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Abstract

The aim of this chapter is to present constricted variational density functional theory (CV-
DFT), a DFT-based method for calculating excited-state energies. This method involves
constructing from the ground-state orbitals, a new set of ‘occupied’ excited-state orbitals.
Consequently, a constraint is applied to ensure that exactly one electron is fully transferred
from the occupied to the virtual space. This constraint also prevents a collapse to a lower
state. With this set of orbitals, one obtains an electron density for the excited-state and
therewith the CV-DFT excitation energy. This excitation energy can now be variationally
optimized. With our successful applications to systems differing in the type of exc-
itation, namely, charge-transfer, charge-transfer in disguise, and Rydberg excitations, as
well as in size, we demonstrate the strengths of the CV-DFTmethod. Therewith, CV-DFT
provides a valid alternative to calculate excited-state properties, especially in cases where
TD-DFT has difficulties. Finally, our studies have shown that the difficulties arising in the
TD-DFTexcited states are not necessarily stemming from the functional used, but from the
application of these standard functionals in combination with the linear response theory.

Keywords: CV-DFT, excited state, charge-transfer, Rydberg excitations, ZnBC-BC

1. Introduction

The behavior of atoms and polyatomic systems in the excited-state are of immense importance

in the studies of several photophysical phenomena. Thus, the search for methods to study

systems in their electronically excited state is the subject of ongoing research [1–13]. Resul-

tantly, there are several methods to choose from within certain consideration such as system

size, expected level of accuracy and nature of initial and final electronic state of the system

under study. Therefore, some background knowledge is necessary for the accurate treatment

of excited states with the available methods. These methods fall under different families, and
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the ab initio wave function family of methods includes multi-reference configuration interac-

tion (MRCI) [14], multi-configurational self-consistent field (MCSCF) [15, 16], complete active

space self-consistent field (CASSCF) [17], time-dependent Hartree-Fock (TD-HF) [18–21],

restricted active space self-consistent field (RASSCF) [22], RASPT2 [23], complete active space

second-order perturbation theory (CASPT2) [24], equation-of-motion coupled cluster

(EOMCC) [25], n-electron valence state perturbation theory (NEVPT) [26], spectroscopically

oriented configuration interaction (SORCI) [27] and coupled cluster (CC) theory [28, 29].

However, the focus of this book is the Kohn-Sham density functional theory (DFT) [30] and

methods based on it. In this chapter, our attention is on the calculation of excited states. Excited-

state studies within DFT gained considerable attention owing to the increasing success of DFT in

ground-state studies. Significant research effort toward the development of excited-state methods

has resulted in a variety of approaches varying in both major and minor details, each method

having its own advantages and disadvantages. The result of this endeavor includes self-consistent-

field DFT (ΔSCF-DFT) [31–33] with extensions [34–36], time-dependent DFT [40–44], ensemble

DFT [37–39, 45–47], constrained orthogonality method (COM) [48–50], restricted open-shell Kohn-

Sham (ROKS) [47, 51, 52], constrained DFT (CDFT) [53], ‘taking orthogonality constraints into

account’ (TOCIA) [54, 55], maximum overlap method (MOM) [56, 57], constricted variational

density functional theory (CV-DFT) [58] and extensions [59–62], orthogonality constrained DFT

(OCDFT) [63] and guided SCF [64] among others. However, the most widely used by both expert

and nonexpert is TD-DFT in the form of linear response adiabatic time-dependent DFT [40, 41, 65–

69] (which we will refer to as TD-DFT) due to its successes.

The strengths and weaknesses of TD-DFT are well known and understood through extensive

benchmark studies carried out over the years. The strengths explain its wide usage by delivering

‘an excellent compromise between computational efficiency and accuracy’ [70]. The weaknesses

explain the ongoing fundamental studies searching for solutions in the cases where TD-DFT is

found lacking. These include its deficiency in describing Rydberg transitions [71–74], charge-

transfer (CT) transitions [75–84] and electronic transition with significant double contribution

[42, 43, 83–87]. TD-DFT is a formally exact theory; however, its practical application relies on the

adiabatic formalism where use is made of the available ground-state exchange-correlation (XC)

functionals [71, 82, 88–90]. As a result, one can necessarily trace all the problems encountered in

the application of TD-DFT to this approximation. The numerous research attempts to remedy the

pitfalls in TD-DFTare classified as follows:

1. Finding the XC functionals with the correct short- and long-range behavior or going

beyond the adiabatic approximation.

2. Developing new DFT-based excited-state methods.

An often-encountered problem with the development of specialized functionals is that it

usually performs very well for the purpose for which it was originally developed but unimag-

inably erratic for any other situation [71–74, 77, 79, 82, 88, 91–98].

Our contribution to this area of research is in the development of the constricted variational

DFT (CV-DFT) [58–62], which combines the strengths of ΔSCF-DFT and TD-DFT methods

without the need for ‘specialized’ functionals.
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In this chapter, we will explain the idea and theory of CV-DFT, before we have a look at

different examples, where CV-DFT has been applied for transitions of Rydberg and charge-

transfer type following the publications [99–103].

2. Theory

In this chapter, we review the theoretical framework of CV-DFT in a nutshell. We refer to the

original publications [58–62, 104] for a more in-depth description.

2.1. The CV-DFT scheme

Here, we only consider the excitation from the closed-shell ground state described with single

Slater determinant, Ψ 0 ¼ ϕ1ϕ2…ϕi…ϕnocc

�

�

�

�

�

�, where nocc is the number of occupied orbitals. CV-

DFT starts from the ansatz which describes the excitation as an admixture of occupied

ϕi; i ¼ 1;⋯; nocc
� �

and virtual ϕa; a ¼ 1;⋯; nvir
� �

ground-state orbitals [105]:

ϕ0
i ¼

X

nvir

a

Uaiϕa (1)

where ϕ0
i is the excited-state orbital and nvir the number of virtual orbitals. The transition

matrix, U, only mixes between occupied and virtual orbitals (Uij ¼ Uab ¼ 0) and is skew

symmetric (Uai ¼ �Uia). In CV-DFT, we use the exponential expansion of U which leads to

the unitary transformation Y:

Y ¼ exp Uð Þ ¼
X

∞

k¼0

Uk

k!
: (2)

Thus, once the transition matrix, U, is determined, a new set of orbitals is obtained over the

unitary transformation

ϕ0
occ

ϕ0
vir

 !

¼
X

∞

k¼0

Uk

k!

 !

ϕocc

ϕvir

� �

: (3)

Due to the properties of the transition matrix, U, the ‘occupied’ excited-state orbitals can be

written as

ϕi

0

¼
X

nocc

j

Yjiϕj þ
X

nvir

a

Yaiϕa: (4)

The corresponding excited-state density becomes

Constricted Variational Density Functional Theory Approach to the Description of Excited States
http://dx.doi.org/10.5772/intechopen.70932

33



r
0 1; 10ð Þ ¼

X

nocc

i

ϕ0
i 1ð Þϕ0

i 1
0ð Þ

¼
X

nocc

i

ϕi 1ð Þϕi 1
0ð Þ þ

X

nvir

a

X

nocc

i

ΔPai ϕi 1ð Þϕa 10ð Þ þ ϕa 1ð Þϕi 1
0ð Þ

� �

þ
X

nocc

i

X

nocc

j

ΔPijϕi 1ð Þϕj 1
0ð Þ þ

X

nvir

a

X

nvir

b

ΔPabϕa 1ð Þϕb 10ð Þ

(5)

with the change in density matrix (ΔP). Later, one is given by

ΔPaj ¼
X

nocc

i

YaiYji (6)

ΔPjk ¼
X

nocc

i

YjiYki � δjk
	 


(7)

ΔPab ¼
X

nocc

i

YaiYbi: (8)

In CV-DFT, we apply the important condition that one electron is fully transferred from

occupied into virtual spaces. This condition can be written as the following equation:

X

nvir

a

ΔPaa ¼ 1 and
X

nocc

i

ΔPii ¼ �1: (9)

It should be noted that in CV-DFT we describe the excited state with a single Slater determi-

nant. Thus, we obtain the mixed and triplet states. While this is uncritical for triplet excitations,

for the singlet transition energy, we have to account for this by using the relation (which is also

referred to as sum rule) [61]

ΔES ¼ 2ΔEM � ΔET : (10)

2.2. CV(n)-DFT

The nth-order CV-DFT, CV(n)-DFT, is determined from the maximum order of U in the CV-

DFT energy description. To understand how the order of the applied transition matrix, U,

affects the excited-state energies, it is beneficial to discuss two extreme cases—second (n ¼ 2)-

order and infinite (n ¼ ∞)-order CV-DFT.

The second-order CV-DFT (CV 2ð Þ-DFT) limits the U up to the second order in the Kohn-Sham

energy description. For simplicity, the occupied excited-state orbitals in Eq. (4) are approxi-

mated to the second order in U:
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ϕi

0

¼ ϕi þ
X

nvir

a

Uaiϕa �
1

2

X

nocc

j

X

nvir

a

UaiUajϕj þO U 3ð Þ
h i

: (11)

With these orbitals, some higher order contributions inU can arise in the density and therewith

also in the energy, but we only keep up to the second order in U, as the contribution of higher

order terms is negligible [60]. The second-order CV-DFT energy expression becomes

EKS r
0 1; 10ð Þ½ � ¼ EKS r

0
� �

þ
X

ai

UaiU
∗

ai ε
0
a � ε0i

	 


þ
X

ai

UaiU
∗

bjKai,bj

þ
1

2

X

ai

X

bj

UaiUbjKai, jb þ
1

2

X

ai

X

bj

U∗

aiU
∗

bjKai, jb þO U 3ð Þ
h i

(12)

where the two-electron integral is composed of a Coulomb and an exchange-correlation part:

Kpq, st ¼ KC
pq, st þ KXC

pq, st (13)

with

KC
pq, st ¼

ð ð

ψp 1ð Þψq 1ð Þ
1

r12
ψs 2ð Þψt 2ð Þdν1dν2: (14)

The exchange-correlation integral is further decomposed into the local (KS) and nonlocal (HF):

K
XC KSð Þ
pq, st ¼

ð

ψp r1ð Þψq r1ð Þf r1ð Þψs r1ð Þψt r1ð Þdr1 (15)

and

K
XC HFð Þ
pq, st ¼ �

ð ð

ψp 1ð Þψq 1ð Þ
1

r12
ψs 2ð Þψt 2ð Þdν1dν2 (16)

where f r1ð Þ represents the regular energy kernel. We have shown that CV 2ð Þ-DFT is equivalent

to TD-DFT [59, 106] within the Tamm-Dancoff approximation (TDA) [107].

In the infinite-order theory (CV(∞)-DFT), the new set of excited-state orbitals is obtained taking

the sum in Eq. (3) to infinite order. These excited-state orbitals can be written in the convenient

form of natural transition orbitals (NTO) [108]. For this, we decompose the transition matrix,

U, into its singular values. Here, we also used a spin-adapted form for further description of

the different spin states in the excited-state calculation:

U
σα ¼ V

σσΣ W
ααð ÞT (17)

where Σii ¼ γi and σ∈ α; β
� �

depend on spin state (mixed and triplet states, respectively). This

leads to the occupied and virtual NTOs as
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ϕoα
i ¼

X

nocc

j

W
ααð Þjiϕ

α
j (18)

ϕvσ
i ¼

X

nvir

a

V
σσð Þaiϕ

σ
a : (19)

The resulting matrix W rotates ground-state KS orbitals as j runs over the occupied ground-

state orbitals to give the corresponding ith ‘occupied’ NTO orbital (ϕoα
i ). For its virtual coun-

terpart (ϕvσ
i ),V does the similar role asWwith a running over the virtual ground-state orbitals.

With these NTOs, we can rewrite Eq. (4) for the ‘occupied’ excited-state orbitals as

ϕi

0

¼ cos γi

� �

ϕoα
i þ sin γi

� �

ϕvσ
i : (20)

Also, the condition of exciting exactly one electron (Eq. (9)) is now written as

X

nocc

i

sin ηγi

	 
2
¼ 1: (21)

With the sum rule in Eq. (10), the excited-state CV(∞)-DFT energy of the mixed state becomes

ΔEM ¼
X

nocc

i

sin2 ηγi

� �

εvαi � εoαi
	 


þ
1

2

X

nocc

i

X

nocc

j

sin2 ηγi

� �

sin2 ηγj

h i

Kioα ioα joα joαKivα ivα jvα jvα � 2Kioα ioα jvα jvα

� �

þ
1

2

X

nocc

i

X

nocc

j

sin ηγi

� �

cos ηγi

� �

sin ηγj

h i

cos ηγj

h i

Kioα ivα joα jvα þ Kioα ivα jvα joα

� �

þ 2
X

nocc

i

X

nocc

j

sin ηγi

� �

sin ηγi

� �

sin ηγj

h i

cos ηγj

h i

Kivα ivα joα jvα � Kioα ioα joα jvα

� �

(22)

whereas the triplet exited-state energy has a simpler form:

ΔET ¼
X

nocc

i

sin2 ηγi

� �

ε
vβ
i � εoαi

	 


þ
1

2

X

nocc

i

X

nocc

j

sin2 ηγi

� �

sin2 ηγj

h i

Kioα ioα joα joαKi
vβ i

vβ j
vβ j

vβ � 2Kioα ioα j
vβ j

vβ

� �

: (23)

The γ values out of Eq. (21) give information about the excitation character [60]. Keeping only

the largest γ value in the excitation will give the most general form of single orbital
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replacement [104], which is used as the ΔSCF-DFT-like scheme within the RSCF-CV(∞)-DFT

formulation. This will be briefly mentioned in the next section.

2.3. SCF-CV(∞)-DFT, R-CV(∞)-DFT and RSCF-CV(∞)-DFT

In Eqs. (22, 23), we obtain the excited-state energy of the mixed and triplet state. The transition

matrix, U, is the same as one obtains within TD-DFT (and thus the TD-DFT excitation vector is

implemented in CV-DFT). In SCF-CV(∞)-DFT, U is optimized with the variational procedure

[60]. For this step, we derived the gradient of the mixed and triplet excited state. The detailed

procedures can be found in the [59–61, 104]. Further, also the orbitals which do not participate

in the excitation can be changed after the excitation. We refer to this change as the relaxation of

orbitals. This leads to R-CV(∞)-DFT. To account for this orbital relaxation effect, we introduced

R, which is orthogonal toU, and apply it on the orbitals from Eq. (4). Therewith, the ‘occupied’

and ‘virtual’ orbitals become

ψ
i
1ð Þ ¼ ϕ

i
1ð Þ þ

X

nvir

c

Rciϕc
1ð Þ �

1

2

X

nvir

c

X

nocc

k

RciRckϕk
1ð Þ (24)

ψ
a
1ð Þ ¼ ϕ

a
1ð Þ �

X

nocc

k

Rakϕk
1ð Þ �

1

2

X

nvir

c

X

nocc

k

RakRckϕc
1ð Þ: (25)

It is possible to combine the approach of the variational optimization of the transition matrix

and orbital relaxation, meaning the variational optimization of U and R, resulting in the most

general form of CV-DFT (RSCF-CV(∞)-DFT). The excitation energy expression of RSCF-CV(∞)-

DFT can be written for the mixed and triplet state, respectively:

ΔEM ¼ E
U,R
M r

α
0 þ

1

2
Δr

U,R
M ; r

β
0 þ

1

2
Δr

U,R
M

 �

� E r
α
0 ; r

β
0

h i

¼

ð

FKS r
α
0 þ

1

2
Δr

U,R
M ; r

β
0 þ

1

2
Δr

U,R
M

 �

Δr
U,R
M dν1

(26)

ΔET ¼ E
U,R
T r

α
0 þ

1

2
Δr

U,R
T ; r

β
0 þ

1

2
Δr

U,R
T

 �

� E r
α
0 ; r

β
0

h i

¼

ð

FKS r
α
0 þ

1

2
Δr

U,R
T ; r

β
0 þ

1

2
Δr

U,R
T

 �

Δr
U,R
T dν1

(27)

where r
α
0 and r

β
0 are the ground-state density and Δr

U,R indicates the excited-state density

changes including relaxation effect. The FKS is the Kohn-Sham Fock operator.

Another idea is to restrict the transition matrix, U, in CV-DFT to the case of single NTO

excitations, that is, Eq. (17) is approximated to include only one major excitation in the

transition matrix. Three different forms of such restrictions on U were shown and discussed

in the previous work [104], which referred to as SOR-R-CV(∞)-DFT, COL-RSCF-CV(∞)-DFT
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and SVD-RSCF-CV(∞)-DFT. Among the three methods, we have shown that SVD-RSCF-CV

(∞)-DFT as rank 1 approximation is the most general form for such a single NTO excitation:

U ¼ vσσ1 wαα
1

	 
T
(28)

where the vσσ1 and wαα
1 are the vector of the largest singular value Vσσ and Wαα out of Eq. (17).

The SVD-RSCF-CV(∞)-DFTwas also shown to give the same excitation energies as ΔSCF-DFT

within 0.1 eV [104].

As a roundup we list the current different versions of CV-DFT in Table 1.

3. Applications

In this section, we will show examples of excitations where different versions of CV-DFT have

been applied successfully. These excitations are of Rydberg type or possess a dominant charge-

transfer character; the work has been published in [99–103]. We would like to note that all CV-

DFT-calculations presented here were carried out with developers versions of ADF [112, 113]

and we refer to the original publications for the technical details.

3.1. Rydberg excitations

It is well understood that the success of TD-DFT directly depends on how well the approxi-

mate exchange-correlation density functional used describes the potential (bVKS
XC( r

!

)). Further, it

is evident that functionals based on the local density approximation (LDA) or the generalized

gradient approximation (GGA) result in the potential, ~VKS
XC( r

!

), that is insufficiently stabilizing

Transition U Relaxation R Introduced

Order n Optimization Restrictions Order Optimization Singlets Triplets

CV(2)-DFT Second No No N/A No T [58], I [109] T [60], I [110]

CV(4)-DFT Fourth No No N/A No T [93], I [109] T [109], I [109]

CV(∞)-DFT ∞ No No N/A No T [59], I [111] T [60], I [60]

SCF-CV(∞)-DFT ∞ Yes No N/A No T [59], I [60] T [60], I [104]

RSCF-CV(∞)-DFT ∞ Yes No Second Yes T [61], I [61] T [61], I [104]

SOR-R-CV(∞)-DFT ∞ No Uai ¼ δabδij Second Yes T [62] T [62], I [62]

COL-RSCF-CV(∞)-DFT ∞ Yes Uai ¼ δij Second Yes T [104] T [104], I [104]

SVD-RSCF-CV(∞)-DFT ∞ Yes γ1 ¼ 1 Second Yes T [104] T [104], I [104]

‘T’ indicates that it is introduced theoretically.

‘I’ indicates that it is implemented into the code.

Table 1. Variation of CV-DFT applied.
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when compared to bVKS
XC

( r
!
) from an exact functional derived from high-level wave function

theory [71–74]. This results in higher occupied orbital (~εi) and virtual orbital (~εa) energies

obtained with ~V
KS
XC

( r
!
) as opposed to those ((bε i),(bεa)) derived from bVKS

XC
( r
!
). Additionally, the

weakness of ~VKS
XC

( r
!
) becomes apparent at medium and large separations r from the polyatomic

center of mass where it decays exponentially with r, while bVKS
XC

( r
!
) decays as � �1=r.

Excitation energies in TD-DFT are not necessarily affected by the instability of ~V
KS
XC

( r
!
) for

medium to large values of r in the valence region and in the density tail. This is primarily due

to the dependence of the excitation energies in TD-DFT to the difference ~εa � ~εi. As can be

noted, the large errors in the individual orbital energies might be canceled after the energy

difference is calculated provided that the average potential experienced by ψ
i
and ψ

a
shows

similar deviations from bVKS
XC

( r
!
). Resultantly, the success of TD-DFT for valence excitations is

attributable to this phenomenon for transitions ψ
i
! ψ

a
where the overlap Sia between the two

densities ri and r
a is large [92, 114]. However, for cases such as Rydberg transitions [71–74] as

well as charge-transfer excitations [77, 79, 82, 90, 96, 97, 115] where Sia is small, the error in

~V
KS
XC

( r
!
) gets more pronounced. It is a common practice in the case of small Sia to construct

specialized potentials [71–74, 77, 79, 82, 90–98] in which the proper �1=r decay is enforced

yielding acceptable results. The disadvantage here is that these parameterized potentials might

yield inaccurate results for transitions in which Sia >> 0.

Since Rydberg transitions are characterized by a single orbital replacement ψ
v
! ψ

r
, RSCF-

CV(∞)-DFT will give results very similar to ΔSCF-DFT; this similarity in case of a single NTO

transition has been demonstrated in [104]. Although for ΔSCF-DFT, states of the same symme-

try as the ground-state almost always decompose to the ground-state, this weakness is absent

in RSCF-CV(∞)-DFT. The RSCF-CV(∞)-DFT triplet and singlet transition energies for these

single orbital replacement-type excitations are obtained as special case of Eqs. (26) and (27),

with the singlet excitation energy given as 2ΔEM � ΔET . In the analysis of Rydberg excitations

based on RSCF-CV(∞)-DFT, the excitation energy is considered as a sum of the ionization

potential (IP) of a neutral species, A, and the electron affinity (EA) of the resulting cation, Aþ,

after ionization: ΔE ϕ
v
! ϕ

r

	 

= EA(A+, ϕ

v
, ϕ

r
) þ IP(A, ϕ

v
). Thus, errors in the excitation

energies are due to error in the calculated EAs and IPs. Consequently, a method or ‘specialized’

XC functional that provide accurate EAs and IPs would in turn afford accurate Rydberg

excitation energies [100].

Shown in Table 2 for comparison with the experimental data are the IPs (N2) and EAs (Nþ

2 )

calculated by RSCF-CV(∞)-DFT (or ΔSCF-DFT). The near-perfect agreement (RMSDs between

0.1 and 0.3 eV) with the experimental data is transferred to the excitation energies afforded by

the RSCF-CV(∞)-DFTmethod. As noted previously by Verma and Bartlett for functionals used

within TD-DFT [118–120] and the authors of the work discussed here [100]. A test set including

73 excitations (32 singlet, 41 triplet) from nine different species (N2, 5; CO, 7; CH2O, 8; C2H2, 8;

H2O, 10; C2H4, 13; Be, 6;Mg, 6; Zn, 10) has been used. Broken down into the different species, the

results are given in Table 3 in terms of mean absolute error (MAE) and root-mean-square

deviation (RMSD).
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Energy term LDA BP86 B3LYP LCBP86*c LCBP86d Expt.

IP(N2, σg) 15.63 15.50 15.74 15.96 16.38 15.58e,f

IP(N2, πu) 17.46 17.07 16.87 17.22 17.18 17.07f

EA(N2
+, σg, 3sσg, S) �3.64 �3.61 �3.49 �3.55 �3.44 �3.38g

EA(N2
+, σg, 3pπu, S) �2.92 �3.01 �2.87 �2.81 �2.77 �2.68g

EA(N2
+, σg, 3pσu , S) �2.84 �2.95 �2.79 �2.71 �2.66 �2.60g

EA(N2
+, πu, 3sσg, S) �3.77 �3.77 �3.71 �3.73 �3.67 �3.83g

EA(N2
+, σg, 3sσg, T) �3.82 �3.81 �3.73 �3.79 �3.72 �3.58h

aEnergies in eV.
b[72].
cRefers to LC functional combined with BP86 and ω = 0.40.
dRepresents LC functional combined with BP86 and ω = 0.75.
e[116].
f[117].
gEvaluated as EA(Aþ, ϕv, ϕr, S) = ΔES(ϕv ! ϕr) � IP(A, ϕv).
hEvaluated as EA(Aþ, ϕv, ϕr, T) = ΔET(ϕv ! ϕr) � IP(A, ϕv).

Data represented in this table was first published in [100].

Table 2. IPa of N2 and EAa of Nþ

2 calculated with ΔSCF using an extended basis setb and five different functionals.

Species No. of states LDA BP86 B3LYP LCBP86*c LCBP86d

N2 5 0.27 0.34 0.05 0.23 0.62

CO 7 0.22 0.43 0.13 0.12 0.37

CH2O 8 0.21 0.28 0.12 0.20 0.34

C2H2 8 0.31 0.50 0.52 0.25 0.24

H2O 10 0.27 0.17 0.14 0.21 0.24

C2H4 13 0.15 0.20 0.28e 0.28 0.29

Be 6 0.45 0.60 0.47 0.31 0.23

Mg 6 0.18 0.35 0.19 0.13 0.12

Zn 10 0.18 0.25 0.27 0.34 0.46

RMSD — 0.24 0.32 0.24 0.23 0.32

aEnergies in eV.
b[72].
cRefers to LC functional combined with BP86 and ω = 0.40.
dRepresents LC functional combined with BP86 and ω = 0.75.
eComprising 12 states.

Data represented in this table was first published in [100].

Table 3. Summary of RMSDs of Rydberg excitation energiesa calculated with ΔSCF using an extended basis setb and five

different functionals.
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The results in Table 3 for RSCF-CV(∞)-DFT (or ΔSCF-DFT) are in general better than TD-DFT

with the same functionals but at par with TD-DFT results with ‘specialized’ functionals [71–74].

With this benchmark the suitability of RSCF-CV(∞)-DFTwithout the need for sophisticated (or

‘specialized’) functionals for Rydberg excitations has been demonstrated. The origin of this

good performance is attributable to the ability of RSCF-CV(∞)-DFT to afford good estimates of

IPs and EAs for all functionals [100, 121, 122]. Admittedly, fortuitous error cancelation in IPs

and EAs obtained for both RSCF-CV(∞)-DFT and TD-DFT plays a role in the accuracy of the

resultant excitation energies.

3.2. Charge-transfer excitations

In this subsection we will have a look at excitations with charge-transfer character.

It is well known that TD-DFTapplied with standard local exchange and correlation functionals

has difficulties for transitions with charge-transfer character between two spatially separated

regions [82, 91, 109], a finding nicely explained by Drew, Weisman and Head-Gordon [114].

According to several authors, the reason lies in the exchange and correlation functional [79, 82,

91, 123, 124]. Indeed, a functional like CAM-B3LYP [125] includes a certain Hartree-Fock

exchange and results in a clear improvement of TD-DFT excitation energies for transitions

involving a charge-transfer character [79, 124, 126]. To further improve the asymptote of the

exchange-correlation potential, long-range corrected hybrid scheme like the ones proposed in

[76, 95, 98, 127] and asymptotically corrected model potential scheme like in [128, 129] have

been designed. Of course modifying the functional is not the only approach, and it is not

surprising also that other DFT-based approaches have been suggested, all having their own

assets and drawbacks. Several of them have been applied for excitations involving charge-

transfer character, for example, constrained orthogonality method (COM) [49, 50], maximum

overlap method (MOM) [56], constricted variational density functional theory (CV-DFT) [58]

and its extensions [104, 105], constrained density functional theory [130], self-consistent field

DFT (ΔSCF-DFT) [131], orthogonality constrained DFT (OCDFT) [63], ensemble DFT [132, 133]

and subsystem DFT (FDE-ET) [134].

Ziegler et al. showed in [115] how the theoretical framework of CV-DFT is able to cope with

excitations including a charge-transfer character and demonstrated this capability with differ-

ent applications [102, 109, 121]. Here, we will have a look at examples out of three of these

mentioned types.

3.2.1. C2H4XC2F4: long-range charge-transfer excitations

Ethylene tetrafluoroethylene, C2H4xC2F4, is a system well studied in literature [76, 91, 93, 114,

126, 134]. It allows for the study of the dependence of excitation energies on the separation of

the donor and acceptor and test for the expected �1=R behavior.

For the system C2H4xC2F4, two transitions are of particular interest, the excitations HOMO !

LUMO and HOMO-1 ! LUMO + 1, both resulting in an excited state of b1 symmetry. With

these transitions, a charge is transferred between the two molecules C2H4 and C2F4. Although

the concrete orbital localization is highly functional dependent, the orbitals HOMO-1, HOMO,
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LUMO and LUMO + 1 are from certain separation distance, dominantly located on one of the
fragments, as visible in Figure 1 (see, e.g., [77, 102]). It should be noted that for a classification
to one of the aforementioned types, it is sufficient when the mentioned ground-state orbitals
contribute the most, not necessarily uniquely.

The results obtained with CV-DFT and selected reference values for comparison are shown in
Figure 2.

First, consideration will be given to the singlet and triplet excitation results with different
versions of CV-DFT, where the transition matrix, U, is not optimized, before turning to the
most general form RSCF-CV(∞)-DFT.

CV(∞)-DFT results in a �1=R-like behavior, or when assuming a ΔE Rð Þ ¼ �c1=Rþ c0 function,
fitting coefficients c1 for the results presented in Figure 2 of 1.1 and 0.9 Eha0 are obtained. For
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Figure 2. C2H4xC2F4 vertical excitation energies for singlets (circles) and triplets (triangles) using CV(∞)-DFT (orange),
R-CV(∞)-DFT (red) and RSCF-CV(∞)-DFT (dark red). The values for the revised hessian out of [96] (purple-filled circles), LC-
BLYPout of [76] (black-filled circles) andSAC-CI out of [76] (gray-filled circles) are given as reference. The lines serve as a guide
for the eyes, andwhen the excitation is not dominated byone of the charge-transfer excitations, we set its value to zero (and are
therewith not visible in the figure). (reprinted from Senn F, Park YC. The Journal of Chemical Physics. 2016;145(24):244108-1 –
10). DOI: 10.1063/1.4972231. with the permission of AIP Publishing. Color specifications refer to the original figure).

(a) HOMO-1 (b) HOMO (c) LUMO (d) LUMO+1

Figure 1. C2H4xC2F4: Representation of ground-state KS orbitals (LDA) (R ¼ 5.0 Å) (reprinted from [102], with the
permission of AIP Publishing).

Density Functional Calculations - Recent Progresses of Theory and Application42



these excitations, similar energies are reported using the revised Hessian in [93]. In R-CV(∞)-
DFT [61], relaxation of orbitals not directly participating is allowed (see Section 2.3), and it is of
no surprise that excitation energies decrease. These results still correspond to a �1=R behavior
(resulting in fitting coefficients c1 for the values presented in Figure 2 of 1.1 and 0.9 Eha0). For
the HOMO ! LUMO transition, the values agree with those reported in [76] using LC-BLYP
(MAD = 0.2 eV, RMSD = 0.2 eV). Thus, the extrapolated infinite separation value, ΔER!∞ ¼

12.7 eV, is close to the ΔER!∞ ¼ 12.5 eV reported in [76].

Turning next to the triplet excitations for both CV(∞)-DFT and R-CV(∞)-DFT, similar findings
are obtained. At longer distances, no spin interaction is expected; as envisioned the triplet
excitation energies match values obtained for the corresponding singlet excitation. Excluding
the HOMO ! LUMO triplet excitations with R < 6 Å, a nice �1=R behavior is obtained.

Until now all the applied methods have one thing in common: the transition matrix U has
not been optimized. This means the character of the transition itself has not been changed.
With CV-DFT being a variational method, the transition matrix U can be optimized with the
aim of minimizing the energy (see Section 2.3). In this case the RSCF-CV(∞)-DFT method
[59–61] is applied, whose strength and merits have been demonstrated several times [100,
104, 121]. From Figure 2, it can clearly be seen that RSCF-CV(∞)-DFT minimizes the excita-
tion energy at the expense of nearly distance-independent excitation energies and the loss of
the �1=R long-range dependence. This energy gain stems from the optimization of the
transition matrix U; a thorough explanation is given in [102]. In summary, the charge-transfer
transitions, HOMO ! LUMO and HOMO-1 ! LUMO + 1, are dominated by single NTO
transitions. Optimizing the transition matrix results in a mix of (mainly) two NTO transitions
with (at least one) different participating fragments, meaning that the two charge-transfer
excitations, clearly separated before, do mix now. This mixing of the two different excitations
leads to a smaller destabilization and a larger stabilization, resulting in a clear reduction of
the excitation energy [102]. An additional issue comes now from having a partial charge
cA ∈ 0; 1ð Þ located on fragment A and a partial charge 1� cA on fragment B, even when these
two fragments are further apart. Therefore, from a certain distance on this mixing should be
suppressed. To block the optimization algorithm from mixing such unwanted excitations in
RSCF-CV(∞)-DFT calculations, two different strategies have been proposed in [102]. But
while working, they both depend highly on an arbitrarily chosen value for a threshold
parameter. It remains to be seen, if a strategy without the need of such a parameter can be
found for RSCF-CV(∞)-DFT.

3.2.2. Polyacenes: excitations with hidden charge-transfer character

The focus of this subchapter is on polyacenes, a system with an intramolecular charge-transfer-
like character, also referred to as charge-transfer in disguise [135]. The polyacenes are understood
as a number nr of linearly fused benzene rings. Such linear polyacenes possess π! π

⋆ excita-
tions La (or B2u when the x-axis corresponds to the long molecular axis) and Lb (or B3u) with
distinct properties, described, for instance, in [136]. Additionally, these polyacenes have a singlet-
triplet gap for which a function of nr has been proposed. An extrapolation of this function gave
rise to a discussion: if polyacenes with a certain size would have a triplet ground state [137–143].
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Polyacenes and their derivatives have been used in a plethora of applications; an overview of

some of these applications can be found in [144, 145]. Thus, it is not surprising that polyacenes

and their excitation energies have been studied extensively. While high-level calculations exist,

see, for example, the work presented in [140, 141, 143], considering the size of larger

polyacenes TD-DFT calculations is more common. But the latter ones applied with standard

functionals have several difficulties. This is why different methods and strategies have been

used, each one having its advantages, and we refer to [101] and references therein for more

details. Before moving on to the results obtained with CV-DFT, it must be noted that the

polyradical character in the ground-state builds up with increasing number of fused acenes,

which was deduced by Ibeji et al. [143] and was confirmed by Plasser et al. [146]. This

polyradical character gets bigger and for polyacenes larger than hexacene even big enough to

lead to a ‘breakdown of single reference approximation used to describe the ground-state of

polyacenes in conventional DFT’ [132]. Within CV-DFTwe rely on a DFT ground-state descrip-

tion. The awareness of this limitation is the reason why only polyacenes as large as hexacene

have been studied with CV-DFT.

We will now have a look at the singlet excitation energies. As these energies are not directly

measurable, we will use the modified experimental values from Grimme and Parac [136] as

reference, for simplicity referred to as experimental results.

As visible from Table 4 and Figure 3, CV(∞)-DFTwith LDA results in vertical singlet excitation

energies in a very good agreement with the experimental values [147], while for R-CV(∞)-DFT

[101], the values deviate more from the experimental ones, although still in an acceptable

agreement (a discussion of the difference is given in [101]). As can be seen from Table 4 and

Figure 3, both versions of CV-DFT obtain a crossover between 11B2u and 11B3u for Anthracene

onwards, which is in agreement with experimental findings.

No. acene units Exp.a CV(∞)-DFTb R-CV(∞)-DFTc

11 B2u 11B3u ΔE
d 11 B2u 11B3u ΔE

d 11B2u 11B3u ΔE
d

2 4.66 4.13 0.53 4.73 4.39 0.34 4.58 4.42 0.16

3 3.60 3.64 �0.04 3.68 3.73 �0.05 3.46 3.75 �0.29

4 2.88 3.39 �0.51 2.91 3.32 �0.41 2.69 3.33 �0.63

5 2.37 3.12 �0.75 2.35 3.03 �0.68 2.15 3.04 �0.89

6 2.02 2.87 �0.85 1.93 2.82 �0.89 1.74 2.83 �1.09

MAD — — — 0.06 0.11 — 0.18 0.12

RMSD — — — 0.06 0.13 — 0.19 0.15

a Out of [136].

b Out of [147].

c Out of [101].

d ΔE ¼ ΔE 11B2u

	 


� ΔE 11B3u

	 


.

Table 4. Vertical singlet excitation energies (in eV) for linear polyacenes.
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Next, take a look at the obtained triplet excitation energies for the studied polyacenes, shown

in Table 5. The equivalency of CV 2ð Þ-DFT and TD-DFT with the TDA stated in theory section

(Section 2.2) is once again confirmed by the numbers in Table 5. It can also be seen that in the

triplet case, the energies obtained with R-CV(∞)-DFT change only slightly in comparison with

the values obtained with CV 2ð Þ-DFT, on average by 0.05 eV (for comparison, singlet excitations

have a MAD of 0.30 eV for 11B2u and 0.13 eV for 11B3u, values out of [101, 147]). This

surprisingly small difference is due to the nature of the excitation, and for a further discussion

of the contributions, we refer to [101].

As previously pointed out in [104], R-CV(∞)-DFT results in triplet states of excitation energies

being lower than the ones obtained by coupled cluster methods. Nevertheless, with a RMSD of

0.31 and 0.29 eV, respectively, when compared to the values given in [140 and 143], the results

are in reasonable agreement (we note that coordinates were optimized slightly differently).

The nature of the triplet excited states is in agreements with the findings of [148], namely, a

13B2u state for the first triplet excitation, T1; for the second triplet excitation, T2;
3B3u for

Naphthalene; and 3B1g for Anthracene to Hexacene.
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Figure 3. Vertical singlet excitation energies for the states 11B2u (circles) and 11B3u (crosses) of linear polyacenes: R-CV(∞)-

DFT (maroon), ΔSCF-DFT (gray), CV-DFT (orange, out of [147]), [143] (dark blue), experimental values (black, out of [136]).

The solid lines serve as guides for the eyes. (reprinted with permission from Senn F, Krykunov M. The Journal of Physical

Chemistry. A. 2015;119(42):10575-10581. DOI: 10.1021/acs.jpca.5b07075. Copyright 2015 American Chemical Society. Color

specifications refer to the original figure).
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From Figure 4 one can see the singlet-triplet gap (ST) decreasing, resembling an exponential

function. In order to estimate the ST gap for infinitely large polyacenes, giving an indication if

there would be a ST crossover, several authors fitted the excitation energies to the function

f nrð Þ ¼ aexp �bnrð Þ þ c (see [140, 142, 143]). With the results of R-CV(∞)-DFT for the vertical

transition, the limes of an infinitely long polyacene EST
vert nr ! ∞ð Þ ¼ 0:3� 4:5ð Þ kcal mol�1 have

been obtained and for the ‘adiabatic’ transition EST
ad nr ! ∞ð Þ ¼ (�1.6 � 4.0) kcal mol�1 [101]. For

the ‘adiabatic’ or well-to-well excitations, results from different methods in literature are contro-

versial about a possible ST gap crossover ([140, 142] versus [143, 149, 150]); for TD-DFT it even

depends on the functional used [142]. Therefore, necessarily the findings presented here will

agree with some findings, while disagree with others. It should be noted that these energies are

very small, actually smaller than the estimated accuracy of the CV-DFT method, and with its

error it must be regarded as giving only a tendency for no ST crossover. Two additional points of

precaution which puts the value of the extrapolated results into question: (a) it has been shown

in [142] how a small change of a single excitation energy can influence the obtained polymeric

limit, and (b) one should have in mind the change of the ground-state character with the

polyacene length and, thus, the number of fused acenes.

3.2.3. Charge-transfer excitations in transition metals

The complicated electronic structure of transition metal (TM) complexes [151] makes them ideal

for testing the performance of newly developed methods. This section deals with charge-transfer

(and hidden charge-transfer) excitations in these complexes, more precisely the 3d complexes

MnO4
�, CrO4

2� and VO4
3�, as well as their 4d congeners RuO4, TcO4

�, MoO4
2� and 5d

homologues OsO4, ReO4
� and WO4

2� [99]. For these systems, the three lowest valence excita-

tions involving transitions from 1t1, 2t2 to 2e and 3t2 are considered [99]. The comparison is

No. acene units Vertical Adiabatic

R-CV(∞)-DFTa CV 2ð Þ-DFTa TDDFTb Ref. [143] Ref. [140] R-CV(∞)-DFTa Exp.c Ref. [143]

2 3.16 3.08 3.08 3.34 3.31 2.89 2.64 2.70

3 2.15 2.09 2.09 2.47 2.47 1.94 1.86 2.06

4 1.49 1.44 1.44 1.82 1.76 1.31 1.27 1.48

5 1.02 0.99 0.99 1.37 1.37 0.88 0.86 1.11

6 0.69 0.66 0.66 1.07 1.00 0.57 0.54 0.83

MADd
— 0.05 0.05 0.31 0.28 — 0.09 0.19

RMSDd
— 0.06 0.06 0.32 0.29 — 0.12 0.20

a Out of [101].

b With LDA as functional.

c Out of [143] and references therein.

d To be understood as the deviation of the values obtained with R-CV(∞)-DFT in comparison to the values of this column

as reference values.

Table 5. Vertical and adiabatic triplet excitation energies (in eV) for linear polyacenes.
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made with available experimental data [152, 153] and high-level ab initio calculations [154–160].

There are several adjustable parameters that can influence the excitation energies. These include

the size of the basis set used, functionals used, geometry (optimized structures or experimental

geometries), medium (since the complexes are anions), etc. Use was made of experimental

structures which lead to higher excitation energies (0.1–0.3 eV) compared to optimized struc-

tures. Marginal influence of solvation was found for the three valence excitations; the calculated

COSMO [161, 162] excitation energies lower the energies by 0.01–0.02 eV [163, 164].

Table 6 displays the RMSD between the first three experimental dipole-allowed transitions

and the corresponding values calculated by RSCF-CV(∞)-DFT.

On average, the three functionals B3LYP, PBE0 with an intermediate fraction of HF exchange

and LCBP86* have the lowest RMSD of 0.2 eV, whereas the local functionals (LDA, BP86, BPE)

and BHLYP with the highest HF fraction and LCBP86 have a somewhat larger RMSD of 0.3 eV

for both 3d and 4d + 5d averages. TD-DFT with the same functionals performs poorly for the

3d complexes but shows good agreement with experiment for the heavier tetraoxo complexes.
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Figure 4. Triplet excitation energies for the 13B2u states of linear polyacenes: R-CV(∞)-DFT (maroon),ΔSCF-DFT (gray), SVD-

R-CV ∞ð Þ-DFT (orange), [143] (dark blue), [140] (light blue), experimental values (black, out of [143] and references therein).

The symbols are used to distinguish between vertical transitions (crosses) and adiabatic as well as ‘imitated adiabatic’

transitions (circles). The lines are the curves fitted to the function f nrð Þ ¼ a exp �bnrð Þ þ c and serve as guides for the eyes.

(reprinted with permission from Senn F, Krykunov M. The Journal of Physical Chemistry. A. 2015;119(42):10575-10581. DOI:

10.1021/acs.jpca.5b07075. Copyright 2015 American Chemical Society. Color specifications refer to the original figure).
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This shows a clear lack of consistency. However, RSCF-CV(∞)-DFT shows good and consistent

performance for all complexes studied here.

Next, the excitation energies of the octahedral TM complexes [103] are presented. The analyses

will be primarily focused on Cr(CO)6 and [Fe(CN)6]
4� where experimental excitation energies

are available. The first system to be considered is Cr(CO)6; the RSCF-CV(∞)-DFT results are

displayed in Table 7. The results afforded by RSCF-CV(∞)-DFTare in good agreement with the

experimental data even at the RSCF-CV(∞)-DFT/LDA level of theory. The RSCF-CV(∞)-DFT/

LDA results show performance identical to the TD-DFT/B3LYP [151] and better performance

than TD-DFTwith LDA and GGAs.

Considered next is the [Fe(CN)6]
4� complex; the results are shown in Table 8. The RMSDs here

were calculated with the lower limit of the experimental [153] excitation energies where ranges

are applicable. There are some theoretical calculations carried with TD-DFT [151] and other

DFT-based approaches [151] as well as some high-level ab initiomethods [156]. Again, there are

good performances even for the LDA and GGA functionals. The accurate excitation energies

afforded by the RSCF-CV(∞)-DFT method when compared to the experimental data are as a

result of, to some extent, fortuitous error cancelation.

Complex LDA BP86 PBE B3LYP BHLYP PBE0 LCBP86* LCBP86

MnO_
4 0.41 0.32 0.33 0.15 0.62 0.19 0.24 0.37

CrO4
2� 0.40 0.31 0.34 0.09 0.55 0.04 0.22 0.32

VO4
3_ 0.25 0.14 0.16 0.07 0.18 0.14 0.27 0.37

RuO4 0.32 0.28 0.28 0.21 0.44 0.22 0.19 0.31

TcO_
4 0.10 0.13 0.13 0.25 0.13 0.29 0.27 0.17

MoO4
2_ 0.14 0.23 0.23 0.06 0.22 0.18 0.13 0.34

OsO4 0.53 0.51 0.50 0.27 0.39 0.31 0.21 0.26

ReO_
4 0.36 0.43 0.43 0.14 0.25 0.16 0.14 0.16

WO4
2� 0.43 0.51 0.51 0.14 0.11 0.07 0.11 0.16

Average 3df 0.35 0.26 0.28 0.10 0.45 0.12 0.24 0.35

Average 4d + 5dg 0.31 0.34 0.34 0.19 0.27 0.22 0.19 0.24

Total average 3dh 0.33 0.31 0.32 0.16 0.34 0.18 0.21 0.28

aRoot-mean-square deviation.
bThe reference is the observed vertical excitation energies for the three first dipole-allowed transitions.
cFor MoO4

2_ and WO4
2� only, the first two experimental transitions are available.

dDeviations are in eV.
eNo TDA was applied.
fAverage of the three 3d complexes.
gAverage of the six 4d and 5d complexes.
hAverage over all complexes.

Data represented in this table was first published in [99].

Table 6. RMSDs for tetraoxo excitation energies based on RSCF-CV(∞)-DFT and a TZ2P basis seta, b, c, d, e.
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STATE RASPT2b LDA BP86 PBE B3LYP PBE0 BHLYP LCBP86*c LCBP86d Expt.e

Singlet

1T1g(MC) 4.98 5.33 5.14 5.17 4.85 5.25 4.52 4.78 4.97 —

1T1u(MLCT) 4.50 4.45 4.39 4.40 4.48 4.62 4.68 4.61 4.37 4.44

21T1u(MLCT) 5.42 5.46 5.47 5.47 5.73 5.93 6.20 6.23 5.85 5.48

Triplet

13T1g(MC) 4.28f 4.72 4.88 4.91 4.54 4.62 4.15 4.18 4.49 —

13T2g(MC) 4.64f 4.63 4.59 4.60 4.39 4.45 4.17 4.45 4.59 —

RMSD 0.06 0.02 0.04 0.03 0.18 0.34 0.54 0.54 0.27

aEnergies in eV.
b[154].
cRepresents LC functional combined with BP86 with ω = 0.75.
dRefers to LC functional combined with BP86 using ω = 0.4.
e[152].
f[155].

Data represented in this table was first published in [103].

Table 7. Calculated excitation energiesa for Cr(CO)6 based on the RSCF-CV(∞)-DFT method.

STATE CASPT2b LDA BP86 PBE B3LYP PBE0 BHLYP LCBP86*c LCBP86d Expt.e

Singlet

1T1g(MC) 3.60 4.17 3.72 3.75 3.42 3.35 3.04 3.35 3.64 3.80–3.94

31T1u(MLCT) — 5.57 5.57 5.64 6.10 6.44 — — 6.34 5.69–5.89

41T1u(MLCT) — 5.83 5.80 5.72 6.25 6.63 — — 6.93 6.20

11T2g(MC) 4.33 4.05 3.74 4.12 4.47 4.46 4.47 4.14 4.37 4.43–4.77

Triplet

13T1g(MC) 2.67 3.60 3.39 3.41 2.98 2.90 2.49 2.56 2.93 2.94

RMSD 0.20f 0.42 0.41 0.33 0.25 0.44 0.40f 0.29f 0.44

aEnergies in eV.
b[156].
cRepresents LC functional combined with BP86 with ω = 0.75.
dRefers to LC functional combined with BP86 using ω = 0.4.
e[153].
fCalculated with three excitation energies.

Data represented in this table was first published in [103].

Table 8. Calculated excitation energiesa for [Fe(CN)6]
4� based on the RSCF-CV(∞)-DFT method.
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A look now at the electronic density change that accompanies the electronic excitation. Figure 5

(a and b) shows the plot of the density changes associated with the electronic transitions in Cr

(CO)6. The charge redistribution can be seen from the figure, where the density depletion (rocc),

the accumulation (rvir) as well as the density change (Δrex ¼ rvir � rocc) occurs, resulting from

the total change in density associated with the electronic transition. For the MLCT transition,

the rocc (Figure 5a) is situated on the Cr metal center, the area or space spun by the density that

is reminiscent of the dyz and the rvir is mostly situated on the equatorial CO ligands. The

depletion density is in the yz plane, the accumulation density is situated on the CO ligand,

and there is little interaction between them as can be seen from the difference (Figure 5b). The

movement of density is from the metal center to the ligands corresponding to an intramolecu-

lar charge-transfer transition. It is clear from Figure 5c that this transition has a significant

d ! d character. In the density plots that follow, there is a depletion in the density situated on

Figure 5. Δr associated with the CrCO6, red signifies depletion and green shows accumulation of density. (a) The density

change associated with the 11T1u state. (b) Exemplifies the density redistribution associated with the 21T1u state. (c)

Densities accompanying the calculated 11T1g state. (a) and (b) are MLCT-type transitions, and (c) is an example of MC-

type transition. See Seidu I. Excited-State Studies with the Constricted Variational Density Functional Theory (CV-DFT)

Method. PhD dissertation. University of Calgary; 2016 for coloured pictures.
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the metal with some contribution from the CO in the xy-plane and accumulation of density

largely on the central Cr metal along the yz-plane with some accumulation on the CO ligands

in the same plane.

Displayed in Figure 6 are the density plots for [Fe(CN)6]
4�. Similar features are seen here as

seen for Cr(CO)6. The differences in the density plots representing the MC transition; there is

more significant accumulation on the CN� ligands, and the density accumulation is in the

same plane (xy-plane) as the depletion density (dx2�y2–dxy). As for the MLCT, the associated

density movement is identical to that of Cr(CO)6 (see Figure 6(b and c)).

The benchmark studies on the tetrahedral and octahedral TM complexes probed the ability of

RSCF-CV(∞)-DFT to describe CT and hidden CT excitations. Use was made of the tetrahedral

d0 metal oxides as the first benchmark series since the tetra oxides have a long history as a

Figure 6. Δr associated with the Fe(CN)4�6 . (a) the density change associated with the 11T1g state. (b) Exemplifies the

density redistribution associated with the 31T1u state. (c) Densities accompanying the calculated 31T1u state. (a) Is an

example of MC-type transition, and (b) and (c) are MLCT-type transitions. Red signifies loss and green shows gain in

density. See Seidu I. Excited-State Studies with the Constricted Variational Density Functional Theory (CV-DFT) Method.

PhD dissertation. University of Calgary; 2016 for coloured pictures.
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challenging testing ground for new methods due to their complex electronic structure. In

general there is either a comparable performance for RSCF-CV(∞)-DFT and TD-DFT in cases

where TD-DFT shows good performances or RSCF-CV(∞)-DFT outperforms TD-DFT.

A trend that manifests itself at larger r for the TM complexes is the excitation energies which

become more functional dependent and less accurate. Further, the accuracy of RSCF-CV(∞)-

DFT for smaller r is not attributable to the ability of our method to afford accurate values of the

IP of the complex and the EA of the cation formed alone; some error cancelation occurs when

the IPs and EAs are combined to obtain the excitation energy. Finally, it is possible to plot the

density change associated with the electronic transitions afforded by our method with regions

of density depletion and accumulation supporting a qualitative classification of excitations as

MLCT or MC.

4. Conclusion

In this chapter we presented the CV-DFT method and its different variants. While CV 2ð Þ-DFT

is consistent with (adiabatic) TD-DFTwithin the TDA approximation, CV-DFT allows to go to

higher order. Indeed, its strength lies in going beyond linear response and therewith obtaining

distance-dependent contributions to the excitation energy naturally. Additionally, the theory

allows for the calculation of excitation energies for singlet and triplet states on the same

footing. Of course as a variational method, CV-DFT relies on an accurate ground-state descrip-

tion. The theoretical framework allows us to apply special restrictions as done in [104] and

therewith obtain a numerically stable method being numerically equivalent to ΔSCF-DFT.

How CV-DFT performs has been shown in Section 3 with the aid of selected examples of

charge-transfer or Rydberg excitation type. With these examples, we could demonstrate how

CV(∞)-DFT is able to reproduce the expected �1=R long-range behavior for charge-transfer

excitations. When orbital relaxation is allowed, the excitation energies obtained by R-CV(∞)-

DFT with LDA agree nicely with the findings of long-range corrected functionals. For short

distance, the optimization of the transition matrix U is clearly beneficial [100, 104, 121]. But for

medium- and long-range distances, a notion of care is to be taken as the optimization may lead

to an unwanted mixing of transitions as shown in the case of C2H4xC2F4. Also, for excitations

with hidden charge-transfer character, meaningful results are obtained with CV-DFT, for

example, accurate results for the first singlet excitation energies of polyacenes [101, 147] for

polyacenes as large as hexacene. Not only is CV-DFT able to deliver meaningful results, even

for the LDA functional, it has an incredible ability to provide a qualitative picture of the nature

or type of excitation under consideration. This is seen in the case of the TM complexes, a

complicated yet excellent test set for assessing the range of applicability of every newly

developed method. In the case of Rydberg excitations, RSCF-CV(∞)-DFT produces meaningful

results without the need for sophisticated (or ‘specialized’) functionals. This good performance

is attributable to the ability of our method affords good estimates of IPs and EAs for all

functionals [100, 121, 122]. Admittedly, fortuitous error cancelation in IPs and EAs obtained

for both RSCF-CV(∞)-DFT and TD-DFT plays a role in the accuracy of the resultant excitation

energies.
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