
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800



Chapter 9

Coral Reef Resilience Index for Novel Ecosystems: A
Spatial Planning Tool for Managers and Decision
Makers - A Case Study from Puerto Rico

Edwin A. Hernández-Delgado, Sonia Barba-Herrera,
Angel Torres-Valcárcel,
Carmen M. González-Ramos,
Jeiger L. Medina-Muñiz,
Alfredo A. Montañez-Acuña, Abimarie Otaño-Cruz,
Bernard J. Rosado-Matías and
Gerardo Cabrera-Beauchamp

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.71605

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons 
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, 
and reproduction in any medium, provided the original work is properly cited. 

Edwin A. Hernández-Delgado, Sonia Barba-Herrera, 
Angel Torres-Valcárcel, Carmen M. González-Ramos, 
Jeiger L. Medina-Muñiz, Alfredo A. Montañez-Acuña, 
Abimarie Otaño-Cruz, Bernard J. Rosado-Matías and 
Gerardo Cabrera-Beauchamp

Additional information is available at the end of the chapter

Abstract

Timely information is critical for coral reef managers and decision-makers to implement 
sustainable management measures. A Coral Reef Resilience Index (CRRI) was developed 
with a GIS-coupled decision-making tool applicable for Caribbean coral reef ecosystems. 
The CRRI is based on a five-point scale parameterized from the quantitative characteriza-
tion of benthic assemblages. Separate subindices such as the Coral Index, the Threatened 
Species Index, and the Algal Index also provide specific information regarding targeted 
benthic components. This case study was based on assessments conducted in 2014 on 11 
reef sites located across 3 geographic zones and 3 depth zones along the southwestern 
shelf of the island of Puerto Rico, Caribbean Sea. There was a significant spatial and 
bathymetric gradient (p < 0.05) in the distribution of CRRI values indicating higher degra-
dation of inshore reefs. Mean global CRRI ranged from 2.78 to 3.17 across the shelf, rank-
ing them as “fair.” The Coral Index ranged from 2.60 to 3.76, ranking reefs from “poor” 
to “good,” showing a general cross-shelf trend of improving conditions with increasing 
distance from pollution sources. Turbidity and ammonia were significantly correlated 
to CRRI scores. Multiple recommendations are provided based on coral reef conditions 
according to observed CRRI rankings.

Keywords: benthic community structure, coral reefs, Coral Reef Resilience Index 
(CRRI), Caribbean Sea, Puerto Rico, ecosystem health, marine management, marine 
biodiversity, novel ecosystems, conservation, coral bleaching, tropical ecosystems
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1. Introduction

1.1. The emergence of novel ecosystems

Coral reefs across regional to global scales are showing unequivocal signs of decline. The long-
term combined impacts of local human-driven factors, such as land-based source pollution 

(LBSP), water quality decline and overfishing, as well as large-scale climate change-related 
factors, such as massive coral bleaching, coral disease outbreaks, and mass coral mortalities, 

have resulted in a large-scale alteration of coral reef community dynamics and in the irrevers-

ible demise of coral assemblages [1–4]. These have resulted in a net coral reef decline and in 

often irreversible benthic community regime shifts [5–9], with significant impacts on multiple 
coral and fish functional groups [10]. These alterations might impair considerable coral reef 

ecosystem functions. Three massive coral bleaching events occurred across the northeastern 

Caribbean region in 1987, 1998, and 2005. But the 2005 sea surface warming episode and mas-

sive coral reef bleaching event caused an unprecedented coral mortality episode across the 

northeastern Caribbean region, including P.R., that mostly impacted large reef-building taxa 

[11–14]. More than a decade later, there is still no net recovery among many of the impacted 

coral species, and reef communities have followed a significantly different trajectory resulting 
in the emergence of novel ecosystems largely dominated by ephemeral coral species [15] and 

macroalgal growth [16–18]. Although such impacts have been well documented, long-term 

impacts associated to the emergence of novel benthic assemblages on reef functions, values, 

and benefits still remain largely unknown. Such rapidly changing reefs have been deemed as 
unhealthy. However, there are still no clear definitions of what exactly is a healthy reef.

Large-scale declines in Caribbean coral reef fish communities have also been documented 
across fishery target species, mostly resulting from long-term fishing effects [19, 20], but also 

across multiple nontarget taxa resulting from large-scale, long-term coral reef habitat decline 

and flattening [21, 22]. Coral cover and topographic complexity are critical components of 

habitat structure for supporting diverse fish assemblages and must be managed accordingly 
[23−25]. Evidence from a multiplicity of fish assemblage data sets across the Caribbean sug-

gests that specialist reef fish species have largely declined across very large spatial scales, 
implying the large-scale nature of reef decline and its negative consequences on multiple fish 
taxa [22, 25]. Highly altered novel ecosystems have emerged from largely declining benthic 

communities. Novel ecosystems can be defined as: “ecosystems containing new combinations of 

species that arise through human action, environmental change, and the impacts of the deliberate and 

inadvertent introduction of species from other regions. Novel ecosystems (also termed ‘emerging ecosys-

tems’) result when species occur in combinations and relative abundances that have not occurred previ-

ously within a given biome. Key characteristics are novelty, in the form of new species combinations and 

the potential for changes in ecosystem functioning, and human agency, in that these ecosystems are the 

result of deliberate or inadvertent human action” [26]. Novel coral reef ecosystems have emerged 

out of the dramatic changes in benthic community trajectory that have followed long-term 
reef decline and slowly evolving regime shifts, favoring macroalgal and nonreef building taxa 

dominance [27]. Coral reefs across regional and global scales are showing unequivocal signs 
of distress, with the emergence of novel assemblages of multiple taxa, including corals, algae, 
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sponges, fish, and seagrasses. Such significant regime shifts have pushed out many coral reefs 
beyond the point of recovery. Hobbs et al. [28] suggested that these novel systems will require 

significant revision of conservation and restoration norms and practices away from the traditional 
place-based focus on existing or historical assemblages. But how much have such changes impacted 

ecosystem functions, resilience, benefits, and values is still poorly understood due to the lack 
of appropriate indicators of reef condition. This information is essential for reef managers and 

decision-makers.

1.2. The concept of “coral reef health” in the context of novel ecosystems

One fundamental challenge is still the need to develop an operational/functional definition 
of “coral reef health,” particularly in the context of novel ecosystems. According to McField 

and Kramer [29], a healthy reef would be “the presence of indicator species,” “maintaining key 

processes like herbivory,” “having higher fishing catches/landings,” or even “just looking like it did in 

years past.” These seem to be obvious indicators of reef health. But there is not an exact defini-
tion relying on a single indicator species, taxa, or group due to the highly variable nature of 

coral reefs. For instance, a coral reef with high fish species richness, abundance, or biomass 
may appear to be healthy, but if its living coral cover is very low, then it may not, depending 

on which indicator we use. Therefore, the definition of reef health must incorporate a suite 
of indicator variables and then combine and weight them in such a way that a more holistic 

index can be defined to rank a coral reef as healthy, fair, or unhealthy. A more holistic defini-
tion of a healthy reef was provided by McField and Kramer [29]: “A reef is healthy if it maintains 

its structure and function and allows for the fulfillment of reasonable human needs.” Alternatively, 

we suggest a broader definition: A reef is healthy if it maintains its structure, function, and self-

replenishing capacity, if it can naturally recover from disturbance, and if it can maintain its natural 

connectivity with other ecosystems and allows for the fulfillment of reasonable human needs. In this 

sense, the interaction of six factors can influence reef health (Figure 1). These include (1) eco-

system structure, (2) ecosystem processes, (3) connectivity, (4) human well-being, (5) gover-

nance, and (6) drivers of change.

The interaction of multiple processes is fundamental for maintaining reef health, including 

maintaining biodiversity, community structure, habitat extent, and abiotic factors (e.g., low 

sediment inputs, water quality, and sea surface temperature). Also, coral condition, reproduc-

tion, and recruitment success, high reef accretion:bioerosion rates (a positive carbon budget 
balance), and herbivory are important. Maintaining functional terrestrial-marine, genetic, 

ecological, and energetic connectivity is vital to support high productivity. In addition, a 

healthy reef should contribute to support human health (e.g., through food protein), local 

economy and livelihoods (e.g., fisheries, tourism-based businesses, coastal protection, and 
pharmacological products), and culture (e.g., traditional artisanal fisheries and other uses). 
Governance is a critical factor for sustaining healthy reefs, particularly if appropriate and 

operational public policies are fully implemented and supported by a strong legal framework 

and enforcement. However, the lack of available human resources (e.g., natural resource man-

agers, scientific staff, enforcement officers) is central for governance efficiency. Finally, a com-

bination of local, regional, and global drivers of change will determine reef health, including 
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factors that operate on different spatiotemporal scales. This may include local factors such as 
land use changes, tourism, agriculture and fishing, and regional/global factors such as climate 
change and extreme weather events.

As more of the Earth becomes transformed by human actions, novel ecosystems increase in 

importance, but these still remain barely studied. In the particular case of emergent novel 

coral reefs, their impact on fish assemblages or whether these new systems are persistent over 
large spatial and temporal scales still remains largely unknown. Also, how such alteration can 

affect ecosystem functions, resilience, benefits, and values remains poorly understood. There 
is also limited information with regard to novel reef ecosystem’s health and how reef health 

responds to gradients of human pressure. It might be difficult or costly to return such systems 
to their previous state, and hence consideration needs to be given to developing appropri-

ate real-time metrics applied to develop, modify, or adapt management goals and conserva-

tion approaches through the fine-tuning and implementation of coral reef health indices. 
This would provide rapid and effective tools for managers and decision-makers, information 
that would be critical to adapt management plans to face increasing climate change–related 

threats.

1.3. The development of coral reef health indices

There are multiple known attempts to implement indices to address reef health [30, 31]. Most 

classical examples of indicator parameters are based on single indicators such as percent live 

coral cover [32], the Mortality Index [33], the ratio between living and dead corals [34], or the 

size–frequency distribution of corals, with emphasis on estimating the proportion of small 
corals, which may indicate recruitment [35, 36]. There is also the Deterioration Index, which 

is based on the ratio between mortality and recruitment rates of branching corals [37]. Crosby 

Figure 1. Conceptual model of factors affecting coral reef health.
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and Reese [38] proposed an index for Pacific coral reefs using butterflyfish diversity as a bio-

indicator of reef condition. Edinger et al. [39] proposed the use of coral growth rates as indica-

tors of eutrophication impacts. Holmes et al. [40] proposed the use of branching coral rubble 

bioerosion as indicators of reef trophic condition. Lirman et al. [41] suggested the use of per-

cent recent mortality as indicators of reef adverse conditions. Edinger and Risk [42] also sug-

gested the pattern of coral morphotypes as indicators of Pacific coral reef condition. Jameson 
et al. [43] developed a Coral Damage Index (CDI) based on the abundance of broken coral and 

coral rubble to address SCUBA diving impacts on reefs. Hawkins et al. [44] also developed 

a method to assess coral fragmentation and overall reef condition across reefs impacted by 

SCUBA diving. Swain et al. [45] developed a coral taxon–specific bleaching response index 
(taxon-BRI) by averaging taxon-specific response over all sites where a taxon was present. 
Nonetheless, the most significant limitation of methods based on a single or few bioindicators 
is that many of them can have significant variability due to factors that may not necessarily 
reflect changes in reef health. This suggests the need to use a combination of parameters to 
improve the accuracy of reef condition assessments.

Jokiel and Rodgers [46] used reef fish biomass, reef fish endemicity, total living coral cover, 
population of the endangered Hawaiian monk seal (Monachus schauinslandi), and the number 

of female green sea turtles (Chelonia mydas) nesting annually on each Hawaiian island as bio-

indicators, developing a simple integrated, composite scoring and ranking system. Rodgers 

et al. [47] further expanded this approach by integrating 46 different indicators, develop-

ing a reference site model and an ecological gradient model to assess impacts on coral reefs. 

Kaufman et al. [48] also developed the Coral Health Index aimed at assessing the condition 

of benthic fish and microbial communities. Lasagna et al. [49] developed the Coral Condition 

Index, which was based on the proportional abundance of coral colonies belonging to six 

categories: recently dead, bleached, smothered, upturned, broken, and healthy. This index 
ranges from 0 (100% of dead corals) to 1 (100% of healthy corals), with low values suggest-

ing large scale disturbances (e.g., climate impacts) and high values suggesting disturbances 

acting on a small scale. Jameson et al. [50], Fore et al. [51], and Bradley et al. [52] suggested 

the development of a multiparameter Coral Reef Biocriteria Index for addressing coral reef 

ecological condition. Fabricius et al. [53] tested the use of 38 indicators, where 33 of them 

(including coral physiology, benthic composition, coral recruitment, macrobioeroder densi-

ties, and a foraminifera index) showed significant relationships with a composite index of 
13 water quality variables. However, many of these methods based on multiple parameters, 
although scientifically robust, can be significantly complex and difficult to implement by non-

academic personnel (e.g., managers, NGOs, and base communities). Thus, there is still a need 

to develop robust yet simple methods with multiple potential applications and which can be 

used by a wide range of users.

Risk et al. [54] suggested the use by coastal communities of simple techniques that have been 
shown to identify stress on reefs including coral mortality indices, benthic bioindicators 

(e.g., stomatopods, foraminifera, and amphipods), coral associate counts, and coral rubble 

bioerosion. McField and Kramer [29, 55] developed the Coral Reef Health Index (CRHI) in 

the Mesoamerican Barrier System based on assessing several parameters of benthic and fish 
assemblages. This method has been successfully used across the Caribbean [56–59]. McField 
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and Kramer [60] summarized a set of multiple simple criteria to be used by coastal com-

munities. In a comparative study between two reef health indices and different metrics of 
biological, ecological, and functional diversity of fish and corals, Díaz-Pérez et al. [61] found 

out that health indices should be complemented with classic community indices to improve 

the accuracy of the estimated health status of Caribbean coral reefs. This brings in the idea 

that coral reef health indices must be made more robust by complementing them with a suite 

of biological and water quality parameters often easily obtained from standard reef character-

ization and long-term monitoring data sets.

According to Ben-Tzvi et al. [37], any broad-based reef health index monitoring should (1) 

enable reliable comparison between different reef types (e.g., reefs of different live cover); (2) be simple 
to apply, including by nonscientific personnel (e.g., recreational divers); (3) provide an indication of the 
trend in reef health rather than only the current state of the reef; (4) provide a quantitative, or at least 
semiquantitative, indication of the reef state, to enable comparisons between distinct reefs of different 
characters; and (5) not require repeated serial surveys, but be able to provide some indication of the 
state of the health of the reef from a single survey event. An easy-to-implement rapid assessment 

method of novel coral reef assemblages was tested, in combination with a rapid diagnostic 

tool of reef condition useful for managers and decision-makers for both small- and large-scale 

assessments, which could also be implemented in standard long-term monitoring programs.

1.4. Goals and objectives

The goal of this chapter is to test an easy-to-implement rapid assessment, reef characteriza-

tion, and decision-making tool for coral reef managers. Many countries, particularly, small 

island nations, with limited socioeconomic resources, lack appropriate governance infrastruc-

ture, human resources, and economic and technological tools to incorporate scientific infor-

mation into decision-making regarding the management of coral reefs and fishery resources. 
The lack of appropriate management is a critical concern in the face of current and forecasted 

climate change–impacts. Coral reefs are often the first line of defense against storm swells and 
sea level rise, besides their importance as a source of food protein, for sustaining biodiversity, 

as a sinkhole of ATM CO
2
, as a source of natural products of biomedical importance, and as a 

source of revenue for multiple local economies. Coral reef conservation becomes particularly 

important in novel coastal ecosystems adjacent to large urban centers, subjected to significant 
local sources of human stressors. We propose the application of a Coral Reef Resilience Index 

(CRRI) focused on scoring the ecological condition of coral reef benthic and fish communities, 
based on actual quantitative data obtained from ecological characterization surveys or from 
long-term monitoring efforts. Complex quantitative data, difficult to analyze and interpret, 
are changed into a five-point scale scoring system, similar to the one developed by McField 
and Kramer [29], and also converted into GIS-based format to produce a set of indicator 

maps. This will provide managers with easy-to-interpret tools for decision-making regarding 

conservation- and restoration-oriented management strategies. A step-by-step guide for the 

implementation of the tool is discussed. This chapter also provides a case study from coral 

reefs across a water quality stress gradient from the Southwestern Puerto Rico shelf and pro-

vides a basic guide for management recommendations based on different scores of the CRRI 
with application across multiple coral reef ecosystems on a global scale.
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2. Methods

2.1. Study sites

Field data used to parameterize the CRRI were obtained from a study of coral reef condition 
across a water quality stress gradient through the southwestern Puerto Rico insular shelf dur-

ing the month of July 2014 [62]. Sampling was conducted at 11 locations along a water quality 
stress gradient and a distance gradient from the coast (Figure 2). Coral reefs were subdi-

vided into three different geographic zones: (1) inshore reefs [<4 km] (Punta Ostiones [OST], 
Punta Lamela [LAM], Punta Guaniquilla [GUA], Cayo Ratones [RAT], Bajo Enmedio [EME]), 
(2) mid-shelf reefs [4–8 km] (Arrecife Resuello [RES], Corona del Norte [CON], Arrecife El 

Ron [RON]), and (3) outer-shelf reefs [8–20 km] (Escollo El Negro [NEG], Arrecife Papa San 

[PPS], Arrecife Gallardo [GAL]). A total of 55% of the studied reefs were located within 

natural reserves managed by the Puerto Rico Department of Natural and Environmental 

Resources (DNER), including inshore location RAT (Isla Ratones Natural Reserve), OST 

(Finca Belvedere Natural Reserve Marine Extension), and GUA (Punta Guaniquilla Natural 
Reserve Marine Extension). Mid-shelf locations RON and CON, and outer-shelf location PPS 

Water Quality Sampling Sites

Figure 2. Locations of study sites through the southwestern Puerto Rico insular platform. These were divided into 

three geographic areas: inshore reefs (<4 km)—Cayo Ratones (RAT), Punta Ostiones (OST), Punta Lamela (LAM), 
Punta Guaniquilla (GUA), Bajo Enmedio (EME); mid-shelf reefs (4–8 km)—Arrecife Resuello (RES), Corona del Norte 
(CON), El Ron (RON); and outer-shelf reefs (8–20 km)—Escollo El Negro (NEG), Arrecife Papa San (PPS), Bajo Gallardo 
(GAL). Acronyms of protected areas: BEB = Bosque Estatal de Boquerón; CRNWR = Cabo Rojo National Wildlife Refuge; 
EMRNFB = Extensión Marina Reserva Natural Finca Belvedere; EXRNPG = Extensión Marina Reserva Natural Punta 
Guaniquilla; EMBEB = Extensión Marina Bosque Estatal Boquerón; RVSIAB = Refugio de Vida Silvestre y de Aves de 
Boquerón; RNAT = Reserva Natural Arrecifes Tourmaline; RNCR = Reserva Natural Cayo Ratones; RNFB = Reserva 
Natural Finca Belvedere; RNLJ = Reserva Natural Laguna Joyuda; RNPG = Reserva Natural Punta Guaniquilla. Gray-
shaded areas in the left image represent coral reefs.
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were located within Arrecife’s Tourmaline Natural Reserve, which has a six-month seasonal 

fishing closure (December 1–May 31). Other studied reserve and nonreserve locations are 
open to fishing.

2.2. Sampling design

With the exception of inshore locations OST, LAM, GUA, and RAT, characterized only by 
shallow areas, each remaining locality was subdivided into three depth zones: depth 1 (<5 m), 
depth 2 (5–10 m), and depth 3 (10–20 m). Only depths 1 and 2 were studied in EME, and depth 

3 and depth 4 (20–30 m) were studied in PPS. In each of these depths, from 5 to 15 random 

belt phototransects (10 × 1 m) were studied by taking 5 high-resolution, nonoverlapping, digi-

tal images of 1.0 × 0.7 m per transect at fixed intervals, obtaining a total of 25–75 images per 
depth zone from each location. A 48-point dot grid was digitally projected over each image 
and benthic components under each point were identified to the lowest taxon possible (e.g., 
Scleractinian corals, hydrocorals, octocorals, sponges, algal functional groups, cyanobacteria, 

and open substrate [sand, rubble, and pavement]). The relative number of points per category 

was counted and divided by the total number of points to obtain the percentage of coverage 

of the benthic components.

2.3. Coral Reef Resilience Index (CRRI)

A modification and expansion of McField and Kramer [60] and NEPA [63] was used to 

define CRRI’s parameters. An average index score for each indicator listed in Table 1 was 

calculated for each individual transect, depth zone, and location and compared to thresh-

old value ranges listed in the table. CRRI rankings were similar to those defined by McField 
and Kramer [60], with a scale of 1–5 points as follows: 5 = very good, 4 = good, 3 = fair, 
2 = poor, and 1 = critical. Four different indices were calculated: (1) Global Index = an 
average of all the parameters; (2) Coral Index = an average of all coral parameters; (3) 
Threatened Species Index = an average of all threatened coral parameters; and (4) Algal 
Index = an average of all algal parameters. Mean scores were calculated for all four indices, 
for each geographic zone and location and for each depth zone. The final mean value of 
each index is deemed as very good (4.2–5), good (3.4–4.2), fair (2.6–3.4), poor (1.8–2.6), and 

critical (1–1.8).

Fifteen indicators were selected to calculate the benthic index (Table 1). In the coral index, 

percentage of living tissue coverage, species richness, coral recruit density (diameter < 5 cm), 

and percentage of bleaching frequency were used. In the Threatened Species Index, based 
on the International Union for the Conservation of Nature (IUCN) Red List and on the 

U.S. Endangered Species Act listed coral species, the following species were used: Staghorn 
coral (Acropora cervicornis), Elkhorn coral (A. palmata), Columnar star columnar coral (Orbicella 

annularis), and Laminar star coral (O. faveolata). Of the seven threatened species in the 

Caribbean, these were the most common species throughout the study areas [62]. In the Algal 

Index, macroalgae, turf, crustose coralline algae (CCA), Halimeda spp., Dictyota spp., Lobophora 
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variegata, and red encrusting algae Ramicrusta spp./Peyssonnelia spp. (species that can over-

grow living corals) were used.

2.4. Statistical testing

A three-way permutational analysis of variance (PERMANOVA) was used to test the null 
hypothesis of no significant difference in CRRI scores among geographic zones, locations, and 
depth zones [64]. Multivariate tests were carried out in statistical package.

PRIMER v7 + PERMANOVA 1.06 (PRIMER-e, Auckland, New Zealand). Scores were log
10

-

transformed and Bay-Curtis similarity resemblance matrices were calculated for each indi-

vidual index. Nonmetric multidimensional scaling (nMDS) was used to illustrate spatial 

pattern of mean scores of each index [65]. A ‘linkage tree’ of coral reef benthic community 

structure based on the BIOENV routine to environmental variables was also carried out 

Indices Very good(5) Good(4) Fair(3) Poor(2) Critical(1)

Coral Index

% Coral cover >40% 20–39.9% 10–19.9% 5–9.9% <5%

Species richness >10 7–9.9 5–6.9 3–4.9 <2.9

Recruitment density (#/m2) >10 5–9.9 3–4.9 2–2.9 <2

% Bleaching 0% <2% 2–9.9% 10–50% >50%

Threatened Species Index

Acropora cervicornis >20% 10–19.9% 5–9.9% 2–4.9% <2%

Acropora palmata >20% 10–19.9% 5–9.9% 2–4.9% <2%

Orbicella annularis >40% 20–39.9% 10–19.9% 5–9.9% <5%

Orbicella faveolata >40% 20–39.9% 10–19.9% 5–9.9% <5%

Algal Index

Macroalgae <10% 10–19.9% 20–39.9% 40–59.9% >60%

Turf <10% 10–19.9% 20–39.9% 40–59.9% >60%

Crustose coralline algae >30% 20–29.9% 10–19.9% 5–9.9% <5%

Halimeda spp. <5% 5–9.9% 10–19.9% 20–29.9% >30%

Dictyota spp. <5% 5–9.9% 10–19.9% 20–29.9% >30%

Lobophora variegata <5% 5–9.9% 10–19.9% 20–29.9% >30%

Ramicrusta/Peyssonnelia <5% 5–9.9% 10–19.9% 20–29.9% >30%

Table 1. Benthic community indicators, with their corresponding CRRI scores.
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to determine the influence of environmental variables on the spatial patterns of benthic 
community structure and thus on the CRRI.

3. Results

3.1. Water quality stress gradients

Water turbidity showed a highly significant decline with increasing distance from the shore-

line (r2 = 0.7119; p = 0.0006), suggesting a strong cross-shelf spatial gradient. Turbidity was 
significantly different among geographic zones (p < 0.0001) and among locations (p < 0.0001). 

The zone × location interactions were also significant (p < 0.0001). Higher mean values across 

inshore locations showed a range from 1.0 to 3.8 NTU (Figure 3). Mid-shelf locations averaged 

0.9–1.0 NTU, and outer-shelf locations averaged 0.4–0.9 NTU. Turbidity patterns show often 
complex spatial and temporal variability across the western shelf due to complex circulation 

patterns.

There was also a highly significant (r2 = 0.4961; p = 0.0458) nonlinear decline in ammonia (NH
3
+) 

and increasing distance from the shore (Figure 4), suggesting a similar strong cross-shelf spatial 

Figure 3. GIS-based inverse distance weighting (IDW) interpolation showing water turbidity spatial patterns. For 
location acronyms refer to Figure 2.
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gradient. NH
3
+ was significantly different among geographic zones (p < 0.0001) and among loca-

tions (p < 0.0001). The geographic zone × location interaction was also significant (p < 0.0001). 

NH
3
+ concentrations showed large spatial variability, with inshore locations ranging from 25 to 

264 μM. Mid-shelf locations ranged from 22 to 133 μM, and outer-shelf sites ranged from 15 to 

16 μM. EME (264 μM), GUA (136 μM), and RES (133 μM), which are located just off Boquerón 
Bay and are known to receive recurrent raw sewage illegal discharges and poorly treated sew-

age effluents from a malfunctioning treatment facility from Boquerón Bay, showed the high-

est NH
3
+ concentrations. NH

3
+ concentration at nearby, sewage-polluted LAM, located just off 

Puerto Real, showed a concentration of 94 μM, which is also considered very high.

3.2. Global Coral Reef Resilience Index (CRRI)

A significant cross-shelf increase (p < 0.0001) was observed in the mean global CRRI score in 

coral reefs (Figure 5a, Table 2). Mean global CRRI across inshore sites was 2.83, with a range 

of 2.79–2.90 (Table 3). The average on the mid-shelf reefs was 3.04 with a range of 2.88–3.20. 

Meanwhile, the average reef at the outer shelf was 3.12, with a range of 3.00–3.26. The global 

CRRI spatial gradient was evident (Figure 6). Differences among geographic zones, locations, 
and depth zones were highly significant (p < 0.0001). All possible interaction combinations were 

also significant. However, cross-shelf mean values of global CRRI ranked all locations as “fair.”

Figure 4. GIS-based inverse distance weighting (IDW) interpolation showing ammonia (NH
3

+) concentration spatial 

patterns. For site acronyms refer to Figure 2.
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The nMDS analysis showed a spatial pattern confirming a significant cross-shelf gradient of 
global CRRI (stress = 0.01) (Figure 7). Three clustering patterns were observed. The first cluster 
was dominated by locations across the inshore geographic zone. The second cluster was a mixed 
group of some inshore and mid-shelf reefs. The third mixed group was composed of some mid-

shelf and outer-shelf reefs. The location with the highest global CRRI value was GAL (depth I) 

Variable d.f. Global CRRI Coral Index Threatened Species Index Algal Index

Geographic zone (Z) 2254 41.85<0.0001 115.5<0.0001 2.980.0469 1.010.3651

Location (L) 10,246 10.96<0.0001 35.31<0.0001 4.290.0006 7.01<0.0001

Depth (D) 3253 9.73<0.0001 22.30<0.0001 1.530.1910 5.690.0014

Z × L 10,246 10.96<0.0001 35.31<0.0001 4.290.0009 7.01<0.0001

Z × D 8248 13.49<0.0001 36.53<0.0001 2.660.0124 4.75<0.0001

L × D 22,234 7.42<0.0001 19.97<0.0001 3.160.0003 7.00<0.0001

Z × L × D 22,234 7.42<0.0001 19.97<0.0001 3.160.0005 7.00<0.0001

Table 2. Summary of a three-way PERMANOVA on global CRRI. Pseudo-F value and statistical probability.

Figure 5. Coral Reef Resilience Index: (A) Global Index; (B) Coral Index; (C) Threatened Coral Species Index; and (D) 
Algal Index. Mean ± 95% confidence intervals. For site acronyms refer to Figure 2.
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with 3.27. The locality with the lowest overall CRRI value was RAT (depth I) with 2.79. In gen-

eral, depth zones II and III showed global CRRI values greater than those documented in zone 
I. Variation in depth was related to geographic patterns of variation.

3.3. Coral Index

A significant cross-shelf increase (p < 0.0001) was also observed in the mean Coral Index score 

in coral reefs (Figure 5b, Table 2). Mean Coral Index across inshore sites was 2.60, with a range 

of 2.07–2.87 (Table 3). On average, inshore coral reefs were classified as “poor,” although 
three of them were classified as “fair.” Mid-shelf reef Coral Index averaged 3.40, with a range 

Zone Global CRRI Coral Index Threatened Species Index Algal Index

Entire shelf 3.02 (fair) 3.32 (fair) 1.03 (critical) 4.01 (good)

Inshore 2.83 (fair) 2.60 (poor) 1.01 (critical) 4.00 (good)

Mid-shelf 3.05 (fair) 3.40 (fair) 1.02 (critical) 4.04 (good)

Outer shelf 3.13 (fair) 3.76 (good) 1.06 (critical) 4.00 (good)

Table 3. Mean CRRI values across the western Puerto Rican shelf.

Figure 6. GIS-based inverse distance weighting (IDW) interpolation showing mean global CRRI spatial patterns. For site 
acronyms refer to Figure 2.
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of 2.92–3.90. Of these, all depth areas of RES were classified as “fair,” the flat area of CON was 
classified as “fair,” but its deeper zones were classified as “good.” RON reef was categorized 
as “good.” Coral Index mean values averaged 3.76 across outer-shelf locations, ranging from 

3.41 to 4.14, which classified reefs as “good.” The Coral Index spatial gradient was evident 
(Figure 8). Differences among geographic zones, locations, and depth zones were highly sig-

nificant (p < 0.0001). All possible interaction combinations were also significant.

The nMDS analysis showed a nearly similar spatial pattern confirming a significant cross-
shelf gradient of the Coral Index (stress = 0.01) (Figure 9). Clustering patterns were nearly 
similar as those documented for global CRRI. The first cluster was dominated by locations 
across the inshore geographic zone. The second cluster was a mixed group of some inshore 
and mid-shelf reefs. The third mixed group was composed of some mid-shelf and outer-shelf 

reefs. The location with the highest Coral Index value was NEG (depth II) with 4.14. The local-

ity with the lowest overall Coral Index value was EME (depth II) with 2.08. In general, depth 

zones II and III showed Coral Index values greater than those documented in zone I. Variation 
in depth was related to geographic patterns of variation.

3.4. Threatened Coral Index

A significant cross-shelf increase (p = 0.0469) was also observed in the mean Threatened Coral 
Index score in coral reefs (Figure 5c, Table 2). Mean Threatened Coral Index across inshore sites 

was 1.00, with a range of 1.00–1.03 (Table 3). On average, inshore coral reefs were classified as 

Figure 7. Nonmetric multidimensional scaling plot (nMDS) based on global CRRI scores across geographic zones × 
location × depth.
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“critical.” Mid-shelf reef Coral Index averaged 1.02, with a range of 1.00–1.08. Mid-shelf reefs 

were also classified as “critical.” Threatened Coral Index mean values averaged 1.06 across outer-
shelf locations, ranging from 1.00 to 1.22, which also classified outer-shelf reefs as “critical.” 
However, the Threatened Coral Index spatial gradient was also evident (Figure 10). Differences 
among geographic zones (p = 0.0469) and locations (p = 0.0006) were significant, but not among 
depth zones (p = 0.1910). All possible interaction combinations were also significant.

The nMDS analysis confirmed a significant cross-shelf gradient of the Threatened Coral Index 
(stress <0.01) (Figure 11). The first cluster was dominated by two depth zones of outer-shelf 
GAL location. The second cluster was a mixed group of some inshore and mid-shelf reefs, 

which had sporadic colonies of threatened species. The third mixed group was composed 

of some inshore and mid-shelf reefs, which lacked threatened species. The location with the 

highest Threatened Coral Index value was GAL (depth I) with 1.23. Multiple locations shared 

the lowest overall Threatened Coral Index value, with 1.00.

3.5. Algal Index

A significant cross-shelf increase was observed in the mean Algal Index score among locations 
(p < 0.0001) and among depth zones (p = 0.0014), but not among geographic zones (Figure 5d, 

Figure 8. GIS-based inverse distance weighting (IDW) interpolation showing mean Coral Index spatial patterns. For site 
acronyms refer to Figure 2.
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Figure 9. Nonmetric multidimensional scaling plot (nMDS) based on Coral Index scores across geographic zones × 
location × depth.

Figure 10. GIS-based inverse distance weighting (IDW) interpolation showing average Threatened Coral Index spatial 

patterns. For site acronyms refer to Figure 2.
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Table 2). All possible interaction combinations were also significant. Mean Algal Index across 
inshore sites was 4.00, with a range of 3.80 to 4.33 (Table 3). On average, inshore coral reefs 

were classified as “good.” Mid-shelf reef Algal Index averaged 4.04, with a range of 3.84 to 
4.11. Mid-shelf reefs were also classified as “good.” Algal Index mean values averaged 4.00 
across outer-shelf locations, ranging from 3.87 to 4.34, which also classified outer-shelf reefs 
as “good.” The Algal Index spatial gradient was also evident (Figure 12).

The nMDS analysis confirmed a significant cross-shelf gradient of the Algal Index (stress = 0.01) 
(Figure 13). The first cluster was dominated by two depth zones of outer shelf GAL location. 
The second cluster was a mixed group of some inshore and mid-shelf reefs. The third mixed 

group was composed of some inshore and mid-shelf reefs. Spatial patterns of algal assem-

blages varied depending on the location and reef’s trophic state, as well as on the cross-shelf 

complex water circulation pattern. The locality with the highest Algal Index value was GAL 
(depth I) with 4.34, and it was classified as “very good.” The locality with a lower Algal Index 
was found on the same reef (GAL) but at depth III, with 3.66, with a category of “good.”

3.6. Impacts of water quality stress gradient on CRRI

A ‘linkage tree’ of coral reef benthic community structure based on the BIOENV routine to 
environmental variables was carried out and a binary split on the basis of the best single 

environmental variable was thresholded to maximize the analysis of similitude (ANOSIM) R 
statistic for the two groups formed. This observed ANOSIM of R = 0.57 and B = 85.9%, which 
suggests that most of the observed variation can be explained by this solution (Figure 14). The 

Figure 11. Nonmetric multidimensional scaling plot (nMDS) based on Threatened Coral Index scores across geographic 

zones × location × depth.
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Figure 12. GIS-based inverse distance weighting (IDW) interpolation showing average Algal Index spatial patterns. For 
site acronyms refer to Figure 2.

Figure 13. Nonmetric multidimensional scaling plot (nMDS) based on the Algal Index scores across geographic zones 
× location × depth.
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pattern was characterized by lower NH
3
+ to the right side of the plot (NH

3
+ Euclidean distance 

< −0.677) at outer-shelf sites PPS and GAL and at mid-shelf site RON and by higher values 
(NH

3
+ Euclidean distance > −0.546) to the left side of the plot across the remaining inshore and 

mid-shelf sites. Alternatively, the same split of sites was obtained by choosing lower turbidity 

to the right side of the plot (Turbidity Euclidean distance < −0.555) at outer-shelf sites PPS and 
GAL and at mid-shelf site RON and high turbidity (Turbidity Euclidean distance > −0.463) to 
the right side of the plot. ANOSIM R was the same whichever of the two variables was used as 

they gave the same split of biotic data. LINKTREE analysis showed that variation in NH
3
+ and 

turbidity explained most of the spatial variation observed in coral reef benthic community 

structure, therefore, in the CRRI spatial distribution.

4. Discussion

4.1. Spatial variation patterns of water quality conditions

This study showed important evidence of an LBSP gradient across the western Puerto Rico 

shelf and that chronic water quality decline has significantly affected the face of coral reef 
benthic communities, which was reflected on the mean CRRI scores. A snapshot view of LBSP 
showed that particularly turbidity and NH

3
+ concentrations increased along inshore locations. 

It is particularly concerning that EME reef site and to some extent GUA, LAM, and OST are 

being exposed to recurrent pulses of sewage effluents from malfunctioning sewage treatment 

Figure 14. Multidimensional scaling (MDS) plot of the first stage in a ‘linkage tree’ of coral reef benthic community 
structure to environmental variables. Binary split on the basis of the best single environmental variable, thresholded to 

maximize the analysis of similitude (ANOSIM) R statistic for the two groups formed.
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facilities at Boquerón Bay and from multiple nonpoint sewage sources. Elevated NH
3
+ con-

centrations at EME suggest that tidal cycles may continuously expose coral reefs adjacent to 
Boquerón Bay to recurrent sewage pollution and eutrophication impacts. Turbidity was also 
higher at inshore locations such as JOY, RAT, and OST. Their proximity to Joyuda Bay and 
Puerto Real Bay continuously expose these sampling sites to recurrent polluted, turbid runoff 
pulses. A particular concern was degraded water quality pulses even across outer-shelf sites, 
where NH

3
+ concentrations exceeded recommended levels for healthy coral reefs. Pollution 

across outer-shelf sites may come from other significant sources such as the Río Guanajibo, 
Río Yagüez, and the Mayagüez Bay.

Documented turbidity spatial patterns were highly consistent with findings of cross-shelf 
scale pollution patterns documented by Bonkosky et al. [66]. Turbidity patterns were also con-

sistent with previous unpublished observations from year 2000 (Hernández-Delgado, unpub. 
Data). Therefore, it is reasonable to assume that observed spatial patterns of water quality 
conditions in this study were highly consistent with chronic large-scale degradation at least 

over the last two decades and that the observed LBSP stress gradient in the form of chronic 

turbidity and eutrophication, mostly associated to sewage pollution, represent a nearly per-

manent state. Observed NH
3
+ concentrations in this study also reflected an evident cross-shelf 

gradient with increasing distance from known sewage pollution sources. Lapointe and Clark 

[67] suggested that NH
3
+ concentrations for coral reefs should not exceed 0.1 μM and that any 

concentration above 24 μM were deemed as too high. Our findings are highly concerning as 
observed NH

3
+ concentrations were from 150 to 2600 times higher than recommended limits 

for healthy coral reefs. Eight out the twelve sampled sites (75%) showed NH
3
+ concentrations 

exceeding dangerous concentrations for coral reefs as much as 10.8 times.

Regression analyses have previously shown that several water quality indicator parameters 
reflected significant gradients with increasing distance from LBSP [62]. These authors found 

a significant relationship among turbidity, phosphate (PO
4
), chlorophyll-a, and dissolved 

oxygen concentration, implying that increasing chronic water quality degradation can sig-

nificantly affect multiple parameters, adversely impacting coral reefs. Although this study 
just provided a snapshot view of water quality across the western Puerto Rico shelf, results 
were concerning as critical water quality parameters resulted significantly higher than recom-

mended limits for sustaining coral reef health. These results suggest that human-driven LBSP 

across the western Puerto Rico shelf is highly significant; it is a large-scale, chronic phenom-

enon and deserves full long-term monitoring across large spatial and temporal scales. It also 

suggests the need to rapidly implement best management practices (BMPs) to reduce LBSP 

impacts across the shelf.

4.2. Spatial variation patterns of the benthic CRRI

The observed spatial pattern in CRRI values was significantly influenced by an LBSP stress 
gradient across the entire western Puerto Rican shelf. Overall, the global CRRI averaged 3.02 

(“fair”) across the entire shelf, the Coral Index averaged 3.32 (“fair”), the Threatened Species 

Index 1.03 (“critical”), and the Algal Index 4.01 (“good”). Based on the spatial distribution of 

the global CRRI mean values, coral reefs across the western Puerto Rican shelf can be classified 
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as “fair.” But based on the spatial patterns of the Coral Index, reefs showed a more consistent 
cross-shelf gradient of conditions, ranging from “poor” to “fair” across inshore locations, from 

“fair” to “good” along mid-shelf locations, and “good” across outer-shelf locations. There 

was also an evident depth-related gradient, with deeper reef zones showing higher CRRI and 
higher Coral Index values, in comparison to shallower zones. Based on the global CRRI, 100% 
of the surveyed reefs in this study were classified as “fair.” But based on the Coral Index, 45% 
of the surveyed reefs across the western Puerto Rican shelf were classified as “good,” 36% as 
“fair,” and 19% as “poor,” reflecting a strong inshore-offshore environmental stress gradient. 
This implies that a potential combination of human and natural factors can be influencing reef 
condition and CRRI values in Puerto Rico. The cross-shelf spatial gradient can be the result of 

chronic water quality degradation along inshore zones, which are located adjacent to known 
pollution sources. But the bathymetric gradient in reef conditions and CRRI values can be the 

potential combined result of variation in water turbidity, and the combined long-term impacts 

of postbleaching coral mortality, coral disease outbreaks, and impacts from hurricanes and 

north-western winter swells.

In comparison, previous studies using a nearly similar Coral Reef Health Index in Jamaica 
showed a mean value of 2.1 (“poor”), with ranges from 1.6 to 2.6 [63]. A similar study from 326 

locations across four countries of the Mesoamerican Barrier Reef System (Belize, Guatemala, 
Honduras, and México) showed that 47% of the reefs were in “poor” condition in 2008, 6% 
were “critical,” 41% “fair,” 6% “good,” and none were classified as “very good” [57]. A survey 

of 130 locations across the same region in 2010 showed that 40% of the reefs were in “poor” 

condition, 30% were “critical,” 21% “fair,” 8% “good,” and only 1% “very good” [57]. A simi-

lar study from 193 locations across the same region in 2012 showed that 40% of the reefs were 

in “poor” condition, 24% were “critical,” 25% “fair,” 9% “good,” and only 2% “very good” 

[58]. A similar study from 149 locations across the same region in 2015 showed that 40% of 

the reefs were still in “poor” condition, 17% were “critical,” 34% “fair,” 8% “good,” and only 

1% “very good” [59]. From this comparison, it is evident that multiple reef locations across 

the wider Caribbean region are significantly degraded by a multiplicity of factors, including a 
combination of overfishing [19, 21, 68], LBSP [7], and climate change [11]. Many of these loca-

tions are not showing signs of recovery [16, 17, 68].

Findings in this study of a strong cross-shelf stress gradient on coral reefs is also consistent 

with the literature that suggests significant impacts of LBSP [69], eutrophication [70, 71], sew-

age pollution [72], turbidity [73, 74], sedimentation [75–77], and bioerosion [78] on coral reefs 

adjacent to sources of stress.

4.3. Implications for coral reef conservation

Coral reef benthic assemblages in this study were showing signs of a cross-shelf environ-

mental stress (e.g., turbidity, sewage pollution, eutrophication, sedimentation, and sedi-

ment bedload), therefore potentially compromising coral reefs’ long-term reef accretion 

sustainability and ecosystem resilience. Coral reefs across the southwestern shelf of Puerto 

Rico have shown evidence of significant environmental degradation over the last four 
decades. Loya [79] and Goenaga and Cintrón [80] documented signs of degradation across 
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inshore and mid-shelf reefs from chronic sedimentation. Many of these have suffered dam-

age over time due to high terrigenous sediment loads [81, 82] and massive coral bleaching 

[83]. Schärer et al. (2010). High percent cover of threatened Elkhorn coral, Acropora palmata, 

were documented across offshore western mid-shelf reefs, but populations were largely 
declining in reefs adjacent to the coast due to water quality degradation [72]. Other stud-

ies have shown further reef degradation associated to LBSP, including the combination of 

sedimentation and turbidity [84, 85] and sewage and eutrophication [66, 72, 86]. Declining 

environmental conditions across the shelf have resulted in declining coral growth rates 

[81] and in significant declines of A. palmata populations across inshore reefs adjacent to 
areas impacted by LBSP [72, 84, 87–90]. Chronic decline in water quality could also have 
significant negative impacts on fish assemblages as several fish taxa can be sensitive to 
environmental degradation [91].

Findings in this study imply potential LBSP impacts across very large temporal and spatial 

scales, with very wide and persistent implications on coral reef benthic communities and on 

reef-associated fauna. LBSP impacts (i.e., sewage pollution from human and animal sources) 

were documented across the entire southwestern shelf in Puerto Rico, even in waters com-

plying with existing microbiological quality standards [66]. This points out at the increasing 

spatial scale of chronic LBSP impacts across multiple coral reef systems and at the potentially 

increasing turnover rates of reef communities. The lack of adequate controls of LBSP across 
the region constitutes one of the most significant concerns regarding the conservation and 
recovery of declining coral reef ecosystems.

Efforts are being currently developed to implement erosion and sedimentation controls across 
watershed scales in southwestern Puerto Rico. But so far, these efforts have completely missed 
a long-term ecological monitoring component to determine if current land-based efforts have 
had any meaningful impacts on improving adjacent coral reef ecosystems. Therefore, the use 
of rapid assessment approaches, such as the one implemented in this study, could provide a 

meaningful approach to address the spatial patterns of coral reef conditions, understand its 
potential causes of stress, and identify alternative strategies to implement BMPs to reduce 

stressors.

4.4. Management recommendations for decision-making

A summary of management recommendations for decision-making has been included in 

Table 4. These are based on the CRRI score rankings. Suggested actions were subdivided 

by sector following the suggestions of HRI [56] into government, NGOs, private sector, and 

the academia. Recommendations included a combination of broad and targeted manage-

ment actions aimed at improving governance by regulatory agencies, including improving 

enforcement capacity of water quality regulations and land use plan and fostering the imple-

mentation of BMPs of erosion control. They are also aimed at supporting NGOs and aca-

demic research to strengthen ecosystem-based management of coral reefs and other coastal 

resources. The government should also provide economic incentives for conservation and 

sustainable business, implement a green tax system to support these initiatives, and establish 

a functional network of no-take marine protected areas (MPAs).
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Recommendations are also aimed to empower base communities to undertake management 

actions and engage into citizen science programs, including coral farming and reef rehabilita-

tion through community-based NGO efforts. Also, base communities should strengthen their 
advocacy for coral reef conservation and fully support government initiatives, which promote 

community-based participation in management. The private sector should also become more 

active in supporting government efforts to manage MPAs, as well supporting coral farming and 
reef restoration efforts led by government, NGOs, or other sectors. The academia needs also to 
develop management-oriented research aimed at responding to multiple questions by natural 
resource and MPA managers. Applied research should also aim to understand the long-term 

dynamics of change of novel coral reef ecosystems. Multidisciplinary research should also be 

implemented to address the impacts of potential sources of stress on coral reefs. Communications 

and outreach need also to be improved between the academia and other sectors.

Based on the observed global CRRI and on the Coral Index scores in this study, the govern-

ment should focus their efforts on implementing many of the above-mentioned suggestions, 
but in particular, strengthening the implementation of BMPs for erosion and runoff control, 
and support the ecological restoration of depleted coral reefs. NGOs should also strengthen 

community-based coral farming and reef restoration efforts. The private sector should also 
implement/support “adopt a reef” programs to promote reef conservation and restoration, 

and/or fully support NGO efforts. The academia should also strengthen long-term ecological 
monitoring programs to address sources of stress and should engage in research to under-

stand the dynamics of emergent, novel coral reef ecosystems.

Nevertheless, the successful implementation of coral reef conservation will largely depend on the 

effective implementation of a coastal zone management plan, in the successful networking and 
effective communication among multiple stakeholders, in the implementation of effective com-

munication among and in translating scientific information to managers, decision-makers, gov-

ernment leaders, and base communities, and in building trust and transparency among different 
sectors of society. It would also be critical to reduce pollution sources across watersheds (e.g., raw 

sewage discharges, agricultural, livestock, urban, and industrial runoff) through the implementa-

tion of sustainable BMPs and strict enforcement of existing regulations. Effective enforcement of 
fishery regulations and improved no-take MPA governance are also fundamental for achieving 
sustainable coral reef resilience. Further, there is a need to comply with internationally recom-

mended protection of 20% of territorial sea as no-take MPAs. There are Caribbean islands that 

comply with that recommended goal, such as the U.S. Virgin Islands, where 15% of the area within 
their MPA boundaries had no-take regulations, in contrast to Puerto Rico, which only had 3% [92].

It would also be critical to implement sustainable development practices, particularly for 

small tropical island nations [88], including establishing setbacks from vulnerable areas along 

the shoreline and measures to protect local community livelihoods. A climate change adapta-

tion program must also be implemented focused on the sustainable adaptability of coupled 

social-ecological systems, on the sustainability of the ecosystem services provided by the first 
line of defense against storm swells (e.g., coral reefs and mangroves) and on fishery sustain-

able adaptability [93]. The implementation of alternative livelihood programs for displaced 

fishers and an improved effectiveness in the management of no-take MPAs through consis-

tent enforcement, sustainable funding, and technical capacity building is also paramount.
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Category Sectors

Government NGOs Private sector Academic researchers

Very good Provide economic 

incentives for conservation 

and sustainable 

businessDesignate no-take 

MPAs to maintain resilient 

reef fish assemblagesFully 
support citizen science 
programsFully support 

long-term ecological 

monitoring led by NGOs 

and academiaEnforce 

existing water quality 
regulations

Support efforts to 
fully protect more 

reefs (MPAs)Increase 

public participation in 

managementDevelop 

management-oriented 

citizen science programs

Sustain local MPAs 

through financial, 
staff, or technical 
assistanceCollaborate 

and support 

government, academic, 

and NGO efforts for 
reef conservation and 

restorationImprove 

the implementation of 

BMPs, sustainable codes 

of conduct, and other 

strategies to reduce 

environmental impacts

Engage in research 

to respond 

questions by natural 
resource and MPA 

managersDevelop 

long-term ecological 

monitoring 

programs to address 

ecological change 

and climate change 

impactsPromote 

integration of 

citizen science 
programsEstablish 

communication and 

outreach programs 

with other sectors

Good As in “very good” 

+Implement coral farming 

and reef restoration to 

maintain healthy coral 

populationsImplement 

a green tax system 

to support coral reef 

conservation and 

restoration initiative

As in “very good” 

+Implement community-

based coral farming and 

reef restoration

As in “very good” 

+Promote partnerships 

with other sectors to 

support coral farming 

and reef restoration

As in “very 

good” +Promote 

partnerships with 

other sectors to 

support coral 

farming and reef 

restorationDevelop 

multidisciplinary 

research integrating 

social sciences and 

economy

Fair As in “good” +Implement 

BMPs for erosion and 

runoff controlRestore 
depleted coral reef

As in “good” 

+Strengthen community-

based coral farming and 

reef restoration

As in “good” 

+Implement/support 

“adopt a reef” 

programs to promote 

reef conservation and 

restoration

As in “good” 

+Strengthen long-

term ecological 

monitoring 

programs to address 

sources of stress

Poor As in “fair” +Strengthen 

the implementation 

of the coastal zone 
management plan and the 

land use planAggressive 

implementation of 

BMPs for erosion and 

runoff controlStrengthen 
enforcement of fisheries 
regulations to enhance 

herbivorous fish 
populationsImprove land 

use, management of soil 

erosion, wastewater, and 

urban runoffImplement 
local moratoriums on 

coastal development 

projects

As in “fair” +Strengthen 

community-based 

advocacy in coral reef 

conservationStrengthen 

community-based 

coral farming and reef 

restoration

As in “fair” +Strengthen 

partnerships and 

support of coral reef 

management efforts by 
governmentStrengthen 

partnerships and 

support of coral farming 

and reef restoration

As in “fair” 

+Strengthen 

collaborations and 

communication 

with natural 

resource and MPA 

managersConduct 

management-

oriented research 

on novel reef 

ecosystemsAssist 

government and 

other sectors in 

developing or 

strengthening 

management plans
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Government agencies also need to establish effective partnerships with the academia, NGOs, 
and the private sector to promote applied research aimed at responding to management-

oriented research questions regarding emergent novel coral reef ecosystems, which are char-

acterized by altered benthic and fish assemblages as a result of multiple human impacts. Also, 
in a moment of complex and profound socioeconomic crisis, it is pivotal that governments 

need to promote and adopt sustainable consumption guidelines for marine resources; pro-

tect vulnerable coastal habitats, watersheds, and water sources; and secure food security and 
sovereignty [93]. Local governments should establish effective mechanisms, such as green 
taxes, to enhance available funding to support MPA management, coral farming, reef reha-

bilitation, and sustainable natural resource-based recreation. The private sector should con-

tribute significantly to MPA and coral reef conservation and restoration through financial 
assistance and through supporting human and technical resources. Moreover, there is a criti-

cal need to reduce impacts by massive tourism activities [88], to reduce carbon emissions [94], 

and to adopt and expand a reward system for carbon sequestration, with the reduction of 
hydrocarbon dependency [56]. Approximately 85% of the energy produced in Puerto Rico is 

derived from hydrocarbon burning. There is a need to promote the use of alternative renew-

able energy sources.

4.5. Other potential applications of the modified CRRI

Multiple coral reef health indices have been successfully implemented across the globe to 

address a multiplicity of management-oriented questions. Some of them are very specific, 
while others can be applied to a variety of questions. The proposed CRRI is a very useful 
method to address coral reef conditions under a variety of scenarios. With the proper sam-

pling design, the method can provide rapid, robust data to address spatial and temporal 

variability in coral reef conditions across multiple environmental conditions and across a 

variety of reef morphotypes and depth zones. It can also be implemented across leeward 
(protected) habitats, as well as across windward (exposed) sites. The CRRI can be used to 

address the long-term environmental impacts of any coastal development project, such as 

Category Sectors

Government NGOs Private sector Academic researchers

Critical As in “poor” +Establish 

emergency measures to 

reduce environmental 

stressors to reefsEstablish 

priority mechanisms 

to implement BMPs to 

reduce sediment delivery 

to coastal waters and to 

improve efficiency of 
wastewater and urban 

runoff management

As in “poor” +Promote 

effective enforcement 
of fishery regulations to 
enhance herbivorous fish 
populationsImplement 

community-based reef 

restoration

As in “poor” 

+Strengthen partnerships 

and fully support efforts 
led by government, 

NGOs, and the academia 

for coping critical 

declining coral reefs

As in “poor” 

+Strengthen 

multidisciplinary 

approaches to reef 

management to 

understand the role 

of human uses of 

reef ecosystems

Table 4. Summary of recommended management actions.
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dredging, the construction of seawalls, marinas, beach renourishment, and other activities. 

With the proper sampling design, it can even be used following a before-after-control-impact 

(BACI) approach to simultaneously address multiple research questions. The proposed CRRI 
can also be implemented to address impacts by acute factors such as vessel groundings. In 

addition, it can address impacts of large-scale phenomena such as hurricanes, winter swells, 

coral mortality events, and massive bleaching. The CRRI can even be applied during assess-

ments of the effectiveness of coral outplanting and reef restoration.

With minimal training, the CRRI can be fully adapted and implemented through a combi-

nation of academic, government, or community-based NGO and private-led citizen science 
programs. It can further be easily combined with other standard long-term monitoring efforts 
(e.g., Atlantic and Gulf Rapid Reef Assessment [AGRRA]). Therefore, its implementation can 

become a paramount tool to facilitate the interpretation of large data sets by the scientific 
community, politicians, government decision-makers, natural resource managers, econo-

mists, private stakeholders, base communities, fishermen, and other interested sectors. This 
element of cross-participation, integration, and understanding of science is fundamental for 

helping planning and decision-making processes.

5. Conclusions

Coral reefs across the western Puerto Rican platform are showing signs of environmental 

stress. This was reflected on a cross-shelf spatial gradient of water turbidity and NH
3

+ that is 

affecting coral reef ecosystems across the entire shelf. CRRI mean values reflected this trend 
and pointed out at a gradient of reef conditions from inshore, highly degraded locations, to 

mid-shelf moderately degraded reefs, to less degraded outer-shelf locations. This suggests 

the need to implement a suite of management strategies by multiple societal sectors, from 

government, to NGOs, the private sector, and the academia. When coupled with a long-term 

permanent monitoring program or any reef rapid assessment method, the proposed CRRI 

can become a useful tool for all sectors, in particular for natural resource and MPA manag-

ers, and for community-based, NGO-led citizen science programs in support of government 
management efforts and of academic research. The successful implementation of the CRRI 
would provide the basic framework for wide participation of stakeholder networks, which 

would provide baseline information for improving coral reef management. However, suc-

cessful and effective coral reef conservation can be achieved only if such efforts are multidis-

ciplinary and are broadly participatory (fair and meaningful engagement of multiple sectors) 

and if science is translated into easy-to-understand information for all sectors of society, 

including decision-makers. A key benefit of the proposed CRRI method is that, with proper 
training, it can be implemented by any members of any sector and that complex quantitative 
information generated can be rapidly translated into easy-to-interpret formats. This is critical 

for the timely implementation of adaptive management actions, particularly in the context 

of rapidly shifting ecosystems by climate change–related impacts and by other ecological 

surprises.
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Coastal ecosystem resilience and sustainability are fundamental goals for many small island 

nations. The implementation of long-term ecological monitoring programs is important to 

address management effectiveness. However, it could be difficult for many small islands 
and developing countries to implement such programs due to economic constraints and/

or lack of trained personnel or appropriate resources. Therefore, easy-to-implement, eco-

nomic, reliable, rapid assessment methods such as the CRRI can become valuable tools for 

achieving such goals, particularly in a time of socioeconomic crisis and accelerating climate 

change.

Nevertheless, Sammarco et al. [95] found that a key problem regarding coral reef assessment 

and monitoring strategies was that differences in objectives can create communication and 
information gaps. These may even prevent direct comparisons among studies. There is a need 

to improve communications among government agencies, managers, academia, and groups 

engaged in reef assessment and monitoring activities and to promote community-based 

participation through fully supported citizen science programs. Only improved science and 
communication will lead to improved decision-making on both local and Caribbean-wide 

regional scales [96]. It is also important to understand the ultimate requirements of local, 
state, and national governments and understand their staff and funding limitations and man-

agement needs. These will help identify clear management questions and goals and design 
hypothesis-driven research, which will ultimately determine which specific indicators would 
be required. As a final thought, given the continuously declining conditions of multiple coral 
reefs around the Caribbean region, promoting community-based efforts of coral farming and 
reef restoration, coupled with continuous monitoring, must become a top priority. There are 

important published success stories of community-based coral reef restoration in Puerto Rico 

(e.g., [97, 98]). The take-home message is that planning and selection of bioindicators for coral 

reef assessment and monitoring need to start from the end in mind in order to achieve the 

common ultimate goal of coral reef conservation and the sustainability of ecosystem produc-

tivity, resilience, functions, benefits, and services. This will require strengthening network-

ing among different stakeholders and promoting stronger community-based participation in 
planning, decision-making, and management-oriented science.
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