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Abstract

The aim of this chapter is to present constricted variational density functional theory (CV-
DFT), a DFT-based method for calculating excited-state energies. This method involves
constructing from the ground-state orbitals, a new set of “occupied” excited-state orbitals.
Consequently, a constraint is applied to ensure that exactly one electron is fully transferred
from the occupied to the virtual space. This constraint also prevents a collapse to a lower
state. With this set of orbitals, one obtains an electron density for the excited-state and
therewith the CV-DFT excitation energy. This excitation energy can now be variationally
optimized. With our successful applications to systems differing in the type of exc-
itation, namely, charge-transfer, charge-transfer in disguise, and Rydberg excitations, as
well as in size, we demonstrate the strengths of the CV-DFT method. Therewith, CV-DFT
provides a valid alternative to calculate excited-state properties, especially in cases where
TD-DFT has difficulties. Finally, our studies have shown that the difficulties arising in the
TD-DFT excited states are not necessarily stemming from the functional used, but from the
application of these standard functionals in combination with the linear response theory.

Keywords: CV-DFT, excited state, charge-transfer, Rydberg excitations, ZnBC-BC

1. Introduction

The behavior of atoms and polyatomic systems in the excited-state are of immense importance
in the studies of several photophysical phenomena. Thus, the search for methods to study
systems in their electronically excited state is the subject of ongoing research [1-13]. Resul-
tantly, there are several methods to choose from within certain consideration such as system
size, expected level of accuracy and nature of initial and final electronic state of the system
under study. Therefore, some background knowledge is necessary for the accurate treatment
of excited states with the available methods. These methods fall under different families, and
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the ab initio wave function family of methods includes multi-reference configuration interac-
tion (MRCI) [14], multi-configurational self-consistent field (MCSCF) [15, 16], complete active
space self-consistent field (CASSCF) [17], time-dependent Hartree-Fock (TD-HF) [18-21],
restricted active space self-consistent field (RASSCF) [22], RASPT2 [23], complete active space
second-order perturbation theory (CASPT2) [24], equation-of-motion coupled cluster
(EOMCC) [25], n-electron valence state perturbation theory (NEVPT) [26], spectroscopically
oriented configuration interaction (SORCI) [27] and coupled cluster (CC) theory [28, 29].

However, the focus of this book is the Kohn-Sham density functional theory (DFT) [30] and
methods based on it. In this chapter, our attention is on the calculation of excited states. Excited-
state studies within DFT gained considerable attention owing to the increasing success of DFT in
ground-state studies. Significant research effort toward the development of excited-state methods
has resulted in a variety of approaches varying in both major and minor details, each method
having its own advantages and disadvantages. The result of this endeavor includes self-consistent-
field DFT (ASCF-DFT) [31-33] with extensions [34-36], time-dependent DFT [40-44], ensemble
DFT [37-39, 45-47], constrained orthogonality method (COM) [48-50], restricted open-shell Kohn-
Sham (ROKS) [47, 51, 52], constrained DFT (CDEFT) [53], ‘taking orthogonality constraints into
account’ (TOCIA) [54, 55], maximum overlap method (MOM) [56, 57], constricted variational
density functional theory (CV-DFT) [58] and extensions [59-62], orthogonality constrained DFT
(OCDFEFT) [63] and guided SCF [64] among others. However, the most widely used by both expert
and nonexpert is TD-DFT in the form of linear response adiabatic time-dependent DFT [40, 41, 65—
69] (which we will refer to as TD-DFT) due to its successes.

The strengths and weaknesses of TD-DFT are well known and understood through extensive
benchmark studies carried out over the years. The strengths explain its wide usage by delivering
‘an excellent compromise between computational efficiency and accuracy’ [70]. The weaknesses
explain the ongoing fundamental studies searching for solutions in the cases where TD-DFT is
found lacking. These include its deficiency in describing Rydberg transitions [71-74], charge-
transfer (CT) transitions [75-84] and electronic transition with significant double contribution
[42, 43, 83-87]. TD-DFT is a formally exact theory; however, its practical application relies on the
adiabatic formalism where use is made of the available ground-state exchange-correlation (XC)
functionals [71, 82, 88-90]. As a result, one can necessarily trace all the problems encountered in
the application of TD-DFT to this approximation. The numerous research attempts to remedy the
pitfalls in TD-DFT are classified as follows:

1. Finding the XC functionals with the correct short- and long-range behavior or going
beyond the adiabatic approximation.

2. Developing new DFT-based excited-state methods.

An often-encountered problem with the development of specialized functionals is that it
usually performs very well for the purpose for which it was originally developed but unimag-
inably erratic for any other situation [71-74, 77, 79, 82, 88, 91-98].

Our contribution to this area of research is in the development of the constricted variational
DFT (CV-DFT) [58-62], which combines the strengths of ASCF-DFT and TD-DFT methods
without the need for ‘specialized” functionals.
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In this chapter, we will explain the idea and theory of CV-DFT, before we have a look at
different examples, where CV-DFT has been applied for transitions of Rydberg and charge-
transfer type following the publications [99-103].

2. Theory

In this chapter, we review the theoretical framework of CV-DFT in a nutshell. We refer to the
original publications [58—62, 104] for a more in-depth description.

2.1. The CV-DFT scheme

Here, we only consider the excitation from the closed-shell ground state described with single

Slater determinant, W° = ’qblqbz...gbi...qbnocc

, where 1, is the number of occupied orbitals. CV-

DFT starts from the ansatz which describes the excitation as an admixture of occupied
{¢;;i=1, Noec } and virtual {¢,;a =1, -+, ny; } ground-state orbitals [105]:

Myir

¢p=> U}, (1)

where (i); is the excited-state orbital and ;. the number of virtual orbitals. The transition
matrix, U, only mixes between occupied and virtual orbitals (U; = U, = 0) and is skew
symmetric (U, = —Uj,). In CV-DFT, we use the exponential expansion of U which leads to
the unitary transformation Y:

o ik
Y =exp(U) = Z% 2)

k=0

Thus, once the transition matrix, U, is determined, a new set of orbitals is obtained over the

unitary transformation
(PZ)CC — i Hk (POCC (3)
qb:/ir k=0 k‘ (pvir '

Due to the properties of the transition matrix, U, the ‘occupied’ excited-state orbitals can be
written as

Moce Nyir

¢, = Z Yjig; + Z Yaih,- 4)
] a

The corresponding excited-state density becomes
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with the change in density matrix (AP). Later, one is given by

Noce

APy =YY (6)
nOCC
AP = (Y5iYii — 05) @)
i
nOCC
APy = YyiYe. ®)
i

In CV-DFT, we apply the important condition that one electron is fully transferred from
occupied into virtual spaces. This condition can be written as the following equation:

Nyir Moce

> AP, =1 and > AP;=-1. 9)
a i

It should be noted that in CV-DFT we describe the excited state with a single Slater determi-
nant. Thus, we obtain the mixed and triplet states. While this is uncritical for triplet excitations,
for the singlet transition energy, we have to account for this by using the relation (which is also
referred to as sum rule) [61]

AEs = 2AEy — AEy. (10)

2.2. CV(n)-DFT

The nth-order CV-DFT, CV(n)-DFT, is determined from the maximum order of U in the CV-
DFT energy description. To understand how the order of the applied transition matrix, U,

affects the excited-state energies, it is beneficial to discuss two extreme cases—second (1 = 2)-
order and infinite (n = «)-order CV-DFT.

The second-order CV-DFT (CV(2)-DFT) limits the U up to the second order in the Kohn-Sham
energy description. For simplicity, the occupied excited-state orbitals in Eq. (4) are approxi-
mated to the second order in U:
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With these orbitals, some higher order contributions in U can arise in the density and therewith
also in the energy, but we only keep up to the second order in U, as the contribution of higher
order terms is negligible [60]. The second-order CV-DFT energy expression becomes

Exks [p/(l, 1/)] = Exs [po] + Z ugiu; (82 — 8?) + Z uaiUZjKai, bj
ai ai

(12)
+§Z zb: UaillyiKai o + 5 Z zb: Uy Uy Ky jp + O [u( )}
ar. ] ai bj

where the two-electron integral is composed of a Coulomb and an exchange-correlation part:

Kpgst = Kyt + Ko (13)
with
1
K= [ [0,00,0 - v.@p@dnar. (14
12

The exchange-correlation integral is further decomposed into the local (KS) and nonlocal (HF):

K = [0, ), (07 )0 ) (15
and
XC(HF) 1
K = = [[4,00,0 v, @ @dvave (16

where f(r1) represents the regular energy kernel. We have shown that CV(2)-DFT is equivalent
to TD-DFT [59, 106] within the Tamm-Dancoff approximation (TDA) [107].

In the infinite-order theory (CV(e)-DFT), the new set of excited-state orbitals is obtained taking
the sum in Eq. (3) to infinite order. These excited-state orbitals can be written in the convenient
form of natural transition orbitals (NTO) [108]. For this, we decompose the transition matrix,
U, into its singular values. Here, we also used a spin-adapted form for further description of
the different spin states in the excited-state calculation:

U™ = Voo (we)T (17)

where Z;; = y; and 0 € {a, B} depend on spin state (mixed and triplet states, respectively). This
leads to the occupied and virtual NTOs as

35
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occ

= Z (Waa)jicp;'x (18)
]
o =3 (V)00 (19)

a

The resulting matrix W rotates ground-state KS orbitals as j runs over the occupied ground-
state orbitals to give the corresponding ith ‘occupied” NTO orbital (¢?*). For its virtual coun-
terpart (¢;"), V does the similar role as W with 2 running over the virtual ground-state orbitals.

With these NTOs, we can rewrite Eq. (4) for the ‘occupied” excited-state orbitals as
¢; = cos[y] ;" + sin[y, ]} (20)

Also, the condition of exciting exactly one electron (Eq. (9)) is now written as

Noce

Z:sin(m/i)2 =1 (21)

1

With the sum rule in Eq. (10), the excited-state CV(e)-DFT energy of the mixed state becomes

occ
Va

AEy = _sin®[ny;] (] — &)

1

Mocc Moce
+ = E E Siﬂz [T]]/J Sil"lz |:Tn/]:| (Kl'mx ioa]'uajﬂa Kl'va Z-zra]’va]‘va — 2K 0u 0 00 va )

> A
i
(22)
1 Mocc Moce
+5 ZZsin [17y;] cos [ny;]sin [ny]} cos [m/ j] (Kim oo oa + Kioajoa oo ]m>
i
nOCC nOCC
+2) ) “sin[ny,]sin[ny;]sin [17)/]} cos [m/]} <Kim jou o oo — Ko oo ]m)
g
whereas the triplet exited-state energy has a simpler form:
nOCC
AEr = sin®[ny,] (¢ — )
i
o (23)
+ E ZZSIHZ [Tn/l] Sinz |:TD/]:| (Kioa 00 joa joa Kivﬁ Z-vﬁjvﬁjvﬁ — 2Kina iu"‘jvﬁjvﬁ )

L

The y values out of Eq. (21) give information about the excitation character [60]. Keeping only
the largest y value in the excitation will give the most general form of single orbital
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replacement [104], which is used as the ASCF-DFT-like scheme within the RSCF-CV(e)-DFT
formulation. This will be briefly mentioned in the next section.

2.3. SCF-CV(e0)-DFT, R-CV(e)-DFT and RSCF-CV (e)-DFT

In Egs. (22, 23), we obtain the excited-state energy of the mixed and triplet state. The transition
matrix, U, is the same as one obtains within TD-DFT (and thus the TD-DFT excitation vector is
implemented in CV-DFT). In SCF-CV(«)-DFT, U is optimized with the variational procedure
[60]. For this step, we derived the gradient of the mixed and triplet excited state. The detailed
procedures can be found in the [59-61, 104]. Further, also the orbitals which do not participate
in the excitation can be changed after the excitation. We refer to this change as the relaxation of
orbitals. This leads to R-CV(e)-DFT. To account for this orbital relaxation effect, we introduced
R, which is orthogonal to U, and apply it on the orbitals from Eq. (4). Therewith, the “occupied’
and “virtual” orbitals become

Pi0) = 01+ DRt (1) 3 D0 > RaRagy (1) 24)
c ¢k

$a1) = 6,(1) = Yo R (1) 3 D 3 R, (1), 25)
k c k

It is possible to combine the approach of the variational optimization of the transition matrix
and orbital relaxation, meaning the variational optimization of U and R, resulting in the most
general form of CV-DFT (RSCF-CV(0)-DFT). The excitation energy expression of RSCF-CV(e0)-
DFT can be written for the mixed and triplet state, respectively:

1 1
AEy = Eg® {pg + Moy ®, o +—Apf/fR} — E{pﬁ,pﬁ}

2 2
(26)
1 1
= JFKS [pg + 5 80p " o + EAP}\ZR] Apydvi
1 1
AET = EE/R |:pg + EAP;J’R,pg + EAP}J/R:| — E |:pg’p§:|
(27)

1 1
= JFKS {pﬁ + 5807 %6 + 5 A7 R] Apy vy

where pf and pg are the ground-state density and ApY'R indicates the excited-state density
changes including relaxation effect. The Fgs is the Kohn-Sham Fock operator.

Another idea is to restrict the transition matrix, U, in CV-DFT to the case of single NTO
excitations, that is, Eq. (17) is approximated to include only one major excitation in the
transition matrix. Three different forms of such restrictions on U were shown and discussed
in the previous work [104], which referred to as SOR-R-CV()-DFT, COL-RSCF-CV(e)-DFT

37
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Transition U Relaxation R Introduced

Ordern Optimization Restrictions Order Optimization Singlets Triplets
CV(2)-DFT Second No No N/A  No T[58], 1[109] T [60],1[110]
CV(4)-DFT Fourth No No N/A  No T[93], 1[109] T [109], I[109]
CV/(s)-DFT oo No No N/A  No T[59], I[111] T [60],1[60]
SCF-CV/(s<)-DFT o0 Yes No N/A  No T[59],1[60] T [60], I[104]
RSCF-CV(ee)-DFT o0 Yes No Second Yes T[61],1[61] T [61],1[104]
SOR-R-CV/(e2)-DFT oo No Uy = 0wd;  Second Yes T [62] T [62], 1[62]
COL-RSCF-CV(s¢)-DFT o Yes Ui = 05 Second Yes T [104] T [104], T[104]
SVD-RSCF-CV/(e2)-DFT o Yes 7 =1 Second Yes T [104] T [104], 1 [104]

“T” indicates that it is introduced theoretically.
‘I" indicates that it is implemented into the code.

Table 1. Variation of CV-DFT applied.

and SVD-RSCF-CV(«)-DFT. Among the three methods, we have shown that SVD-RSCF-CV
(e=)-DFT as rank 1 approximation is the most general form for such a single NTO excitation:

U = of7 (w})" (28)

where the v{? and w{“ are the vector of the largest singular value V°° and W** out of Eq. (17).
The SVD-RSCF-CV(e)-DFT was also shown to give the same excitation energies as ASCF-DFT
within 0.1 eV [104].

As a roundup we list the current different versions of CV-DFT in Table 1.

3. Applications

In this section, we will show examples of excitations where different versions of CV-DFT have
been applied successfully. These excitations are of Rydberg type or possess a dominant charge-
transfer character; the work has been published in [99-103]. We would like to note that all CV-
DFT-calculations presented here were carried out with developers versions of ADF [112, 113]
and we refer to the original publications for the technical details.

3.1. Rydberg excitations

It is well understood that the success of TD-DFT directly depends on how well the approxi-

mate exchange-correlation density functional used describes the potential (\7§%(7)). Further, it
is evident that functionals based on the local density approximation (LDA) or the generalized

gradient approximation (GGA) result in the potential, VX2(7), that is insufficiently stabilizing
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when compared to 17)5?:(7) from an exact functional derived from high-level wave function
theory [71-74]. This results in higher occupied orbital (¢;) and virtual orbital (¢,) energies

obtained with VX2(7) as opposed to those ((€;),(€,)) derived from V%(?). Additionally, the
weakness of VX2(7) becomes apparent at medium and large separations r from the polyatomic

center of mass where it decays exponentially with r, while \7§2(7) decays as ~ —1/r.

Excitation energies in TD-DFT are not necessarily affected by the instability of VX2(7) for
medium to large values of r in the valence region and in the density tail. This is primarily due
to the dependence of the excitation energies in TD-DFT to the difference ¢, — €;. As can be
noted, the large errors in the individual orbital energies might be canceled after the energy
difference is calculated provided that the average potential experienced by 1), and 1, shows

similar deviations from \7§%(7). Resultantly, the success of TD-DFT for valence excitations is
attributable to this phenomenon for transitions i), — ¢, where the overlap S, between the two

densities p' and p” is large [92, 114]. However, for cases such as Rydberg transitions [71-74] as
well as charge-transfer excitations [77, 79, 82, 90, 96, 97, 115] where S;, is small, the error in

VE(7) gets more pronounced. It is a common practice in the case of small S;, to construct
specialized potentials [71-74, 77, 79, 82, 90-98] in which the proper —1/r decay is enforced
yielding acceptable results. The disadvantage here is that these parameterized potentials might
yield inaccurate results for transitions in which S;, >> 0.

Since Rydberg transitions are characterized by a single orbital replacement ¢, — 1,, RSCF-
CV(e)-DFT will give results very similar to ASCF-DFT; this similarity in case of a single NTO
transition has been demonstrated in [104]. Although for ASCE-DFT, states of the same symme-
try as the ground-state almost always decompose to the ground-state, this weakness is absent
in RSCF-CV(e)-DFT. The RSCF-CV(e)-DFT triplet and singlet transition energies for these
single orbital replacement-type excitations are obtained as special case of Egs. (26) and (27),
with the singlet excitation energy given as 2AEy; — AEr. In the analysis of Rydberg excitations
based on RSCF-CV(«)-DFT, the excitation energy is considered as a sum of the ionization
potential (IP) of a neutral species, A, and the electron affinity (EA) of the resulting cation, A™,
after ionization: AE (qbv — qby) = EA(A", ¢, ¢,) + IP(A, ¢,). Thus, errors in the excitation
energies are due to error in the calculated EAs and IPs. Consequently, a method or “specialized’
XC functional that provide accurate EAs and IPs would in turn afford accurate Rydberg
excitation energies [100].

Shown in Table 2 for comparison with the experimental data are the IPs (N,) and EAs (N3)
calculated by RSCF-CV(e0)-DFT (or ASCF-DFT). The near-perfect agreement (RMSDs between
0.1 and 0.3 eV) with the experimental data is transferred to the excitation energies afforded by
the RSCF-CV(=)-DFT method. As noted previously by Verma and Bartlett for functionals used
within TD-DFT [118-120] and the authors of the work discussed here [100]. A test set including
73 excitations (32 singlet, 41 triplet) from nine different species (N, 5; CO, 7; CH,0, 8; C,Ho, §;
H,0, 10; C,Hy, 13; Be, 6; Mg, 6; Zn, 10) has been used. Broken down into the different species, the
results are given in Table 3 in terms of mean absolute error (MAE) and root-mean-square
deviation (RMSD).

39
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Energy term LDA BP86 B3LYP LCBP86*¢ LCBP86* Expt.

IP(Ny, o) 15.63 15.50 15.74 15.96 16.38 15.58%
IP(N, 7ty) 17.46 17.07 16.87 17.22 17.18 17.07

EA(N,", d, 350y, S) —3.64 -3.61 -3.49 —3.55 —3.44 —3.38%
EA(N,", a4, 3pmy, S) —-2.92 —3.01 —2.87 —2.81 —2.77 —2.68%
EA(N,", g, 3poy, S) —2.84 —2.95 —2.79 —2.71 —2.66 —2.60%
EA(N,", 7, 3504, S) -3.77 —3.77 —3.71 -3.73 -3.67 —3.83¢%
EA(N,", g, 3sa,, T) -3.82 -3.81 -3.73 -3.79 -3.72 -3.58"

“Energies in eV.

b172].

“Refers to LC functional combined with BP86 and w = 0.40.
“Represents LC functional combined with BP86 and w = 0.75.
‘[116].

nin.

$Evaluated as EA(A™, ¢, ¢,, S) = AEs(¢p, — ¢,) — IP(A, ).
"Evaluated as EA(A™, ¢, ¢,, T)=AEr(p, — ¢,) — IP(A, ).
Data represented in this table was first published in [100].

Table 2. TP of N, and EA” of N calculated with ASCF using an extended basis set” and five different functionals.

Species No. of states LDA BP86 B3LYP LCBP86*° LCBP86”
N, 5 0.27 0.34 0.05 0.23 0.62
CcO 7 0.22 0.43 0.13 0.12 0.37
CH,O 8 0.21 0.28 0.12 0.20 0.34
CoH, 8 0.31 0.50 0.52 0.25 0.24
H,O 10 0.27 0.17 0.14 0.21 0.24
CHy 13 0.15 0.20 0.28° 0.28 0.29
Be 6 0.45 0.60 047 0.31 0.23
Mg 6 0.18 0.35 0.19 0.13 0.12
Zn 10 0.18 0.25 0.27 0.34 0.46
RMSD — 0.24 0.32 0.24 0.23 0.32

“Energies in eV.

b172].

‘Refers to LC functional combined with BP86 and w = 0.40.
“Represents LC functional combined with BP86 and w = 0.75.
‘Comprising 12 states.

Data represented in this table was first published in [100].

Table 3. Summary of RMSDs of Rydberg excitation energies” calculated with ASCF using an extended basis set’ and five
different functionals.
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The results in Table 3 for RSCF-CV(e)-DFT (or ASCE-DFT) are in general better than TD-DFT
with the same functionals but at par with TD-DFT results with “specialized” functionals [71-74].

With this benchmark the suitability of RSCF-CV(e)-DFT without the need for sophisticated (or
‘specialized”) functionals for Rydberg excitations has been demonstrated. The origin of this
good performance is attributable to the ability of RSCF-CV(«)-DEFT to afford good estimates of
IPs and EAs for all functionals [100, 121, 122]. Admittedly, fortuitous error cancelation in IPs
and EAs obtained for both RSCF-CV(e)-DFT and TD-DFT plays a role in the accuracy of the
resultant excitation energies.

3.2. Charge-transfer excitations
In this subsection we will have a look at excitations with charge-transfer character.

It is well known that TD-DFT applied with standard local exchange and correlation functionals
has difficulties for transitions with charge-transfer character between two spatially separated
regions [82, 91, 109], a finding nicely explained by Drew, Weisman and Head-Gordon [114].
According to several authors, the reason lies in the exchange and correlation functional [79, 82,
91, 123, 124]. Indeed, a functional like CAM-B3LYP [125] includes a certain Hartree-Fock
exchange and results in a clear improvement of TD-DFT excitation energies for transitions
involving a charge-transfer character [79, 124, 126]. To further improve the asymptote of the
exchange-correlation potential, long-range corrected hybrid scheme like the ones proposed in
[76, 95, 98, 127] and asymptotically corrected model potential scheme like in [128, 129] have
been designed. Of course modifying the functional is not the only approach, and it is not
surprising also that other DFT-based approaches have been suggested, all having their own
assets and drawbacks. Several of them have been applied for excitations involving charge-
transfer character, for example, constrained orthogonality method (COM) [49, 50], maximum
overlap method (MOM) [56], constricted variational density functional theory (CV-DFT) [58]
and its extensions [104, 105], constrained density functional theory [130], self-consistent field
DFT (ASCE-DFT) [131], orthogonality constrained DFT (OCDEFT) [63], ensemble DFT [132, 133]
and subsystem DFT (FDE-ET) [134].

Ziegler et al. showed in [115] how the theoretical framework of CV-DFT is able to cope with
excitations including a charge-transfer character and demonstrated this capability with differ-
ent applications [102, 109, 121]. Here, we will have a look at examples out of three of these
mentioned types.

3.2.1. C;H4xC,F 4 long-range charge-transfer excitations

Ethylene tetrafluoroethylene, C;HyxC5F,, is a system well studied in literature [76, 91, 93, 114,
126, 134]. It allows for the study of the dependence of excitation energies on the separation of
the donor and acceptor and test for the expected —1/R behavior.

For the system C,H4xCyF,4, two transitions are of particular interest, the excitations HOMO —
LUMO and HOMO-1 — LUMO + 1, both resulting in an excited state of b; symmetry. With
these transitions, a charge is transferred between the two molecules C;H, and C,F,. Although
the concrete orbital localization is highly functional dependent, the orbitals HOMO-1, HOMO,

41
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' - “ -
il

(a) HOMO-1 ) HOMO (c) LUMO ) LUMO+1

Figure 1. C;H,xC,F,: Representation of ground-state KS orbitals (LDA) (R = 5.0 A) (reprinted from [102], with the
permission of AIP Publishing).

LUMO and LUMO + 1 are from certain separation distance, dominantly located on one of the
fragments, as visible in Figure 1 (see, e.g., [77, 102]). It should be noted that for a classification
to one of the aforementioned types, it is sufficient when the mentioned ground-state orbitals
contribute the most, not necessarily uniquely.

The results obtained with CV-DFT and selected reference values for comparison are shown in
Figure 2.

First, consideration will be given to the singlet and triplet excitation results with different
versions of CV-DFT, where the transition matrix, U, is not optimized, before turning to the
most general form RSCF-CV(e0)-DFT.

CV(e0)-DFT results in a —1/R-like behavior, or when assuming a AE(R) = —c; /R + ¢ function,
fitting coefficients c¢; for the results presented in Figure 2 of 1.1 and 0.9 E,a( are obtained. For
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Figure 2. C;H.xCoF, vertical excitation energies for singlets (circles) and triplets (triangles) using CV(e)-DFT (orange),
R-CV(e0)-DFT (red) and RSCF-CV(e)-DFT (dark red). The values for the revised hessian out of [96] (purple-filled circles), LC-
BLYP out of [76] (black-filled circles) and SAC-CI out of [76] (gray-filled circles) are given as reference. The lines serve as a guide
for the eyes, and when the excitation is not dominated by one of the charge-transfer excitations, we set its value to zero (and are
therewith not visible in the figure). (reprinted from Senn F, Park YC. The Journal of Chemical Physics. 2016;145(24):244108-1 —
10). DOL: 10.1063/1.4972231. with the permission of AIP Publishing. Color specifications refer to the original figure).
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these excitations, similar energies are reported using the revised Hessian in [93]. In R-CV/()-
DEFT [61], relaxation of orbitals not directly participating is allowed (see Section 2.3), and it is of
no surprise that excitation energies decrease. These results still correspond to a —1/R behavior
(resulting in fitting coefficients c; for the values presented in Figure 2 of 1.1 and 0.9 Eya,). For
the HOMO — LUMO transition, the values agree with those reported in [76] using LC-BLYP
(MAD = 0.2 eV, RMSD = 0.2 eV). Thus, the extrapolated infinite separation value, AEg_... =
12.7 eV, is close to the AEg_... = 12.5 eV reported in [76].

Turning next to the triplet excitations for both CV(«)-DFT and R-CV(0)-DFT, similar findings
are obtained. At longer distances, no spin interaction is expected; as envisioned the triplet

excitation energies match values obtained for the corresponding singlet excitation. Excluding
the HOMO — LUMO triplet excitations with R < 6 A, a nice —1 /R behavior is obtained.

Until now all the applied methods have one thing in common: the transition matrix U has
not been optimized. This means the character of the transition itself has not been changed.
With CV-DFT being a variational method, the transition matrix U can be optimized with the
aim of minimizing the energy (see Section 2.3). In this case the RSCF-CV(e)-DFT method
[59-61] is applied, whose strength and merits have been demonstrated several times [100,
104, 121]. From Figure 2, it can clearly be seen that RSCF-CV(e)-DFT minimizes the excita-
tion energy at the expense of nearly distance-independent excitation energies and the loss of
the —1/R long-range dependence. This energy gain stems from the optimization of the
transition matrix U; a thorough explanation is given in [102]. In summary, the charge-transfer
transitions, HOMO — LUMO and HOMO-1 — LUMO + 1, are dominated by single NTO
transitions. Optimizing the transition matrix results in a mix of (mainly) two NTO transitions
with (at least one) different participating fragments, meaning that the two charge-transfer
excitations, clearly separated before, do mix now. This mixing of the two different excitations
leads to a smaller destabilization and a larger stabilization, resulting in a clear reduction of
the excitation energy [102]. An additional issue comes now from having a partial charge
ca €(0,1) located on fragment A and a partial charge 1 — c4 on fragment B, even when these
two fragments are further apart. Therefore, from a certain distance on this mixing should be
suppressed. To block the optimization algorithm from mixing such unwanted excitations in
RSCE-CV(e)-DFT calculations, two different strategies have been proposed in [102]. But
while working, they both depend highly on an arbitrarily chosen value for a threshold
parameter. It remains to be seen, if a strategy without the need of such a parameter can be
found for RSCF-CV(0)-DFT.

3.2.2. Polyacenes: excitations with hidden charge-transfer character

The focus of this subchapter is on polyacenes, a system with an intramolecular charge-transfer-
like character, also referred to as charge-transfer in disguise [135]. The polyacenes are understood
as a number 7, of linearly fused benzene rings. Such linear polyacenes possess m — 7* excita-
tions L, (or By, when the x-axis corresponds to the long molecular axis) and L, (or Bs,) with
distinct properties, described, for instance, in [136]. Additionally, these polyacenes have a singlet-
triplet gap for which a function of 7, has been proposed. An extrapolation of this function gave
rise to a discussion: if polyacenes with a certain size would have a triplet ground state [137-143].
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Polyacenes and their derivatives have been used in a plethora of applications; an overview of
some of these applications can be found in [144, 145]. Thus, it is not surprising that polyacenes
and their excitation energies have been studied extensively. While high-level calculations exist,
see, for example, the work presented in [140, 141, 143], considering the size of larger
polyacenes TD-DFT calculations is more common. But the latter ones applied with standard
functionals have several difficulties. This is why different methods and strategies have been
used, each one having its advantages, and we refer to [101] and references therein for more
details. Before moving on to the results obtained with CV-DFT, it must be noted that the
polyradical character in the ground-state builds up with increasing number of fused acenes,
which was deduced by Ibeji et al. [143] and was confirmed by Plasser et al. [146]. This
polyradical character gets bigger and for polyacenes larger than hexacene even big enough to
lead to a ‘breakdown of single reference approximation used to describe the ground-state of
polyacenes in conventional DFT” [132]. Within CV-DFT we rely on a DFT ground-state descrip-
tion. The awareness of this limitation is the reason why only polyacenes as large as hexacene
have been studied with CV-DFT.

We will now have a look at the singlet excitation energies. As these energies are not directly
measurable, we will use the modified experimental values from Grimme and Parac [136] as
reference, for simplicity referred to as experimental results.

As visible from Table 4 and Figure 3, CV(e)-DFT with LDA results in vertical singlet excitation
energies in a very good agreement with the experimental values [147], while for R-CV(e0)-DFT
[101], the values deviate more from the experimental ones, although still in an acceptable
agreement (a discussion of the difference is given in [101]). As can be seen from Table 4 and
Figure 3, both versions of CV-DFT obtain a crossover between 1'B,, and 1'Bs, for Anthracene
onwards, which is in agreement with experimental findings.

No. acene units Exp.” CV/(e)-DFT® R-CV/(e)-DFT*

1' By, 1'Bsu AE? 1' By 1'Bs, AE? 1By 1'Bs. AE?
2 4.66 413 0.53 4.73 4.39 0.34 4.58 4.42 0.16
3 3.60 3.64 —0.04 3.68 3.73 —0.05 3.46 3.75 -0.29
4 2.88 3.39 —0.51 291 3.32 —0.41 2.69 3.33 —0.63
5 2.37 3.12 -0.75 2.35 3.03 —0.68 2.15 3.04 —0.89
6 2.02 2.87 —0.85 1.93 2.82 —-0.89 1.74 2.83 —1.09
MAD — — — 0.06 0.11 — 0.18 0.12
RMSD — — — 0.06 0.13 — 0.19 0.15
a Out of [136].
b Out of [147].
¢ Out of [101].

d AE = AE(1'Bay) — AE(1'Byy).

Table 4. Vertical singlet excitation energies (in eV) for linear polyacenes.
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Figure 3. Vertical singlet excitation energies for the states 1'Byy (circles) and 1'Bs, (crosses) of linear polyacenes: R-CV/(e)-
DFT (maroon), ASCF-DFT (gray), CV-DFT (orange, out of [147]), [143] (dark blue), experimental values (black, out of [136]).
The solid lines serve as guides for the eyes. (reprinted with permission from Senn F, Krykunov M. The Journal of Physical
Chemistry. A. 2015;119(42):10575-10581. DOI: 10.1021/acs.jpca.5b07075. Copyright 2015 American Chemical Society. Color
specifications refer to the original figure).

Next, take a look at the obtained triplet excitation energies for the studied polyacenes, shown
in Table 5. The equivalency of CV(2)-DFT and TD-DFT with the TDA stated in theory section
(Section 2.2) is once again confirmed by the numbers in Table 5. It can also be seen that in the
triplet case, the energies obtained with R-CV(e0)-DFT change only slightly in comparison with
the values obtained with CV(2)-DFT, on average by 0.05 eV (for comparison, singlet excitations
have a MAD of 0.30 eV for 1'B,, and 0.13 eV for 1'Bs,, values out of [101, 147]). This
surprisingly small difference is due to the nature of the excitation, and for a further discussion
of the contributions, we refer to [101].

As previously pointed out in [104], R-CV(e0)-DFT results in triplet states of excitation energies
being lower than the ones obtained by coupled cluster methods. Nevertheless, with a RMSD of
0.31 and 0.29 eV, respectively, when compared to the values given in [140 and 143], the results
are in reasonable agreement (we note that coordinates were optimized slightly differently).
The nature of the triplet excited states is in agreements with the findings of [148], namely, a
1°B,,, state for the first triplet excitation, T;; for the second triplet excitation, T; 3B,, for
Naphthalene; and 3]31g for Anthracene to Hexacene.
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No. acene units Vertical Adiabatic

R-CV(es)-DFT* CV(2-DFT* TDDFT® Ref.[143] Ref.[140] R-CV(e)}-DFT* Exp.° Ref.[143]

2 3.16 3.08 3.08 3.34 3.31 2.89 2.64 270
3 2.15 2.09 2.09 2.47 2.47 1.94 1.86 2.06
4 1.49 1.44 1.44 1.82 1.76 1.31 1.27 148
5 1.02 0.99 0.99 1.37 1.37 0.88 0.86 1.11
6 0.69 0.66 0.66 1.07 1.00 0.57 0.54 0.83
MAD* — 0.05 0.05 0.31 0.28 — 0.09 0.19
RMSDH — 0.06 0.06 0.32 0.29 — 0.12 020
a Out of [101].

b With LDA as functional.

¢ Out of [143] and references therein.
d To be understood as the deviation of the values obtained with R-CV()-DFT in comparison to the values of this column
as reference values.

Table 5. Vertical and adiabatic triplet excitation energies (in eV) for linear polyacenes.

From Figure 4 one can see the singlet-triplet gap (ST) decreasing, resembling an exponential
function. In order to estimate the ST gap for infinitely large polyacenes, giving an indication if
there would be a ST crossover, several authors fitted the excitation energies to the function
f(ny) = aexp(—bn,) + c (see [140, 142, 143]). With the results of R-CV(e)-DFT for the vertical

transition, the limes of an infinitely long polyacene E5! (1, — =) = (0.3 + 4.5) kcal mol~' have

vert
been obtained and for the ‘adiabatic’ transition Egg(nr — o0) = (—1.6 & 4.0) kcal mol ' [101]. For
the ‘adiabatic’ or well-to-well excitations, results from different methods in literature are contro-
versial about a possible ST gap crossover ([140, 142] versus [143, 149, 150]); for TD-DFT it even
depends on the functional used [142]. Therefore, necessarily the findings presented here will
agree with some findings, while disagree with others. It should be noted that these energies are
very small, actually smaller than the estimated accuracy of the CV-DFT method, and with its
error it must be regarded as giving only a tendency for no ST crossover. Two additional points of
precaution which puts the value of the extrapolated results into question: (a) it has been shown
in [142] how a small change of a single excitation energy can influence the obtained polymeric
limit, and (b) one should have in mind the change of the ground-state character with the
polyacene length and, thus, the number of fused acenes.

3.2.3. Charge-transfer excitations in transition metals

The complicated electronic structure of transition metal (TM) complexes [151] makes them ideal
for testing the performance of newly developed methods. This section deals with charge-transfer
(and hidden charge-transfer) excitations in these complexes, more precisely the 3d complexes
MnO,~, CrO,*> and VO,>, as well as their 4d congeners RuQOy,, TcO,, MoO,*~ and 5d
homologues OsO,4, ReO,~ and WO, [99]. For these systems, the three lowest valence excita-
tions involving transitions from 1t, 2f, to 2e and 3¢, are considered [99]. The comparison is
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Figure 4. Triplet excitation energies for the 1°B,,, states of linear polyacenes: R-CV(e)-DFT (maroon), ASCF-DFT (gray), SVD-
R-CV(o0)-DFT (orange), [143] (dark blue), [140] (light blue), experimental values (black, out of [143] and references therein).
The symbols are used to distinguish between vertical transitions (crosses) and adiabatic as well as ‘imitated adiabatic’
transitions (circles). The lines are the curves fitted to the function f(n,) = a exp(—b#n,) + ¢ and serve as guides for the eyes.
(reprinted with permission from Senn F, Krykunov M. The Journal of Physical Chemistry. A. 2015;119(42):10575-10581. DOI:
10.1021/acs.jpca.5b07075. Copyright 2015 American Chemical Society. Color specifications refer to the original figure).

made with available experimental data [152, 153] and high-level ab initio calculations [154-160].
There are several adjustable parameters that can influence the excitation energies. These include
the size of the basis set used, functionals used, geometry (optimized structures or experimental
geometries), medium (since the complexes are anions), etc. Use was made of experimental
structures which lead to higher excitation energies (0.1-0.3 eV) compared to optimized struc-
tures. Marginal influence of solvation was found for the three valence excitations; the calculated
COSMO [161, 162] excitation energies lower the energies by 0.01-0.02 eV [163, 164].

Table 6 displays the RMSD between the first three experimental dipole-allowed transitions
and the corresponding values calculated by RSCF-CV(e<)-DFT.

On average, the three functionals B3LYP, PBEO with an intermediate fraction of HF exchange
and LCBP86* have the lowest RMSD of 0.2 eV, whereas the local functionals (LDA, BP86, BPE)
and BHLYP with the highest HF fraction and LCBP86 have a somewhat larger RMSD of 0.3 eV
for both 3d and 4d + 5d averages. TD-DFT with the same functionals performs poorly for the
3d complexes but shows good agreement with experiment for the heavier tetraoxo complexes.
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Complex LDA BP86 PBE B3LYP BHLYP PBEO LCBP86* LCBP86
MnO-4 0.41 0.32 0.33 0.15 0.62 0.19 0.24 0.37
CrO42~ 0.40 0.31 0.34 0.09 0.55 0.04 0.22 0.32
VO 0.25 0.14 0.16 0.07 0.18 0.14 0.27 0.37
RuO, 0.32 0.28 0.28 0.21 0.44 0.22 0.19 0.31
TcO~ 0.10 0.13 0.13 0.25 0.13 0.29 0.27 0.17
MoO,*- 0.14 0.23 0.23 0.06 0.22 0.18 0.13 0.34
OsOy4 0.53 0.51 0.50 0.27 0.39 0.31 0.21 0.26
ReO-4 0.36 0.43 0.43 0.14 0.25 0.16 0.14 0.16
WO, 0.43 0.51 0.51 0.14 0.11 0.07 0.11 0.16
Average 3d 0.35 0.26 0.28 0.10 0.45 0.12 0.24 0.35
Average 4d + 5d¢ 0.31 0.34 0.34 0.19 0.27 0.22 0.19 0.24
Total average 3d" 0.33 0.31 0.32 0.16 0.34 0.18 0.21 0.28

“Root-mean-square deviation.

"The reference is the observed vertical excitation energies for the three first dipole-allowed transitions.
“For MoO,4*- and WO,>~ only, the first two experimental transitions are available.

“Deviations are in eV.

‘No TDA was applied.

fAverage of the three 3d complexes.

$Average of the six 4d and 5d complexes.

"Average over all complexes.

Data represented in this table was first published in [99].

Table 6. RMSDs for tetraoxo excitation energies based on RSCF-CV(«)-DFT and a TZ2P basis set™ bode

This shows a clear lack of consistency. However, RSCF-CV()-DFT shows good and consistent
performance for all complexes studied here.

Next, the excitation energies of the octahedral TM complexes [103] are presented. The analyses
will be primarily focused on Cr(CO)s and [Fe(CN)y]*~ where experimental excitation energies
are available. The first system to be considered is Cr(CO)s; the RSCF-CV(e)-DFT results are
displayed in Table 7. The results afforded by RSCF-CV(e)-DFT are in good agreement with the
experimental data even at the RSCF-CV(e)-DFT/LDA level of theory. The RSCF-CV(e)-DFT/
LDA results show performance identical to the TD-DFT/B3LYP [151] and better performance
than TD-DFT with LDA and GGAs.

Considered next is the [Fe(CN)g]*~ complex; the results are shown in Table 8. The RMSDs here
were calculated with the lower limit of the experimental [153] excitation energies where ranges
are applicable. There are some theoretical calculations carried with TD-DFT [151] and other
DFT-based approaches [151] as well as some high-level ab initio methods [156]. Again, there are
good performances even for the LDA and GGA functionals. The accurate excitation energies
afforded by the RSCF-CV(e)-DFT method when compared to the experimental data are as a
result of, to some extent, fortuitous error cancelation.
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STATE RASPT2® LDA BP8¢ PBE B3LYP PBE0O BHLYP LCBP86* LCBP86? Expt.®
Singlet

1Tlg(MC) 4.98 5.33 5.14 517  4.85 5.25 4.52 478 497 -
1Ty, (MLCT) 4.50 4.45 4.39 440 448 4.62 4.68 4.61 4.37 4.44
21Ty, (MLCT)  5.42 5.46 5.47 547 573 5.93 6.20 6.23 5.85 5.48
Triplet

13T1g(MC) 4.28 4.72 4.88 491 4.54 4.62 4.15 4.18 4.49 .
1°T,(MC) 4.64/ 4.63 4.59 460 439 4.45 4.17 4.45 4.59 -
RMSD 0.06 0.02 0.04 003 0.18 0.34 0.54 0.54 0.27

“Energies in eV.

¥[154].

‘Represents LC functional combined with BP86 with w = 0.75.

“Refers to LC functional combined with BP86 using @ = 0.4.

‘[152].

155).

Data represented in this table was first published in [103].

Table 7. Calculated excitation energies” for Cr(CO)g based on the RSCF-CV/(e)-DFT method.

STATE CASPT2” LDA BPS6 PBE B3LYP PBE0O BHLYP LCBP86*° LCBP86" Expt.*
Singlet

1T1,(MC) 3.60 417 372 375 342 3.35 3.04 3.35 3.64 3.80-3.94
3T, (MLCT) — 557 557 564 610 6.44 — — 6.34 5.69-5.89
4'T,(MLCT) — 583  5.80 572 6.25 6.63 — — 6.93 6.20
1'T5,(MC) 4.33 405 374 412 447 4.46 4.47 4.14 4.37 4.43-4.77
Triplet

13T1,(MC) 2.67 3.60  3.39 341 298 2.90 2.49 2.56 2.93 2.94
RMSD 0.20" 042 041 033 0.25 0.44 0.40 0.29 0.44

“Energies in eV.

’1156).

‘Represents LC functional combined with BP86 with w = 0.75.
“Refers to LC functional combined with BP86 using @ = 0.4.

“[153].

Calculated with three excitation energies.
Data represented in this table was first published in [103].

Table 8. Calculated excitation energies® for [Fe(CN)e]*~ based on the RSCF-CV()-DFT method.
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A look now at the electronic density change that accompanies the electronic excitation. Figure 5
(a and b) shows the plot of the density changes associated with the electronic transitions in Cr
(CO)e. The charge redistribution can be seen from the figure, where the density depletion (p,..),
the accumulation (p,;,) as well as the density change (Apey = Poir — Poce) OCCUrs, resulting from
the total change in density associated with the electronic transition. For the MLCT transition,
the p,.. (Figure 5a) is situated on the Cr metal center, the area or space spun by the density that
is reminiscent of the d,, and the p . is mostly situated on the equatorial CO ligands. The
depletion density is in the yz plane, the accumulation density is situated on the CO ligand,
and there is little interaction between them as can be seen from the difference (Figure 5b). The
movement of density is from the metal center to the ligands corresponding to an intramolecu-
lar charge-transfer transition. It is clear from Figure 5c¢ that this transition has a significant
d — d character. In the density plots that follow, there is a depletion in the density situated on

Pocc pViT Apex:‘:)\.fir'poc:c
| i i
| E E

Figure 5. Ap associated with the CrCQOg, red signifies depletion and green shows accumulation of density. (a) The density
change associated with the 1!Ty, state. (b) Exemplifies the density redistribution associated with the 2!Ty, state. (c)
Densities accompanying the calculated 1! Ty, state. (a) and (b) are MLCT-type transitions, and (c) is an example of MC-
type transition. See Seidu I. Excited-State Studies with the Constricted Variational Density Functional Theory (CV-DFT)
Method. PhD dissertation. University of Calgary; 2016 for coloured pictures.
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the metal with some contribution from the CO in the xy-plane and accumulation of density
largely on the central Cr metal along the yz-plane with some accumulation on the CO ligands
in the same plane.

Displayed in Figure 6 are the density plots for [Fe(CN)s]*". Similar features are seen here as
seen for Cr(CO)e. The differences in the density plots representing the MC transition; there is
more significant accumulation on the CN™ ligands, and the density accumulation is in the
same plane (xy-plane) as the depletion density (d,>_,2~dy). As for the MLCT, the associated

density movement is identical to that of Cr(CO) (see Figure 6(b and c)).

The benchmark studies on the tetrahedral and octahedral TM complexes probed the ability of
RSCF-CV(=)-DFT to describe CT and hidden CT excitations. Use was made of the tetrahedral

d° metal oxides as the first benchmark series since the tetra oxides have a long history as a

Pocc AF-)exzf:)\/fir'pocc
b W%‘ %‘

Figure 6. Ap associated with the Fe(CN)¢~. (a) the density change associated with the 11T1g state. (b) Exemplifies the

density redistribution associated with the 3!Ty, state. (c) Densities accompanying the calculated 3!T;, state. (a) Is an
example of MC-type transition, and (b) and (c) are MLCT-type transitions. Red signifies loss and green shows gain in
density. See Seidu I. Excited-State Studies with the Constricted Variational Density Functional Theory (CV-DFT) Method.
PhD dissertation. University of Calgary; 2016 for coloured pictures.
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challenging testing ground for new methods due to their complex electronic structure. In
general there is either a comparable performance for RSCE-CV(e0)-DFT and TD-DEFT in cases
where TD-DFT shows good performances or RSCF-CV(«)-DFT outperforms TD-DFT.

A trend that manifests itself at larger r for the TM complexes is the excitation energies which
become more functional dependent and less accurate. Further, the accuracy of RSCE-CV/(e°)-
DEFT for smaller r is not attributable to the ability of our method to afford accurate values of the
IP of the complex and the EA of the cation formed alone; some error cancelation occurs when
the IPs and EAs are combined to obtain the excitation energy. Finally, it is possible to plot the
density change associated with the electronic transitions afforded by our method with regions
of density depletion and accumulation supporting a qualitative classification of excitations as
MLCT or MC.

4. Conclusion

In this chapter we presented the CV-DFT method and its different variants. While CV(2)-DFT
is consistent with (adiabatic) TD-DFT within the TDA approximation, CV-DFT allows to go to
higher order. Indeed, its strength lies in going beyond linear response and therewith obtaining
distance-dependent contributions to the excitation energy naturally. Additionally, the theory
allows for the calculation of excitation energies for singlet and triplet states on the same
footing. Of course as a variational method, CV-DFT relies on an accurate ground-state descrip-
tion. The theoretical framework allows us to apply special restrictions as done in [104] and
therewith obtain a numerically stable method being numerically equivalent to ASCF-DFT.

How CV-DFT performs has been shown in Section 3 with the aid of selected examples of
charge-transfer or Rydberg excitation type. With these examples, we could demonstrate how
CV(=)-DFT is able to reproduce the expected —1/R long-range behavior for charge-transfer
excitations. When orbital relaxation is allowed, the excitation energies obtained by R-CV/()-
DFT with LDA agree nicely with the findings of long-range corrected functionals. For short
distance, the optimization of the transition matrix U is clearly beneficial [100, 104, 121]. But for
medium- and long-range distances, a notion of care is to be taken as the optimization may lead
to an unwanted mixing of transitions as shown in the case of C;H4xC,F,. Also, for excitations
with hidden charge-transfer character, meaningful results are obtained with CV-DFT, for
example, accurate results for the first singlet excitation energies of polyacenes [101, 147] for
polyacenes as large as hexacene. Not only is CV-DFT able to deliver meaningful results, even
for the LDA functional, it has an incredible ability to provide a qualitative picture of the nature
or type of excitation under consideration. This is seen in the case of the TM complexes, a
complicated yet excellent test set for assessing the range of applicability of every newly
developed method. In the case of Rydberg excitations, RSCF-CV(e)-DFT produces meaningful
results without the need for sophisticated (or “specialized”) functionals. This good performance
is attributable to the ability of our method affords good estimates of IPs and EAs for all
functionals [100, 121, 122]. Admittedly, fortuitous error cancelation in IPs and EAs obtained
for both RSCF-CV(e0)-DFT and TD-DFT plays a role in the accuracy of the resultant excitation
energies.
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