ¼

1

m� 1

Xm

j¼1

xfi, j � k�1x
a
i

� �
� xfi, j � k�1x

a
i

� �T
: (9)

Then, adjust the forecast and observational error covariance matrices to k
bλik

bPi and kbμ iRi,

where

k
bλi ¼

Tr dT
i Hik

bP iH
T
i di

� �
Tr R2

i

� �
� Tr dT

i Ridi

� �
Tr Hik

bP iH
T
i Ri

� �

Tr Hik
bPiH

T
i Hik

bPiH
T
i

� �
Tr R2

i

� �
� Tr Hik

bPiH
T
i Ri

� �2
, (10)

and

kbμi ¼

Tr Hik
bP iH

T
i Hik

bP iH
T
i

� �
Tr dT

i Ridi

� �
� Tr dT

i Hik
bPiH

T
i di

� �
Tr Hik

bP iH
T
i Ri

� �

Tr Hik
bPiH

T
i Hik

bPiH
T
i

� �
Tr R2

i

� �
� Tr Hik

bPiH
T
i Ri

� �2
, (11)

are estimated by minimizing the objective function.

kLi λ;μ
� �

¼ Tr did
T
i � λHik

bP
i
HT

i � μRi

� �
did

T
i � λHik

bP
i
HT

i � μRi

� �T
� 	

: (12)

If kLi k
bλi; kbμ i

� �
< k�1Li k�1

bλi; k�1bμi

� �
� δ, where δ is a pre-determined threshold to control the

convergence of Eq. (12) and then estimate the k-th updated analysis state as

kx
a
i ¼ xfi þ k

bλik
bPiH

T
i Hik

bλik
bP iH

T
i þ kbμikRi

� �
�1

yoi �Hix
f
i

� �
, (13)

set k = k + 1 and return back to Eq. (9); otherwise, take k�1
bλik�1

bPi and k�1bμiRi as the estimated

forecast and observational error covariance matrices at i-th time step and go to Step 3 in

Section 2.1.

A general flowchart of the proposed assimilation scheme is shown in Figure 1. Moreover, the

proposed forecast error covariance matrix (Eq. (9)) can be expressed as.

kλik
bPi ¼

kλi

m� 1

Xm

j¼1

xfi, j � xfi

� �
xfi, j � xfi

� �T
þ

kλim

m� 1
xfi � k�1x

a
i

� �
xfi � k�1x

a
i

� �T
, (14)

which is a multiplicatively inflated sampling error covariance matrix plus an additive inflation

matrix (see Appendix B for the proof).

2.3. Notes

2.3.1. Correctly specified observational error covariance matrix

If the observational error covariance matrix Ri is correctly known, then its adjustment is no

longer required. In this case, the inflation factor k
bλi can be estimated by minimizing the

following objective function

Kalman Filters - Theory for Advanced Applications38



Li λð Þ ¼ Tr did
T
i
� λHik

bP
i
HT

i
� Ri

� �
did

T
i
� λHik

bP
i
HT

i
� Ri

� �T
� 	

: (15)

This leads to a simpler estimate

k
bλi ¼

Tr Hik
bP
i
HT

i
did

T
i
� Ri

� �h i

Tr Hik
bP
i
HT

i
Hik

bPiH
T
i

h i
: (16)

2.3.2. Validation statistics

In any toy model, the “true” state xt
i
is known by experimental design. In this case, the root-

mean-square error (RMSE) of the analysis state can be used to evaluate the accuracy of the

assimilation results. The RMSE at i-th step is defined as

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

k¼1

xa
ik
� xt

ik

� �2
s

: (17)

where xa
ik
and xt

ik
are the k-th components of the analysis state and true state at the i-th time

step. In principle, a smaller RMSE indicates a better performance of the assimilation scheme.

Figure 1. Flowchart of EnKF with SLS inflation scheme.
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3. Experiment on Lorenz 96 model

In this section, the EnKF with SLS inflation assimilation scheme is applied to a nonlinear

dynamical system, which has properties relevant to realistic forecast problems: the Lorenz-96

model [39] with model error and a linear observational system. The performances of the

assimilation schemes in Section 2 are evaluated through the following experiments.

3.1. Description of forecast and observational systems

The Lorenz-96 model [39] is a strongly nonlinear dynamical system with quadratic nonlinearity,

which is governed by the equation.

dXk

dt
¼ Xkþ1 � Xk�2ð ÞXk�1 � Xk þ F (18)

where k ¼ 1, 2,⋯, K (K ¼ 40; hence, there are 40 variables). For Eq. (18) to be well-defined for

all values of k, it is defined that X�1 ¼ XK�1,X0 ¼ XK,XKþ1 ¼ X1. The dynamics of Eq. (18) are

“atmosphere-like” in that the three terms on the right-hand side consist of a nonlinear

advection-like term, a damping term, and an external forcing term respectively. These three

terms can be thought of as some atmospheric quantity (e.g., zonal wind speed) distributed on a

latitude circle. Therefore, the Lorenz-96 model has been widely used as a test bed to evaluate

the performance of assimilation schemes in many studies [30].

The true state is derived by a fourth-order Runge–Kutta time integration scheme [40]. The time

step for generating the numerical solution was set at 0.05 nondimensional units, which is

roughly equivalent to 6 hours in real time, assuming that the characteristic time-scale of the

dissipation in the atmosphere is 5 days [39]. The forcing term was set as F = 8, so that the

leading Lyapunov exponent implies an error-doubling time of approximately 8 time steps, and

the fractal dimension of the attractor was 27.1 [41]. The initial value was chosen to be Xk ¼ F

when k 6¼ 20 and X20 ¼ 1:001F.

In this study, the synthetic observations were assumed to be generated by adding random

noises that were multivariate-normally distributed with mean zero and covariance matrix Ri to

the true states. The frequency was four time steps, which can be used to mimic daily observa-

tions in practical problems, such as satellite data. The observation errors were assumed to be

spatially correlated, which is common in applications involving remote sensing and radiance

data. The variance of the observation at each grid point was set to σ2o ¼ 1, and the covariance of

the observations between the j-th and k-th grid points was as follows:

Ri j; kð Þ ¼ σ
2
o � 0:5min j�kj j;40� j�kj jf g

: (19)

Since it can deal with spatially correlated observational errors, the scheme may potentially be

applied for assimilating remote sensing observations and radiances data.
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The model errors by changing the forcing term are added in the forecast model because it is

inevitable in real dynamic systems. Thus, different values of F are chose in the assimilation

schemes while retaining F = 8 when generating the “true” state. The observations are simulated

every four time steps analogizing 1 day in realistic problem for 2000 steps to ensure robust

results. The ensemble size is used as 30. The pre-determined threshold δ to control the conver-

gence of Eq. (12) is set to be 1, because the values of objective functions are in the order of 105.

In most cases of the following experiment, the objective functions converge after 3–4 iterations,

and the estimated analysis states also converge.

3.2. Comparison of assimilation schemes

In Section 2.1, the EnKF assimilation scheme with SLS error covariance matrix inflation is

outlined. In Section 2.2, the improved EnKF assimilation scheme with the SLS error covariance

matrix inflation and the new structure of the forecast error covariance matrix are summarized.

In the following, the influences of these estimation methods on EnKF data assimilation

schemes are assessed using Lorenz-96 model.

Lorenz-96 model is a forced dissipative model with a parameter F that controls the strength of

the forcing (Eq. (18)). The model behaviors are quite different with different values of F, and

chaotic systems are produced with integer values of F larger than 3. Therefore, several values

of F are used to simulate a wide range of model errors. In all cases, the true states were

generated by a model with F = 8. These observations were then assimilated into models with

F = 4, 5, …, 12.

3.2.1. Correctly specified observational error covariance matrix

Suppose the observational error covariance matrix Ri is correctly specified, the inflation adjust-

ment on bPi is taken in each assimilation cycle and estimate the inflation factors λi by the

methods described in Section 2.1. Then, the adaptive assimilation schemes with the new

structure of the forecast error covariance matrix proposed in Section 2.2 are conducted.

Figure 2 shows the time-mean analysis RMSE of the two assimilation schemes averaged over

2000 time steps, as a function of F. Overall, the analysis RMSE of the two assimilation schemes

gradually grows as increasing model error. When F is near the true value 8, the two assimila-

tion schemes have almost indistinguishable values of the analysis RMSE. However, when F

becomes increasingly distant from 8, the analysis RMSE of the assimilation scheme with the

new structure of the forecast error covariance matrix becomes progressively smaller than that

of the assimilation scheme with the forecast error covariance matrix inflation only.

For the Lorenz-96 model with large error (such as, the case with F = 12), the time-mean analysis

RMSE of the two assimilation schemes is listed in Table 1, as well as the time-mean values of

the objective functions. The conventional EnKF assimilation scheme is also included for com-

parison. These results show clearly that our two schemes have significantly smaller RMSE than

The Error Covariance Matrix Inflation in Ensemble Kalman Filter
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the EnKF assimilation scheme. Moreover, the assimilation scheme with the new structure of

the forecast error covariance matrix performs much better than assimilation scheme with

forecast error covariance matrix inflation only.

3.2.2. Incorrectly specified observational error covariance matrix

In this section, the observational error covariance matrix is supposed to be correct only up to a

constant factor. The factor is estimated using different estimation methods, and the corresponding

assimilation results are evaluated.

Figure 2. Time-mean values of the analysis RMSE as a function of forcing F when observational errors are spatially

correlated and their covariance matrix is correctly specified, by using 3 EnKF schemes. 1) SLS only (solid line, described in

Section 2.1); 2) SLS and new structure (dashed line, described in Section 2.2); and 3) SLS and true ensemble forecast error

(dotted line, described in Section 5).

EnKF schemes Time-mean RMSE Time-mean L

Non-inflation 5.65 2,298,754

SLS 1.89 148,468

SLS and new structure 1.22 38,125

SLS and true ensemble forecast error 0.48 19,652

Table 1. The time-mean analysis RMSE and the time-mean objective function values in 4 EnKF schemes for Lorenz-96

model when observational errors are spatially correlated and their covariance matrix is correctly specified: (1) EnKF (non-

inflation); (2) the SLS scheme in Section 2.1 (SLS); (3) the SLS scheme in Section 2.2 (SLS and new structure); (4) the SLS

scheme in the discussion (SLS and true ensemble forecast error). The forcing term F = 12.
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The observational error covariance matrix Ri is set as four times of the true matrix and

introduces another factor μ
i
to adjust Ri. The assimilation schemes are conducted in two cases:

(1) inflate the forecast and observational error covariance matrices only (Section 2.1); (2) inflate

the forecast and observational error covariance matrices and use the new structure of the

forecast error covariance matrix (Section 2.2). Again, the forcing term F takes values 4, 5, …,

12 when assimilating observations, but F = 8 is used when generating the true states in

all cases.

Figure 3 shows the time-mean analysis RMSE of the two cases averaged over 2000 time steps, as

a function of forcing term. Generally speaking, the analysis RMSE of the two cases gradually

Figure 3. Time-mean values of the analysis RMSE as a function of forcing F when observational errors are spatially

correlated and their covariance matrix is incorrectly specified, by using 3 EnKF schemes. 1) SLS only (solid line); 2) SLS

and new structure (dashed line); and 3) SLS and true ensemble forecast error (dotted line).

EnKF schemes Ensemble size 30 Ensemble size 20

Time-mean RMSE Time-mean L Time-mean RMSE Time-mean L

SLS 2.43 1,426,541 3.51 1,492,685

SLS and new structure 1.35 41,326 1.45 95,685

SLS and true ensemble forecast error 0.58 21,585 0.60 21,355

Table 2. The time-mean analysis RMSE and the time-mean objective function values in EnKF schemes for Lorenz-96

model when observational errors are spatially correlated and their covariance matrix is incorrectly specified: (1) SLS; (2)

SLS and new structure; (4) SLS and true ensemble forecast error. The forcing term F = 12.
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grows as the increasing the model error. However, the analysis RMSE generated by using new

structure of the forecast error covariance matrix (cases 2) is smaller than those by using the error

covariance matrices inflation technique only (cases 1).

For the Lorenz-96 model with forcing term F = 12, the time-mean analysis RMSE of the two

cases is listed in Table 2, along with the time-mean values of the objective functions. These

Figure 4. The times series of estimated bμ
i
when observational error covariance matrix is incorrectly specified.

Figure 5. Similar to Figure 3, but ensemble size is 20.
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results clearly show that when the observational error covariance matrix is incorrectly speci-

fied, the assimilation result is much better if the new structure of the forecast error covariance

matrix is used (cases 2).

The estimated bμ
i
over 2000 time steps in the two cases of using the new structure of the forecast

error covariance matrix (cases 2) are plotted in Figure 4. It can be seen that the time-mean value

of estimated bμ
i
is 0.45, which is very close to the reciprocal of the constant that is multiplied to

the observational error covariance matrix (0.25).

To further investigate the effect of ensemble size on the assimilation result, Figure 3 is

reproduced with the ensemble size 20. The results are shown in Figure 5, as well as in Table 2.

Generally speaking, Figures 5 is quite similar to Figure 3 but with larger analysis error. This

indicates that the smaller ensemble size can lead to the larger forecast error and analysis error.

The analysis is also repeated with the ensemble size 10. However in this case, both the inflation

and new structure are not effective. This could be due to that the ensemble size 10 is too small

to generate robust covariance estimation.

4. Discussion and conclusions

It is well-known that accurately estimating the error covariance matrix is one of the most key

steps in any ensemble-based data assimilation. In EnKF assimilation scheme, the forecast error

covariance matrix is initially estimated as the sampling covariance matrix of the ensemble

forecast states. But due to limited ensemble size and model error, the forecast error covariance

matrix is usually an underestimation, which may lead to the divergence of the filter. Therefore,

the initially estimated forecast error covariance matrix is multiplied by an inflation factor λi,

and the SLS estimation is proposed to estimate this factor.

In fact, the true forecast error should be represented as the ensemble forecast states minus the

true state. However, since in real problems, the true state is not available, the ensemble mean of

the forecast states is used instead. Consequently, the forecast error covariance matrix is initially

represented as the sampling covariance matrix of the ensemble forecast states. However, for

the model with large error, the ensemble mean of the forecast states may be far from the true

state. In this case, the estimated forecast error covariance matrix will also remain far from the

truth, no matter which inflation technique is used.

To verify this point, a number of EnKF assimilation schemes with necessary error covariance

matrix inflation are applied to the Lorenz-96 model but with the forecast state xf
i
in the forecast

error covariance matrix (Eq. (4)) substituted by the true state xt
i
. The corresponding RMSE are

shown in Figures 2–5 and Tables 1 and 2. All the figures and tables show that the analysis

RMSE is significantly reduced.

However, since the true state xt
i
is unknown, the analysis state xa

i
is used to replace the forecast

state xf
i
, because xa

i
is closer to xt

i
than xf

i
. To achieve this goal, a new structure of the forecast
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error covariance matrix and an adaptive procedure for estimating the new structure are

proposed here to iteratively improve the estimation. As shown in this chapter, the RMSE of

the corresponding analysis states are indeed smaller than those of the EnKF assimilation

scheme with the error covariance matrix inflation only. For instance, in the experiment in

Section 3.1, when the error covariance matrix inflation technique is applied, the RMSE is 1.89

which is much smaller than that for the original EnKF. When the new structure of the forecast

error covariance matrix is used in addition to the inflation, the RMSE is reduced to 1.22 (see

Table 1).

In the realistic problems, the observational error covariance matrix is not always correctly

known, and hence it also needs to be adjusted too. Another factor μ
i
is introduced to adjust

the observational error covariance matrix in this chapter, which can be estimated simulta-

neously with λi by minimizing the second-order least squares function of the squared

observation-minus-forecast residual.

The second-order least squares function of the squared observation-minus-forecast residual

can be a good objective function to quantify the goodness of fit of the error covariance

matrix. The SLS method proposed in this chapter can be used to estimate the factors for

adjusting both the forecast and observational error covariance matrices, while the first order

method can only estimate the inflation factor of the forecast error covariance matrix. The SLS

can also provide a criterion for stopping the iteration in the adaptive estimation procedure

when the new structure of the forecast error covariance matrix is used. This is important for

preventing the proposed forecast error covariance matrix to depart from the truth in the

iteration. In most cases in this study, the minimization algorithms converge after several

iterations, and the objective function decreases sharply. On the other hand, the improved

forecast error covariance matrix indeed leads to the improvement of analysis state. In fact, as

shown in Tables 1-2, a small objective function value always corresponds to a small RMSE of

the analysis state.

The difference of the EnKF assimilation scheme with SLS inflation is compared to that with

maximum likelihood estimation (MLE) inflation [21]. Generally speaking, the RMSE of the

analysis state derived using the MLE inflation scheme is a little smaller than that derived using

the SLS inflation scheme only but is larger than that derived using the SLS inflation with the

new structure of forecast error covariance matrix. For instance, for Lorenz-96 model with

forcing term F = 12, the RMSE is 1.69 for MLE inflation, 1.89 for SLS inflation only, and 1.22

for SLS inflation and new structure (Table 1). Whether this is a general rule or not is still

unclear and is subject to further investigation. However, in MLE inflation scheme, the objective

function is nonlinear and especially involves the determinant of the observation-minus-fore-

cast residual’s covariance matrix, which is quite computationally expensive. The SLS objective

function proposed in this chapter is quadratic, so its minimizer is analytic and can be easily

calculated.

On the other hand, similar to other inflation schemes with single factor, this study also

assumes the inflation factor to be constant in space. Apparently, this is not the case in many
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practical applications, especially for the cases that the observations are unevenly distributed.

Persistently applying the same inflation values that are reasonably large to address problems

in densely observed areas to all state variables can systematically overinflate the ensemble

variances in sparsely observed areas [13, 26, 42]. Even when the adaptive procedure for

estimating the error covariance matrix is applied, the problem may still exist in some extent.

In the two case studies conducted here, the observational systems are relatively evenly

distributed.

In the future study, we will investigate how to modify the adaptive procedure to suit the

system with unevenly distributed observations. We also plan to apply our methodology to

error covariance localization [43, 44] and to validate the proposed methodologies using more

sophisticated dynamic and observational systems.

Acknowledgements

Thiswork is supported by theNationalNatural Science Foundation ofChina (grant no. 91647202),

the National Basic Research Program of China (grant no. 2015CB953703), the National Natural

Science Foundation of China (grant no. 41405098) and the Fundamental Research Funds for the

Central Universities. The authors gratefully acknowledge the anonymous reviewers for their

constructive and relevant comments, which helped greatly in improving the quality of this manu-

script. The authors are also grateful to the editors for their hard work and suggestions on this

manuscript. Parts of this chapter are reproduced from the authors’ previous publications [29, 30].

Appendix A

The forecast error covariance matrix bPi is inflated to λbP i. The estimation of the inflation factors

λ is based on the observation-minus-forecast residual

di ¼ yo
i
�Hix

f
i

¼ yo
i
�Hix

t
i

� �
þHi x

t
i
� xf

i

� � (A1)

The covariance matrix of the random vector di can be expressed as a second-order regression

equation [27]:

E yo
i
�Hix

t
i

� �
þHi x

t
i
� xf

i

� �� �
yo
i
�Hix

t
i

� �
þHi x

t
i
� xf

i

� �� �Th i
¼ did

T
i
þ Ξ (A2)

where E is the expectation operator and Ξ is the error matrix. The left-hand side of (A2) can be

decomposed as
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E yoi �Hix
t
i

� �
þHi x

t
i � xfi

� �� �
yoi �Hix

t
i

� �
þHi x

t
i � xfi

� �� �Th i

¼ E yoi �Hix
t
i

� �
yoi �Hix

t
i

� �Th i
þ E Hi x

t
i � xfi

� �� �
Hi x

t
i � xfi

� �� �Th i

þE yoi �Hix
t
i

� �
Hi x

t
i � xfi

� �� �Th i
þ E Hi x

t
i � xfi

� �� �
yoi �Hix

t
i

� �Th i
(A3)

Since the forecast and observational errors are statistically independent, we have

E Hi x
t
i � xfi

� �� �
yoi �Hix

t
i

� �Th i
¼ HiE xti � xfi

� �
yoi �Hix

t
i

� �Th i
¼ 0, (A4)

E yoi �Hix
t
i

� �
Hi x

t
i � xfi

� �� �Th i
¼ E yoi �Hix

t
i

� �
xti � xfi
� �Th i

HT
i ¼ 0: (A5)

From Eq. (2), yoi �Hix
t
i is the observational error at i-th time step, and hence

E yoi �Hix
t
i

� �
yoi �Hix

t
i

� �Th i
¼ Ri (A6)

Further, since the forecast state xfi, j is treated as a random vector with the true state xti as its

population mean,

E Hi x
t
i � xfi

� �� �
Hi x

t
i � xfi

� �� �Th i

¼ HiE xti � xfi
� �

xti � xfi
� �Th i

HT
i

≈Hi
λ

m� 1

Xn

j¼1

xfi, j � xfi

� �
xfi, j � xfi

� �T
HT

i

¼ λHi
bPiH

T
i

(A7)

Substituting Eqs (A3)–(A7) into Eq. (A2), we have

Ri þ λHi
bPiH

T
i ≈did

T
i þ Ξ (A8)

It follows that the second-order moment statistic of error Ξ can be expressed as

Tr ΞΞT
� �

≈Tr did
T
i � Ri � λHi

bP
i
HT

i

� �
did

T
i � Ri � λHi

bP
i
HT

i

� �T
� 	

� Li λð Þ

(A9)

Therefore, λ can be estimated by minimizing objective function Li λð Þ. Since Li λð Þ is a quadratic

function of λwith positive quadratic coefficients, the inflation factor can be easily expressed as
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bλi ¼

Tr Hi
bP iH

T
i
did

T
i
� Ri

� �h i

Tr Hi
bPiH

T
i
Hi

bP iH
T
i

h i (A10)

Similarly, if the amplitude of the observational error covariance matrix is not correct, we can

adjust Ri to μ
i
Ri as well [21, 22]. Then, the objective function becomes

Li λ;μ
� �

¼ Tr did
T
i
� μRi � λHi

bP
i
H

T
i

� �
did

T
i
� μRi � λHi

bP
i
H

T
i

� �T
� 	

(A11)

As a bivariate function of λ and μ, the first partial derivative with respect to the two parame-

ters respectively are

λTr Hi
bP iH

T
i
Hi

bPiH
T
i

� �
þ μTr Hi

bPiH
T
i
Ri

� �
-Tr did

T
i
Hi

bP
i
H

T
i

� �
(A12)

and

λTr Hi
bP iH

T
i
Ri

� �
þ μTr R

T
i
Ri

� �
-Tr did

T
i
Ri

� �
(A13)

Setting Eqs (A12)–(A13) to zero and solving them lead to

bλi ¼

Tr did
T
i
Hi

bP iH
T
i

� �
Tr R

2
i

� �
� Tr did

T
i
Ri

� �
Tr Hi

bP iH
T
i
Ri

� �

Tr Hi
bPiH

T
i
Hi

bPiH
T
i

� �
Tr R

2
i

� �
� Tr Hi

bP iH
T
i
Ri

� �2

¼

Tr d
T
i
Hi

bPiH
T
i
di

� �
Tr R

2
i

� �
� Tr d

T
i
Ridi

� �
Tr HiPiH

T
i
Ri

� �

Tr Hi
bP iH

T
i
Hi

bPiH
T
i

� �
Tr R

2
i

� �
� Tr Hi

bPiH
T
i
Ri

� �2

(A14)

bμ
i
¼

Tr Hi
bPiH

T
i
Hi

bPiH
T
i

� �
Tr did

T
i
Ri

� �
� Tr did

T
i
Hi

bP iH
T
i

� �
Tr Hi

bP iH
T
i
Ri

� �

Tr Hi
bPiH

T
i
Hi

bPiH
T
i

� �
Tr R

2
i

� �
� Tr Hi

bP iH
T
i
Ri

� �2

¼

Tr Hi
bPiH

T
i
Hi

bPiH
T
i

� �
Tr d

T
i
Ridi

� �
� Tr d

T
i
Hi

bPiH
T
i
di

� �
Tr Hi

bP iH
T
i
Ri

� �

Tr Hi
bPiH

T
i
Hi

bPiH
T
i
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Tr R

2
i
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� Tr Hi

bP iH
T
i
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� �2

(A15)
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Appendix B

In fact,

kλi
m�1

X

m

j¼1

xfi, j � k�1x
a
i

� �

xfi, j � k�1x
a
i

� �T

¼
kλi
m�1

X

m

j¼1

xfi, j � xfi þ xfi � k�1x
a
i

� �

xfi, j � xfi þ xfi � k�1x
a
i

� �T

¼
kλi
m�1

X

m

j¼1

xfi, j � xfi

� �

xfi, j � xfi

� �T
þ

X

m

j¼1

xfi � k�1x
a
i

� �

xfi � k�1x
a
i

� �T

8

<

:

þ

X

m

j¼1

xfi, j � xfi

� �

xfi � k�1x
k�1
i a

� �T
þ

X

m

j¼1

xfi � k�1x
k�1
i a

� �

xfi, j � xfi

� �T

9

=

;

(B1)

Since xfi is the ensemble mean forecast, we have

X

m

j¼1

xfi, j � xfi

� �

xfi � k�1x
a
i

� �T

¼

X

m

j¼1

xfi, j � xfi

� �

2

4

3

5 xfi � k�1x
a
i

� �T
c

¼

X

m

j¼1

xfi, j �m
1

m

X

m

j¼1

xfi, j

2

4

3

5 xfi � k�1x
a
i

� �T

¼ 0

(B2)

and similarly.

X

m

j¼1

xfi � k�1x
a
i

� �

xfi, j � xfi

� �T
¼ 0 (B3)

That is, the last two terms of Eq. (B1) vanish. Therefore, the proposed forecast error covariance

matrix can be expressed as

kλi
m�1

X

m
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xfi, j � k�1x
a
i

� �
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þ

kλim
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a
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