
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

CORE Metadata, citation and similar papers at core.ac.uk

Provided by IntechOpen

https://core.ac.uk/display/322433877?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Chapter 5

Computational Methods for Photon-Counting and
Photon-Processing Detectors

Luca Caucci, Yijun Ding and Harrison H. Barrett

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.72151

Abstract

We present computational methods for attribute estimation of photon-counting and
photon-processing detectors. We define a photon-processing detector as any imaging
device that uses maximum-likelihood methods to estimate photon attributes, such as
position, direction of propagation and energy. Estimated attributes are then stored at full
precision in thememory of a computer. Accurate estimation of a large number of attributes
for each collected photon does require considerable computational power. We show how
mass-produced graphics processing units (GPUs) are viable parallel computing solutions
capable of meeting the required computing needs of photon-counting and photon-
processing detectors, while keeping overall costs affordable.

Keywords: photon-processing detectors, maximum-likelihood estimation, GPU,
parallel processing, gamma-ray photons, charged particles

1. Introduction

In broad terms, detectors used in imaging can be classified into a small number of categories

depending on their working principles. These categories include integrating detectors, pixelated

photon-counting detectors as well as a new class of detectors, which we refer to as photon-

processing detectors.

An integrating detector measures charges accumulated at each pixel location. These charges

are induced by light impinging on the detector and are proportional to the average number of

photons incident on each pixel. Dedicated circuitry reads out these changes and converts them

to numbers roughly proportional to the charge accumulated at each pixel.

A photon-counting detector works by counting the number of photoelectric interactions

observed during the exposure time. Count registers associated with each pixel are read at the

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

end of the exposure time, thus making the output of photon-counting detectors a collection of

pixel counts.

A photon-processing detector may use any existing detector technology to measure several

“attributes” for each photon entering the detector. Attributes include the photon position, its

direction of propagation and the amount of energy it deposited in the detector. This is accom-

plished by reengineering the detector design so that additional information can be extracted

from raw unprocessed data. Important aspects of any photon-processing detector include the

algorithm used to estimate photon attributes from raw data as well as how these attributes are

represented and stored in the memory of a computer.

Particle-processing detectors are a variation on photon-processing detectors and are designed to

detect charged particles, such as alpha and beta particles. Particle-processing detectors enable a

new imaging technique—called charged-particle emission tomography (CPET)—which attains

high-resolution 3D imaging in living organisms so long as accurate estimation of parameters for

each charged particle is available.

This chapter is organized as follows. Section 2 provides an overview of detectors suitable for

photon counting and photon processing. Maximum-likelihood estimation (MLE) and its prop-

erties are discussed in some detail in Section 3. The next section—Section 4—introduces

graphics processing units (GPUs) and the compute unified device architecture (CUDA) pro-

gramming model. Section 5 presents algorithms for photon-counting detectors, while Section 6

discusses photon- and particle-processing detectors and presents fast GPU-based algorithms

for maximum-likelihood estimation of photon parameters. Finally, Section 7 summarizes this

chapter and discusses possible applications of photon-processing detectors.

A portion of this chapter has been adapted from Y. Ding, “Charged-Particle Emission Tomography” [1].

2. Detectors for photon counting and photon processing

2.1. Gamma-ray cameras

Gamma-ray cameras are used in nuclear medicine to image gamma-ray photons emitted by

radioactive elements. The first gamma-ray camera was developed by Hal Oscar Anger in 1957

[2]. Anger’s original design, often referred to as an “Anger camera,” is still widely used today.

A diagram of an Anger camera is provided in Figure 1.

An Anger camera includes a scintillation crystal, a light guide and an array of photomultiplier

tubes (PMTs). When a gamma-ray photon interacts with the scintillation crystal, a burst of

visible-light photons is produced. Some of these photons propagate through the crystal and

the light guide and enter one or more PMTs. When a photon enters a PMTand interacts with it,

a measurable electrical signal in the form of a narrow current pulse is produced. This pulse is

transmitted to amplifying electronics, so that it can be analyzed. A transimpedance amplifier

converts the current pulse to voltage. A shaping amplifier further amplifies the signal and

reshapes it, making it broader and smoother. A broad signal is easier to sample via an analog-

to-digital converter. The output of the analog-to-digital converter can be scaled to obtain an

Photon Counting - Fundamentals and Applications106

integer number representing the number of photons entering the PMT. Digitized samples

collected from each of the K PMTs are then scanned for events. Detected events are stored in

the memory of a computer in the form of scaled PMT samples g1,…, gK.

Detailed analysis of the physical processes that take place inside the scintillation crystal and each

PMT allows us to derive a statistical model for the scaled PMT samples g1,…, gK produced by a

gamma-ray camera with K PMTs. Because of noise, PMT samples g1,…, gK can be thought of

random variables. If we normalize each PMT signal by the gain of the PMTs and we ignore the

noise in the gain, random variables g1,…, gK can be shown to be conditionally independent and

to follow Poisson statistics with means, respectively, g1 R;Eð Þ,…, gK R;Eð Þ [4]. Thus, we canwrite:

pr g1;…; gK j R;E
� �

¼
Y

K

k¼1

gk R;Eð Þ
� �gkexp �gk R;Eð Þ

� �

gk!
: (1)

Functions g1 R;Eð Þ,…, gK R;Eð Þ are called mean detector response functions (MDRFs), and they

describe the mean detector response upon detection of a gamma-ray photon with energy E at

location R.

2.2. Semiconductor detectors for charged particles

Semiconductor pixelated detectors can be used to measure position and energy of charged

particles, including alpha and beta particles. One possible detector configuration consists of a

layer of semiconductor material (which we refer to as the “active volume”), a set of anodes

placed on one side of the detector’s active volume, and some data-processing circuitry (such as

application-specific integrated circuits or ASICs) that measures the anode signals and converts

them into digital signals.

Housing

Front view Side view

Scintillation

crystal
Light guide

PMT

PMT

PMTPM T 1 PM T 2 PMT 3

PMT 4 PM T 5 PMT 6

PM T 7 PM T 8 PM T 9

Figure 1. Diagram of a typical gamma-ray camera (adapted from [3]).

Computational Methods for Photon-Counting and Photon-Processing Detectors
http://dx.doi.org/10.5772/intechopen.72151

107

When a charged particle enters the detector’s active volume and deposits some of its energy,

electron-hole pairs are produced along the particle’s track. The electrons and holes drift in

opposite directions under an electric field applied throughout the detector’s active volume.

This process is accompanied by the production of electrical charges, which are collected by

electrodes on one side of the detector’s active volume. These charges are then converted to

digital signals (e.g., number of electron-hole pairs produced) and are either sent to a computer

or accumulated in count registers to form an image.

An example of a semiconductor pixelated detector for alpha and beta particle is the Medipix2

sensor (Figure 2) developed at CERN [5]. The Medipix2 sensor features an array of 256 � 256

square pixels of size 55 μm. The counter in each pixel of a Medipix2 sensor can record the

duration of an event that is above a threshold, from which the energy collected at each pixel

and the particle’s residual energy can be measured.

A statistical model for the data produced by a semiconductor detector for charged particles

(such as the Medipix2 sensor) must take into account the so-called charge sharing effect [6] as

well as many variables, including particle’s position R and energy E, its angle of incidence

(denoted as the unit vector s
!
) and bias voltage Vbias applied across the semiconductor. Some

recent results for the Medipix2 sensor have been reported in [1, 7]. When a highly energetic

particle enters the detector, a large number of charges will be collected at its electrodes. In such

a case, the statistics of pixel outputs g1,…, gM (whereM denotes the number of detector pixels)

conditioned on R, E, s
!
and Vbias approach Gaussian statistics, and we can write:

pr g1;…; gM
�

�

�R, E, s
!
, VbiasÞ ¼

Y

M

m¼1

1
ffi

2πσ2m R;E; s
!

;Vbias

� 	

r exp �
gm � gm R;E; s

!
;Vbias

� 	� 	2

2σ2m R;E; s
!

;Vbias

� 	

2

6

4

3

7

5
,

(2)

in which gm R;E; s
!

;Vbias

� 	

is the mean of the mth pixel and σm R;E; s
!

;Vbias

� 	

is the standard

deviation of gm.

Figure 2. Diagram of the Medipix2 chip sensor (https://medipix.web.cern.ch).

Photon Counting - Fundamentals and Applications108

2.3. Intensified charge-coupled detectors

A charge-coupled detector (CCD) is a semiconductor device that produces a pixelated image by

converting incoming photons into electric charges, which are then stored at each pixel location.

These charges are induced by photons with energy exceeding the semiconductor bandgap. The

most general form for the mean output gm (calculated by imaging the same object over and over

again) is [8]:

gm ¼

ð

det

d2R

ð

∞

0

dE

ð

hemi

dΩ

ðT

0

dt ηm R;E; s
!

� 	

L R;E; s
!

; t
� 	

, (3)

in which m varies from 1 to the total number of pixelsM, ηm R;E; s
!

� 	

is the quantum efficiency

at pixel m, point R on detector face, photon energy E and along direction s
!
. The function

L R;E; s
!

; t
� 	

is the spectral photon radiance at point R for photon energyE, time t and along

direction s
!

[8, 9]. In Eq. (3), the spatial extent of the detector was denoted as “det” and

“
Ð

hemidΩ” means integration over all the possible directions s
!
incident on the detector. Finally,

integration over the time variable t starts at time t ¼ 0 and ends at time t ¼ T.

An intensified charge-coupled detector (ICCD) uses an image intensifier (such as a microchannel

plate (MCP)) to amplify scintillation light before imaging it onto a CCD sensor. The image

intensifier provides optical gain (in the range from 105 to 106 or more) so that low-energy optical

photons (emitted, e.g., upon interaction of a charged particle with a scintillator) can be imaged

with practically any CCD sensor. Lenses, usually placed between the image intensifier and the

CCD sensor, reimage the image intensifier’s output window on the CCD sensor. Examples of

intensified charge-coupled detectors include the iQID sensor developed at the University of

Arizona by Brian W. Miller [10].

A proper statistical model for an intensified charge-coupled detector must consider both

the statistics of the output produced by the image intensifier and the statistics of the data

produced by the CCD sensor. To find a model for the image intensifier, we begin by

noticing that each point in the CCD sensor can be propagated back through the lenses all

the way to the entrance face of the image intensifier. Therefore, we can consider the

number of photons pm impinging on the image intensifier at locations that fall within

pixel m on the CCD sensor. Under broad conditions, we can show that pm obeys Poisson

statistics and we denote the mean of pm as pm. For large enough pm, the statistics of pm are

approximatively Gaussian.

A general expression that relates pm to the sensor output gm takes the form:

gm ¼ Apm, (4)

in which A denotes the mean of the image intensifier amplification (gain) A . The variance, σ2m,

of gm is related to pm and the statistics of A as follows [7]:

σ2m ¼ pm σ2A þ A
2

� 	

þ σ2read, (5)

Computational Methods for Photon-Counting and Photon-Processing Detectors
http://dx.doi.org/10.5772/intechopen.72151

109

in which σ
2
A is the variance of the amplification A and σ

2
read denotes the variance of the sensor’s

readout noise. If the blur introduced by the image intensifier and optics located between the

image intensifier and the CCD sensor is smaller than the size of a sensor pixel, then output gm
is independent on gm0 for any m0 6¼ m. If we further assume that the amplification A and the

readout noise also obey Gaussian statistics, we can write [1, 7]:

pr g1;…; gM
� �

¼
YM

m¼1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 π σ

2
m

p exp �
gm � gm
� �2

2 σ2m

" #

: (6)

3. Maximum-likelihood estimation

Maximum-likelihood estimation (MLE) is a statistical method that uses observed noisy data to

estimate model parameters. For a good historical treatment of the concept of maximum-

likelihood estimation, the interested reader can consult [11]. Given a set of observed data and

an underlying model (which depends on some unknown parameters), MLE calculates the

values of the parameters that better explain the observed data. The observed data that are

used for maximum-likelihood estimation are realizations of random variables. Thus, parame-

ters we estimate from these data are realizations of random variables as well.

Maximum-likelihood estimation can, in principle, be used with all the detectors discussed

above. For example, we show how maximum-likelihood estimation is used to estimate posi-

tion of interaction from PMT data, and we discuss an efficient parallel algorithm for it. More-

over and as we argue in Section 6, maximum-likelihood estimation is the estimation method of

choice for photon-processing detectors.

3.1. Mathematical description

Let us denote the parameters we want to estimate as the vector θ. The model itself is charac-

terized by a probability density function (PDF), denoted as pr xð jθÞ. We use the vector x to refer

to the complete data, while we denote the incomplete data as y [3, 8]. We stress that we do not

directly observe x, but only indirectly and through the vector y. Vectors x and y are statistically

related via the PDF pr yð jxÞ. Probability density functions pr xð jθÞ and pr yð jxÞ allow us to write

pr yð jθÞ ¼

ð
pr yð jxÞ pr xð jθÞ dx, (7)

in which pr yð jθÞ is the PDF of the observed data y given the parameter θ. Eq. (7) above takes

into account two separate “mechanisms” that, when concatenated, produce a sample y from

the value of θ. The first mechanism produces the complete data x according to pr xð jθÞ, while

the second mechanism samples pr yð jxÞ to produce the incomplete data y.

MLE solves the estimation problem by finding the vector θ that maximized the likelihood

L θ; yð Þ for observed data y. Mathematically, this concept is formalized as:

bθML ¼ argmax
θ
pr yð jθÞ ¼ argmax

θ
L θ; yð Þ (8)

Photon Counting - Fundamentals and Applications110

in which the “hat” symbol denotes an estimated quantity, and we have defined the likelihood as:

L θ; yð Þ ¼ pr yð jθÞ: (9)

Likelihood L θ; yð Þ has to be interpreted as a function of θ for fixed (measured) y. In Eq. (8), we

used “argmaxθ L θ; yð Þ” to denote the value of θ that maximizes the likelihood. Because y is

the result of a noisy measurement, the actual value of y in Eq. (8) will change if the measure-

ment is repeated. In other words, y is a random quantity, and this implies that the ML estimate

bθML is random as well.

Alternatively, bθML can be calculated by rewriting Eq. (8) as

bθML ¼ argmaxθln pr yð jθ
� �

� ¼ argmaxθ ℓ θ; yð Þ, (10)

in which we have introduced the log-likelihood [8]

ℓ θ; yð Þ ¼ ln L θ; yð Þ½ �: (11)

Because the logarithm is a strictly monotonic function, the expression in Eq. (10) is equivalent

to the one in Eq. (8). Often, the log-likelihood ℓ θ; yð Þ is numerically easier to calculate with a

computer than the likelihood L θ; yð Þ.

3.2. Properties of ML estimates

Maximum-likelihood estimates have many desirable properties. Some of these properties are

summarized below.

• Asymptotic efficiency. If y represents a set of repeated independent and identically dis-

tributed samples y1,…yM, asymptotic efficiency of MLE implies that, as M increases, the

variance of each component of bθML converges to the smallest possible value, which is

given by the Cramér-Rao lower bound [12, 13].

• Functional invariance. Assume the ML estimate of a parameter vector θ is bθML and

consider a function u θð Þ of θ. We can identify u θð Þ with the parameter vector μ, and we

can consider a maximum-likelihood estimate bμML of μ. Then [14]

bμML ¼ u bθML

� 	
: (12)

This equation shows that the property of being a maximum-likelihood estimate is pre-

served if we consider a function of the maximum-likelihood estimate itself.

• Sufficiency. Any quantity T y1;…; yM
� �

calculated from samples y1,…, yM and used to

estimate an unknown parameter vector θ is said to be a sufficient statistic for y1,…, yM if no

other quantity that can be calculated from the same samples would provide additional

information regarding the value of the parameter vector θ. In simple terms, a sufficient

statistic is a function of the samples y1,…, yM that “compresses” them without losing any

Computational Methods for Photon-Counting and Photon-Processing Detectors
http://dx.doi.org/10.5772/intechopen.72151

111

information about θ. Sufficiency for a maximum-likelihood estimate bθML can be stated by

saying that bθML is a function of a sufficient statistic for θ [15].

• Consistency. Consistency of an estimator regards the behavior of the estimator as the

sample size M increases. Consider the case in which y is a set of repeated independent and

identically distributed samples y1,…, yM . It is possible to show that, when the range of the

elements of y ¼ y1;…; yM
� �

does not dependent on the parameter vector θ, there exists a

maximum-likelihood estimate bθML that, asM increases, converges in probability to the true

value of the parameter vector. A consistent maximum-likelihood estimate is unique [16].

• Asymptotic normality. Because the ML estimate bθML of θ is a random variable, it makes

sense to consider its probability density function. As the sample size M increases, the prob-

ability density function of bθML converges to the probability density function of a normally

distributed random variable with mean equal to the true value of the parameter we want to

estimate and covariance matrix equal to the inverse of the Fisher information matrix [17].

4. Graphics processing units and CUDA

Driven by the insatiable demand for real-time rendering in gaming and entertainment,

graphics processing units (GPUs) have become highly parallel devices capable of running

general-purpose code. Newer products that offer an ever-increasing amount of computational

power are constantly introduced in the market at very competitive prices.

Programming languages have been developed to harness the parallel capabilities of GPU

devices. The most widespread language for GPU programming is called compute unified

device architecture (CUDA), which was introduced in 2006 by NVIDIA. Due to its similarity

to C, CUDA has rapidly become the de facto programming language for GPUs.

4.1. The CUDA programming model

In CUDA, the GPU is usually referred to as the device and the computer that hosts it is referred

to as the host. Many GPU devices can be installed in the same host, and it is not uncommon to

have systems with more than one GPU device. Each GPU device has its own memory, which

we refer to as device memory. In CUDA, it is also common to refer to the memory installed in the

host as host memory. CUDA provides library functions to allocate blocks of memory in device

memory and to transfer blocks of data from host memory to device memory and vice versa. As

shown in Figure 3, a typical GPU device includes some GPU cores (ranging in number from a

few hundreds to a few thousands) and some control logic.

Programmers access the parallel capabilities of a CUDA-enabled device by writing kernels,

which are pieces of code that look very similar to regular C functions. In CUDA, a kernel is run

in parallel on many different GPU cores. A kernel in execution is referred to as a thread.

Threads are grouped into blocks, which can be 1D, 2D or 3D, and blocks are grouped into a

grid. Grids can be 1D, 2D or 3D. The size and dimensionality of blocks and grids are decided

Photon Counting - Fundamentals and Applications112

by the programmer via an execution configuration, which is also used to call a kernel and

instruct the GPU hardware to execute threads.

In a GPU device, thread scheduling is extremely efficient and it is performed by the hardware

and without the intervention of the programmer. To improve performance, the hardware also

suspends execution for threads that are waiting for completion of memory transfers between

device memory and GPU registers. When that happens, the hardware selects for execution

threads that already have data to be processed. The programmer is typically unaware of what

threads are running at any given time, nor does he know what kernel instruction is being

executed by a specific thread. In other words, the programmer cannot rely on any particular

scheduling order of GPU threads. There are, however, situations in which it is necessary to

ensure that a block of threads has reached a certain instruction in a kernel before all the threads

in the block can continue. In CUDA, this is accomplished via synchronization barriers.

Synchronization barriers are often used when threads have to exchange data with each other

via shared variables. Without any synchronization mechanism, a thread will not be able to

know if the content of a shared variable has already been written by a cooperating thread.

Synchronization barriers solve this problem by suspending thread execution until all the

threads in the same block have reached a synchronization barrier. In CUDA, synchronization

barriers are allowed only among the threads in the same block.

GPU devices are equipped with different memory spaces. This includes global memory (which

is used to share data between the host and the device) as well as shared memory. While global

memory is rather slow and physically separated from the GPU cores, shared memory is much

faster and it is built on the same chip as the GPU cores. Threads use shared memory to

efficiently share data among them.

Another type of memory space available in a GPU device is texture memory. As the name

suggests, texture memory has been designed to speed up and facilitate 3D rendering in com-

puter games and computer-generated scenes. This is the reason why texture memory supports

unique features including hardware-based on-the-fly interpolation of texture data.

GPU device

Device memo ry GPU logic GPU cores

I/O Host memor y CPU

Disk

Figure 3. Diagram of a computer equipped with a GPU device (adapted from [3]).

Computational Methods for Photon-Counting and Photon-Processing Detectors
http://dx.doi.org/10.5772/intechopen.72151

113

4.2. Workflow of a CUDA application

The basic steps that are needed to execute a kernel are summarized in Figure 4.

In a typically CUDA application, one or more blocks of device memory are allocated by the

host via the cudaMalloc(…) CUDA library function. The host then copies input data from

host memory via one or more cudaMemcpy(…) function calls. Kernel execution is started with

a call of the form my_kernel < <<N, M>> > (…), in which my_kernel is the name of the

kernel, N is the grid size and M is the block size. Parameters, such as pointers to device memory,

are passed to the kernel as parameters enclosed in parentheses. Once all the threads have

finished executing, the control returns to the CPU. Results can be copied from device memory

to host memory via one or more calls to cudaMemcpy(…). Finally, device memory that was

previously allocated is released via the cudaFree(…) call.

The CUDA environment automatically defines read-only built-in variables that can only be

used in a kernel. These variables include blockIdx, blockDim and threadIdx. The variable

threadIdx enumerates threads within each block in ascending order and starting from 0. Simi-

larly, blockIdx enumerates blocks within the grid. The size of each block is contained in the

variable blockDim. Built-in variables are used by the programmer to calculate which element(s)

of the input array(s) a thread has towork on, orwhere in devicememory a result has to be stored.

5. Algorithms for photon-counting detectors

To make our discussion more concrete, we begin this section by considering a GPU algorithm

for maximum-likelihood estimation (MLE) of position of interaction of gamma-ray photons in

an Anger camera. We then comment on ways to adapt our algorithm to other cases, including

photon-counting and photon-processing detectors (Section 6).

Executes

Executes

on GPU

on CPU

cudaMalloc(...) cudaMemcpy(...) cudaMemcpy(...) cudaFree(...)

my_kernel<<<N, M>>>(...)

Figure 4. Workflow of a CUDA application (adapted from [3]).

Photon Counting - Fundamentals and Applications114

We showed in Section 2.1 that digitized PMT signals g1,…, gK obey Poisson statistics and we

denoted the means of g1,…, gK as g1 R;Eð Þ,…, gK R;Eð Þ, respectively. If photon energy E is

known, the likelihood for the estimation of position R under the assumption of Poisson noise

is written as:

L R; g1;…; gK;E
� �

¼
YK

k¼1

gk R;Eð Þ
� �gkexp �gk R;Eð Þ

� �

gk!
: (13)

Functions g1 R;Eð Þ,…, gK R;Eð Þ are called mean detector response functions (MDRFs) and they

can be either measured, derived analytically or estimated via simulation codes. Using Eq. (13),

an ML estimate bRML ¼ bxML;byML

� �
of R ¼ x; yð Þ can be found as:

bRML ¼ argmaxRL R; g1;…; gK;E
� �

: (14)

Equivalently, we can consider the logarithm of L R; g1;…; gK;E
� �

in the maximization step and

write:

bRML ¼ argmaxR
XK

k¼1

gk log gk R;Eð Þ
� �

� gk R;Eð Þ

 �

, (15)

in which we omitted the log gk!
� �

term as it does not depend on R and, therefore, it will not

affect the estimate bRML.

The algorithm we present here uses the fact that, for fixed g1,…, gK and E, the log-likelihood

ℓ R; g1;…; gK;E
� �

¼ logL R; g1;…; gK;E
� �

is a smooth function of R. Hence, maximum-likelihood

estimate bRML can be searched for in an iterative fashion by first evaluating ℓ R; g1;…; gK;E
� �

over a

coarse grid of Sx-by-Sy points that uniformly spans the whole detector space. The point of the grid

that maximizes ℓ R; g1;…; gK;E
� �

is used in the next iteration as the center of a new grid smaller

than the previous one by a factor α > 1. This process is repeated M times. We refer this algorithm

as the contracting grid algorithm [18, 19].

Figure 5 shows pseudocode for a possible GPU implementation of the contracting grid algo-

rithm. We used superscripts to make it clear on which memory space a given variable is stored.

Variables with no superscript will denote either numerical constants (such as the contracting

factor α) or local variables, typically stored in GPU registers.

The algorithm of Figure 5 assumes that an array of R PMT sample vectors g0,…gR�1 is

available. These data are stored in device memory and we decided to use in our GPU imple-

mentation a grid of size R� 1� 1 with 2D blocks of size Sx � Sy. This thread hierarchy follows

naturally from the data we have to process and how we process them. In fact, the block index

is used to index one of the g0,…gR�1 vectors, while the 2D thread index is used to identify a

point of the contracting grid (of size Sx � Sy).

Computational Methods for Photon-Counting and Photon-Processing Detectors
http://dx.doi.org/10.5772/intechopen.72151

115

Our GPU implementation uses shared memory to either store data that are used multiple

times during thread execution (this would be the case, e.g., of PMT data vector g
r
) or to share

common variables among all the threads in the same block. Each thread in a block calculates

function 2D-M L(ggg
[global]
0 , . . . ,ggg

[global]
R−1)

i ← threadIdx.x
j ← threadIdx.y
if (i = 0)∧ (j = 0) then

r ← blockIdx.x
ggg[shared]

← ggg
[global]
r

x
[shared]

← (a+b)/2

y
[shared]

← (c+d)/2

∆
[shared]
x ← (b−a)/Sx

∆
[shared]
y ← (d− c)/Sy

end if

__syncthreads

for m= 0, . . . ,M−1 do

x← x
[shared]

+[i− (Sx −1)/2] ·∆
[shared]
x

y← y
[shared]

+[j− (Sy−1)/2] ·∆
[shared]
y

[shared]
i, j ← 0

for k = 0, . . . ,K −1 do

gk ← tex2DLayered(ggg[texture],x,y,k)

if (g
[shared]
k = 0)∨ (gk = 0) then
[shared]
i, j ←

[shared]
i, j +g

[shared]
k · log(gk)−gk

end if

end for

__syncthreads

if (i = 0)∧ (j = 0) then

max ← −∞

for itest= 0, . . . ,Sx −1 do

for jtest = 0, . . . ,Sy−1 do

if max
[shared]
itest, jtest

then

max ←
[shared]
itest, jtest

i
[shared]
max ← itest

j
[shared]
max ← jtest

end if

end for

end for

∆
[shared]
x ← ∆

[shared]
x /α

∆
[shared]
y ← ∆

[shared]
y /α

end if

__syncthreads

if (i = i
[shared]
max)∧ (j = j

[shared]
max) then

x
[shared]

← x

y
[shared]

← y

end if

__syncthreads

end for

if (i = 0)∧ (j = 0) then
r ← blockIdx.x
x̂
[global]
r ← x

[shared]

ŷ
[global]
r ← y

[shared]

end if

end function

Figure 5. GPU pseudocode for ML estimation via a contracting-grid search algorithm.

Photon Counting - Fundamentals and Applications116

the likelihood ℓ x; y; g shared½ �
� �

for one of the points in the contacting grid and shares the value of

the likelihood among all the threads in the same block.

MDRF data (previously estimated via simulation codes [4]) are stored in a 2D layered texture

and used during the calculation of the log-likelihood ℓ x; y; g shared½ �
� �

(denoted as ℓ
shared½ �
i, j in the

pseudocode). MDRF data are transparently interpolated by the hardware during texture

fetching. Moreover, we set texture boundary conditions so that, should the point x; yð Þ fall

outside the detector’s entrance face, gk x; yð Þ would evaluate to 0. Physically, this can be

interpreted as no PMT signals being produced for a gamma-ray “interaction” outside the

detector’s entrance face.

Besides code speed and clarity, a layered texture makes our code extremely flexible. By

changing Sx, Sy and/or α, it is possible to change the size of the contracting grid or its

contracting factor to find the desired trade-off between speed and estimation accuracy.

5.1. Comments and applications to photon counting

The algorithm we discussed above was specifically designed for gamma-ray data and it uses

calibration data in the form of mean detector response functions (MDRFs). The output of the

algorithm is a list of positions in the form bx0;by0
� �

;…; bxR�1;byR�1

� �
 �
. This list can directly be

fed to an algorithm for list-mode image reconstruction. Implementation details and results are

reported in [20]. Common practice, however, is to bin the list-mode data and count the number

of points bxr;byr
� �

that fall within each bin. As we argue in [21], one drawback of this step is that

it introduces some error, as all the points within each bin are represented with a single point

location.

The algorithm we presented in Figure 5 is one example of a contracting grid algorithm for

maximum-likelihood estimation. The main assumption we made was that the likelihood

L gð jθÞ (or its logarithm) is a smooth function of θ, the vector of parameters we want to

estimate. This is true for many estimation problems. Therefore, the algorithm of Figure 5

provides a general pattern for the implementation of maximum-likelihood estimation on a

GPU device.

6. Photon-processing detectors and algorithms

For each photon-absorption event in a detector, there are many parameters we can consider.

These parameters include photon position R with respect to a plane or a reference point,

direction of propagation s
!
and energy E the photon deposited in the detector. Depending on

the application (e.g., single-photon emission computed tomography for 4D angiography or

coincidence detection in positron emission tomography), we might also need to consider the

time t the photon impinged on the detector. Finally, some imaging techniques (such as two-

photon quantum imaging) do require measurements of quantum mechanical parameters, one

example being quantum spin.

Computational Methods for Photon-Counting and Photon-Processing Detectors
http://dx.doi.org/10.5772/intechopen.72151

117

6.1. Mathematical description

We refer to a set of photon parameters as an attribute vector, and we denote it as A. Hence,

depending on the application, an attribute vector might have five or more components. We

denote the number of components of A as N. Because of noise, it is not possible to estimate

exactly the components of A and we use the notation bA to denote an estimated attribute vector.

We define a photon-processing detector as any imaging device that [9]:

• uses a gain mechanism (such as an image intensifier) to obtain multiple measurements

(e.g., multiple pixel values) for each absorbed photon;

• uses these measurements to perform maximum-likelihood estimation of photon attribute

vector bAj, forj ¼ 1,…, J;

• stores the estimated attributes at full precision as a list bA ¼ bA1;…;

bAJ

n o
and without

performing any binning.

Photon-processing detectors are fundamentally different than photon-counting detectors.

While photon-counting detectors only consider photon position and record the number of

photons (or charged particles) that fall within each bin over a predetermined amount of time,

photon-processing detectors use maximum-likelihood to estimate a wide range of attributes

and retain all the estimated information at full precision as the list bA ¼ bA1;…;

bAJ

n o
.

The full information from a photon-processing detector is retained if we simply store the N

estimated attributes for each of J photons as the list bA , but an equivalent construction as a

random point process in attribute space offers new theoretical insights. From bA , we introduce

this point process as [3, 9]

u Að Þ ¼
XJ

j¼1

δ A� bAj

� 	
, (16)

where δ …ð Þ is the N-dimensional Dirac delta function. The mean of the point process u Að Þ is

obtained by averaging over the statistics of each of the attribute vectors bA1,…, bAJ and then

over J itself for a given object f . This calculation gives a function u A j f
� �

of A for fixed f . This

function can be regarded as a vector u f
� �

in the Hilbert space L2 R
N

� �
, which is the vector

space of square-integrable functions of N real variables. As shown in [22, 23], we can introduce

the linear operator L that maps the object f (belonging to the infinite-dimensional Hilbert

space L2 R
3

� �
) to u f

� �
. In symbols,

u f
� �

¼ Lf : (17)

A similar expression but for photon-counting detectors is:

g f
� �

¼ Hf , (18)

Photon Counting - Fundamentals and Applications118

in which the vector g f
� �

is the mean over many realizations of the vector g. Vector g f
� �

belongs

to the Euclidian vector space E
M, which is the space of all M-dimensional vectors. We refer to

H as a continuous-to-discrete operator [8] as it maps the function f rð Þ of continuous variable r

to a discrete vector g f
� �

with M components. On the other hands, L is a continuous-to-

continuous operator as it maps f rð Þ to the function u A j f
� �

of continuous variable A [8].

The key difference betweenH and L is that Hmust necessarily have a nontrivial null space, as

it maps vectors in an infinite-dimensional Hilbert space to vectors in a finite-dimensional

vector space. This means that for any imaging system that produces photon-counting data,

there exist nonzero objects f null that, on average, do not produce any data. Equivalently, we can

say that there exist two objects f 1 and f 2 with f 1 6¼ f 2 for which Hf 1 ¼ Hf 2. A continuous-to-

continuous operator—such as the operator L defined above—maps an object in an infinite-

dimensional Hilbert space to another infinite-dimensional Hilbert space. Therefore, the same

dimensionality analysis we considered for H does not apply to L. In fact, L might allow a

lower dimensional null space than H for the same imaging system [21].

6.2. Relationship to radiometry and the Boltzmann transport equation

The word “radiometry” refers to a set of techniques used in optics to describe and calculate the

distribution of light. An important concept used in radiometry is that of radiance, denoted as

L r; s
!

� 	

, which is a function that describes the radiant flux in an optical system as a function of

three-dimensional spatial position r and direction s
!
. Since the radiant flux is measured in

Watts, the units of L r; s
!

� 	

are Watts per square meter per steradian, or W/ (m2
∙ ster) [8]. From

the radiance, other important radiometric quantities can be calculated. This includes the

irradiance (power per unit area), radiant intensity (power per unit solid angle) and radiant

flux (power).

Spectral dependence can be introduced in the basic definition of radiance by considering

radiance per unit wavelength λ, which we denote as Lλ r; s
!
;λ

� 	

. The units of Lλ r; s
!
;λ

� 	

are

W/ (m2
∙ ster∙ nm), provided that the units of wavelength are nanometers (nm). Spectral

radiance can also be measured in photon units by first expressing wavelength in terms of

energy (E ¼ hc=λ, in which h is Planck’s constant and c is the speed of light) and then by

dividing Lλ r; s
!
;λ

� 	

by the energy of a photon. We denote this new quantity as Lp,E r; s
!
;E

� 	

,

and its units are (photons/s)/(m2
∙ ster). Finally, we can consider a time-dependent spectral

photon radiance, and we denote this function as Lp,E r; s
!
;E; t

� 	

.

In radiometry, the Boltzmann transport equation (BTE) allows to calculate Lp,E r; s
!
;E; t

� 	

at

any point inside an optical system by taking into account absorption, emission, scattering and

propagation of light. In its most general form, the BTE is written as [8]:

∂Lp,E

∂t
¼

∂Lp,E

∂t

�

abs

þ
∂Lp,E

∂t

�

emiss

þ
∂Lp,E

∂t

�

sc

þ
∂Lp,E

∂t

�

prop

: (19)

Computational Methods for Photon-Counting and Photon-Processing Detectors
http://dx.doi.org/10.5772/intechopen.72151

119

Each term on the right-hand side can be worked out explicitly [8, 9] to obtain:

∂Lp,E

∂t
¼ �cmμtotLp,E þ cmΞp,E þKLp,E � cm s

!
∙∇Lp,E, (20)

where cm is the speed of light in the medium, μtot is the total attenuation coefficient (with

contributions from both absorption and scattering processes), K is an integral operator

describing the angular and energy dependence of the scattering, and Ξp,E describes any light

source. In general, the function Ξp,E depends on r, s
!
, E and t. If the light source is isotropic

(i.e., Ξp,E r; s
!
;E; t

� 	

does not depend on s
!
) and independent of time, we can write

Ξp,E r; s
!
;E; t

� 	

¼
1

4π
f r;Eð Þ, (21)

where the 4π term (units: ster) accounts for integration of a solid angle over a sphere. Under

these hypotheses, a steady-state solution to Eq. (20) is found by setting the partial derivative

∂Lp,E=∂t to zero. The result is

cmμtotLp,E �KLp,E þ cm s
!
∙∇Lp,E ¼

cm
4π

f , (22)

which can be further rewritten in operator form as

4π

cm
B Lp,E ¼ f , (23)

provided that

B ¼ cmμtot �K þ cm s
!
∙∇: (24)

We refer to B as the Boltzmann operator. If we insert Eq. (23) into Eq. (17), we get

u f
� �

¼
4π

cm
L B Lp,E, (25)

which describes a practical way to obtain the function u f
� �

from knowledge of the radiance

function Lp,E r; s
!
;E

� 	

inside an optical system and the Boltzmann operator B.

6.3. Particle-processing detectors

An example of a particle-processing detector for beta particles is shown in Figure 6. This

detector includes two layers of ultrathin phosphor foils separated by an air gap, an image

intensifier, a high numerical aperture lens system and a light sensor [1, 7].

In Figure 6, an incoming beta particle interacts with a layer of phosphor (just a few microns

thick) at location r1 ¼ x1; y1
� �

where it deposits some of its energy, which the layer of phosphor

gives off as a flash of visible light. The particle further propagates and interacts at r2 ¼ x2; y2
� �

Photon Counting - Fundamentals and Applications120

with a second phosphor layer, thus producing a flash of visible light here as well. Light flashes

produced at each layer get amplified by an image intensifier and imaged onto a sensor. The

flash of light generated at the first layer spreads out considerably as it propagates through

the air gap, thus resulting in a much broader signal on the sensor than that corresponding to

the flash of light generated at the second layer. This is used to determine at which layer each

flash of light was generated. The direction s
!

of the particle and its position at either phosphor

foil can be estimated from the two interaction positions and the distance between the two foils

(assumed known). If the particle’s residual energy E is of interest, the second phosphor foil can

just be replaced by a thick scintillator, so that the particle is stopped.

A CUDA algorithm for maximum-likelihood estimation of position and particle direction for the

setup of Figure 6 has been developed by Garrett Hinton at the Center for Gamma-Ray Imaging,

University of Arizona. Following the same approach outlined in Section 5, the algorithm uses

a four-dimensional contracting grid to simultaneously estimate location r1 ¼ x1; y1
� �

and

r2 ¼ x2; y2
� �

from an image frame collected with an ultrafast CMOS camera. Experimental setup

and preliminary results have been presented in [1, 7].

7. Summary and applications

This chapter provided a general overview of detector technology and algorithms for photon

counting and photon processing. We started by describing detectors suitable for photon counting

and photon processing. Statistical models for the data produced by these detectors were

presented. We then introduced maximum-likelihood estimation and discussed its properties. We

emphasized that a maximum-likelihood estimate is any parameter that maximizes the likelihood

function given the detector output, and we pointed out that the likelihood function is the

probability density function of the detector output conditioned on the parameter being estimated.

We then commented on graphics processing units (GPUs) and the CUDA programming

environment. Through CUDA-like pseudocode, we provided a maximum-likelihood algo-

rithm for estimation of position of interaction for gamma-ray cameras. This algorithm used a

Figure 6. A particle-processing detector for beta particle (adapted from [1]).

Computational Methods for Photon-Counting and Photon-Processing Detectors
http://dx.doi.org/10.5772/intechopen.72151

121

contracting-grid approach to find a maximum of the likelihood function. Our approach

heavily relied upon GPU textures to quickly retrieve calibration data. The same approach is

applicable to many estimation problems.

Photon-processing detectors were introduced and defined as any system that collects multiple

measurements to perform maximum-likelihood estimation of multiple event parameters (such

as position, direction and energy), which are stored as a list and in full precision in the memory

of a computer. The same data can also be represented as a point process, and we introduced a

linear operator that maps the object being imaged to the mean of this point process. We used a

dimensionality analysis to describe the advantages of photon-processing detectors over photon-

counting detectors.

Particle-processing detectors are a variation of photon-processing detector. As an emerging

technology, particle-processing detectors will find applications in many fields, one of them being

medical imaging. In a new technique, called charged-particle emission tomography (CPET),

particle-processing detectors are being evaluated for 3D in vivo imaging with alpha and beta

particles [1, 7]. Like photon-processing detectors, particle-processing detectors convey a larger

amount of information than conventional detectors for charged particles. This enables high-

resolution 3D reconstruction of the distribution of radionuclides emitting charged particles

without the need to kill an animal to image a collection of thinly sliced tissue sections.

Drug development will take advantage of CPET to determine drug pharmacokinetics, 3D trans-

duction across cell membranes and targeting to tissues of interest. In the development of internal

radioimmunotherapy, CPET imaging can be used to collect data on the 3D heterogeneous distri-

butions of targeting molecules and in the estimation of delivered radiation dose. Finally, CPET

will likely become a valuable technique in the emerging fields of personalized medicine and

theranostics, in which diagnostics and therapy are combined in an attempt to avoid the “one-

size-fits-all” approach to treatment that is often successful for some patients but not for others.

Acknowledgements

This chapter has been supported by National Institutes of Health (Grants R01 EB000803 and

P41 EB002035).

Author details

Luca Caucci1*, Yijun Ding2 and Harrison H. Barrett1,3

*Address all correspondence to: caucci@email.arizona.edu

1 Department of Medical Imaging, University of Arizona, Tucson, AZ, United States

2 Department of Radiation Oncology, University of Colorado Denver, Denver, United States

3 College of Optical Sciences, University of Arizona, Tucson, AZ, United States

Photon Counting - Fundamentals and Applications122

References

[1] Yijun Ding. Charged-Particle Emission Tomography [dissertation]. Tucson, AZ; 2016.

[2] Anger HO. Scintillation Camera. Review of Scientific Instruments. 1958;29(1):27-33

[3] Luca Caucci. Task Performance with List-Mode Data [dissertation]. Tucson, AZ; 2012

[4] Hunter WCJ, Barrett HH, Furenlid LR. Calibration method for ML estimation of 3D

interaction position in a thick gamma-ray detector. IEEE Transactions on Nuclear Science.

2009;56(1):189-196

[5] Llopart X, Campbell M, Dinapoli R, San Segundo D, Pernigotti E. Medipix2: A 64-k pixel

readout Chip with 55-μm. IEEE Transactions on Nuclear Science. 2002;49(5):2279-2283

[6] Bouchami J, Gutiérrez A, Houdayer A, Jakůbek J, Lebel C, Leroy C, Macana J, Martin JP,

Platkevič M, Pospíši S, Teyssierl C. Study of the charge sharing in silicon pixel detector by

means of heavy ionizing particles interacting with a Medipix2 device. Nuclear Instruments

and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and

Associated Equipment. 2011;633(Supplement 1):S117-S120

[7] Ding Y, Caucci L, Barrett HH. Charged-particle emission tomography. Medical Physics.

2017;44(6):2478-2489

[8] Harrison H. Barrett, Kyle J. Myers. Foundations of Image Science. Hoboken, NJ: Wiley-

Interscience; 2004

[9] Caucci L, Myers KJ, Barrett HH. Radiance and photon noise: Imaging in geometrical optics,

physical optics, quantum optics and radiology. Optical Engineering. 2016;55(1):013102

[10] Miller BW, Gregory SJ, Fuller ES, Barrett HH, Barber HB, Furenlid LR. The iQID camera:

An ionizing-radiation quantum imaging detector. Nuclear Instruments and Methods in

Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated

Equipment. 2014;767:146-152

[11] Aldrich J. R. A. Fisher and the making of maximum likelihood 1912–1922. Statistical

Science. 1997;12(3):162-176

[12] Cramér H. Mathematical Methods of Statistics. Princeton, NJ: Princeton University Press;

1956

[13] Rao CR. Information and the accuracy attainable in the estimation of statistical parame-

ters. Bulletin of the Calcutta Mathematical Society. 1945;37:81-89

[14] Zehna PW. Invariance of maximum likelihood estimators. Annals of Mathematical Statis-

tics. 1966;37(3):744

[15] Moore DS. Maximum likelihood and sufficient statistics. The American Mathematical

Monthly. 1971;78(1):50-52

[16] Huzurbazar VS. The likelihood equation, consistency and the maxima of the likelihood

function. Annals of Human Genetics. 1947;14(1):185-200

Computational Methods for Photon-Counting and Photon-Processing Detectors
http://dx.doi.org/10.5772/intechopen.72151

123

[17] Fisher RA. Theory of statistical estimation. Mathematical Proceedings of the Cambridge

Philosophical Society. 1925;22(5):700-725

[18] Furenlid LR, Hesterman JY, Barrett HH. Real-time data acquisition and maximum-

likelihood estimation for gamma cameras. In: 14th IEEE-NPSS Real Time Conference;

4–10 June 2005. Stockholm, Sweden; 2005. p. 498-501

[19] Hesterman JY, Caucci L, Kupinski MA, Barrett HH, Furenlid LR. Maximum-likelihood

estimation with a contracting-grid search algorithm. IEEE Transactions on Nuclear Sci-

ence. 2010;57(3):1077-1084

[20] Luca Caucci, William C. J. Hunter, Lars R. Furenlid, Harrison H. Barrett. List-mode

MLEM Image Reconstruction from 3D ML Position Estimates. In: IEEE Nuclear Science

Symposium Conference Record (NSS/MIC), 30 Oct–6 Nov. 2010. Knoxville, TN, USA;

2010. p. 2643-2647

[21] Luca Caucci, Abhinav K. Jha, Lars R. Furenlid, Eric W. Clarkson, Matthew A. Kupinski,

Harrison H. Barrett. Image Science with Photon-Processing Detectors. In: IEEE Nuclear

Science Symposium and Medical Imaging Conference (NSS/MIC), 27 Oct–2 Nov, 2013.

Seoul, South Korea; 2013. p. 1-7

[22] Andre Lehovich. List-mode SPECT Reconstruction Using Empirical Likelihood [disserta-

tion]. Tucson, AZ; 2005

[23] Caucci L, Barrett HH. Objective assessment of image quality. V. Photon-counting detec-

tors and list-mode data. Journal of the Optical Society of America A. 2012;29(6):1003-1016

Photon Counting - Fundamentals and Applications124

