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Abstract

Polyvinyl alcohol (PVA)/Fe
3
O

4
 magnetic hydrogels had been fabricated by freezing-

thawing (F-T) cycle technique, employing natural iron sand as the raw material for the 
magnetic micro- and nano-sized fillers. An exploration of the durability and magneto-
elasticity as well as PVA hydrogel applications in the assessment of human brain tumor 
was also intensively conducted. The performance of the PVA and magnetic hydrogels 
mainly depends on the structural dynamic properties, such as polymeric crystallization 
and particle size. The durability of PVA/Fe

3
O

4
 magnetic hydrogels affecting the magne-

toelasticity is determined by the concentration ratio of PVA and water, number of F-T 
cycles, and the concentration of Fe

3
O

4
 particles. By controlling those parameters, it was 

found that hydrogels had PVA: water ratio of 23:100 and four times F-T cycles possessed 
good mechanical properties. Due to the biocompatible character, the PVA hydrogel was 
used in the assessment of the human brain tumor, analyzed from the apparent diffu-
sion coefficient (ADC) value representing the diffusion coefficient of a biological tissue. 
It was found that the abnormal tissue has a low ADC value compared with the normal 
one. Moreover, the higher b-value of the diffusion-weighted magnetic resonance imag-
ing (DW-MRI) measurement is more preferred in obtaining a good contrast of the data 
imaging.

Keywords: PVA hydrogels, ferrogels, freezing-thawing method, magnetoelasticity, 
biomedical applications

1. Introduction

The hydrogel is one of the smart polymeric gels consisting of (physically or chemically) cross-

linked polymer in water. Due to its hydrophobicity and biocompatibility properties, hydrogel 

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



has been an interesting biomaterial used commonly for biotechnological applications [1–3] 

and drug delivery systems [4–6]. The physically cross-linked hydrogels can be constructed by 
hydrogen bonds, crystallization, and ionic and protein interactions, whereas the chemically 

cross-linked hydrogels can be built by complex chemical reaction (aldehydes), high energy 
radiation, polymerization, and enzymes [1, 7–9]. There is a disadvantage for the hydrogels 
prepared by the chemically cross-linked agent and gamma irradiation, namely a toxic residue 
that might be harmful to biological tissue. Therefore, the physically cross-linked hydrogels 
are more preferable to be applied for biomedical purposes [8]. Basically, hydrogels are sensi-
tive to some environmental variables, such as acidity level (pH), temperature, electromagnetic 

signal, light, pressure, and other stimuli, so that they can be applied based on the proper 

environmental condition [10, 11]. A review of a particular number of synthetic hydrogels for 
biomedical applications and tissue engineering has been discussed [4, 12, 13].

Polyvinyl alcohol (PVA) is a biocompatible, water-soluble, and nontoxic synthetic polymer, 
which can be prepared to be a flexible material called PVA hydrogel. A physically cross-
linked PVA hydrogel can be achieved by freezing-thawing (F-T) cyclic process [14, 15]. 
The networking gel structure, crystallinity, stability, and viscoelastic properties of the PVA 

hydrogels have been investigated [16–19]. The properties of PVA hydrogels prepared by F-T 
process depend on the molecular weight and concentration of the aqueous PVA solution, 

temperature, time duration, and number of F-T cycle processes [20]. For instance, Li and 
coworkers have successfully produced a reversible gel using poly(N-isopropyl acrylamide) 

(PNIPA) and polyacrylamide (PAM), which can be controlled by external stimuli such as 
temperature [21].

It has been found that cross-linking density and crystallinity of PVA hydrogel influence the 
overall mechanical properties of a hydrogel. Gupta et al. [22] had studied the effect of PVA 
concentration on both modulus elasticity and tensile strength of PVA hydrogel. They found 
that both mechanical properties increased with increasing PVA concentration up to 16% due to 

a higher degree of crystallinity and developing hydrogen bond interaction in the PVA hydro-

gel. In contrast, it has also been shown that higher crystallinity of the hydrogel (obtained by 
increasing PVA concentration) may cause the increase of optical contact angle, indicating the 

decrease of water affinity [23]. This is one parameter that should be concerned for producing 
a stable PVA hydrogel. Moreover, it is revealed that the number of cyclic processes in the F-T 
method affects the degree of cross-linking density. A higher number of repeated cycle results 
in the decrease in the amount of not incorporated PVA in the networking structure of hydro-

gel meaning that the polymer chains of PVA are dispersed and unrelated each other [24].

In the tissue engineering, a transparent PVA hydrogel has been successfully developed as soft 

tissue substitution due to the similar microstructure and mechanical properties to that of the 

biological cells and organs [25]. PVA-based composite gels have been also intensively stud-

ied for wound healing, tissue replacement, and magnetic-controlled drug delivery devices 

[26–28]. Liu et al. [29] have demonstrated PVA hydrogel produced by the F-T process as 

one of the potential materials for an artificial blood vessel. Furthermore, the F-T process can 
be used widely for preparing and storing cell-laden hydrogels with adjustable mechanical 

properties [30].
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One important key for organ replication in tissue engineering is a complete knowledge of 

microscopic, physical, and chemical properties based on the desired organ. Recent develop-

ment of hydrogel technologies for mimicking natural tissue has been briefly reviewed [31]. 
It is crucial for constructing a tissue from hydrogel without causing significant cell damage. 
Investigation on a transparent PVA hydrogel as tissue-equivalent material in the surgical 

application has been conducted [32]. They have found that PVA hydrogels could be applied 
for a suitable substitution for soft tissue accuracy and surgical purposes. Forte et al. [33] have 

successfully developed a composite hydrogel (PVA hydrogel) to mimic brain tissue. They 
tried to vary the PVA concentration in order to tune the mechanical response of brain tissue 

within a wide range of stress/strain and testing conditions. In the brain tissue replica, it is 
important to study accurately the brain shift phenomenon between the abnormal and the 

normal one.

2. Magnetic hydrogels (Ferrogels) and their physical properties

The magnetic hydrogel, or so-called ferrogel, is one of the “smart” polymeric composite gels 

containing micro- or nano-sized magnetic particles as filler in its polymeric matrix. There 
are some magnetite hydrogels (ferrogels) that have been successfully developed recently, 

namely PVA-Fe
3
O

4
-based hydrogel [34], Fe

3
O

4
-polyacrylamide (PAM) hydrogels [35], and 

Fe
3
O

4
-polymethylmethacrylate (PMMA) hydrogels [36]. They have found that those mag-

netic nanocomposites forming magnetic hydrogels have superparamagnetic behavior due to 

the presence of dispersed magnetic nanoparticles in the polymeric matrix. The properties of 
superparamagnetic of magnetic iron oxide nanoparticles itself have been investigated inten-

sively [37]. A simulation study of deformation, elasticity, and magnetic response of magnetic 
nanoparticles cross-linked in a gel (polymeric matrix) has been conducted [38]. They have 
found that the degree of networking chains plays an important role in determining the stiff-

ness and magnetosensitivity of the magnetic hydrogels. The sensitivity of magnetic response 
in the external magnetic field depends strongly on the volume fraction of both magnetic 
nanoparticles and polymeric base matrix influencing the interacting energy in the ferrogel 
[28]. They found an optimum magnetosensitivity with Fe

3
O

4
 and PVA concentration in the 

range of 17–34% and 10–12.5%, respectively.

Ferrogel is a new type of polymeric matrix composites, in which they are physically (or chem-

ically) cross-linked polymer network containing dispersed magnetic particles. Zrínyi et al. 
[39] have synthesized ferrogel as a new promising material for magnetic-responsive applica-

tions. Ramanujan and Lao [40] and Reséndiz-Hernández et al. [41] have developed composite 

gels based on PVA and magnetite (Fe
3
O

4
) particles by conventional F-T process. Moreover, 

Hernández et al. [19] have reported the viscoelastic properties of PVA hydrogel and ferrogel 

prepared by F-T cyclic process. It has been revealed that the reinforcement effect from the 
magnetic particles, as well as the mechanical properties, of the PVA-Fe

3
O

4
 ferrogels depends 

on the size, possible agglomeration, and concentration (volume fraction) of the magnetic par-

ticles [42]. It has been noted that the concentration of Fe
3
O

4
 nanoparticles affects the thermal 
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stability of the ferrogels [43]. As for the mechanical properties of the PVA-Fe
3
O

4
 ferrogels, it 

has been shown that the deflection and elongation parameters are dependent on the Fe
3
O

4
 

concentration and external magnetic field strength [40] and the deformation is independent 

on the shape of ferrogels [44]. Experimentally, the magnetodeformation of the ferrogels with 
highly concentrated particles (approximately above 30%) is due to the effect of short range 
order and magnetic interaction among the particles [45, 46]. Furthermore, the structural and 
magnetic behavior of ferrogels has been intensively studied with the dispersed magnetic par-

ticle having average size less than 10 nm [47, 48].

Sunaryono et al. have shown that the hydrogels owing the threshold PVA concentration of 
23% in water content have the best mechanical properties [49]. Moreover, the lower Fe

3
O

4
 con-

centration has been found to be responsible for a weak magnetic response due to the increase 

of particle free volume and the decrease of interaction energy between magnetic nanopar-

ticles and the cross-linked PVA hydrogel [48]. However, Sunaryono et al. [48, 49] stated a 

crucial problem is related to the durability of the PVA hydrogels and ferrogels prepared by 

F-T cyclic process.

In this chapter, at first, we provide a study of PVA hydrogel application in tissue engineering. 
Then, it is continued by investigation of the durability of ferrogels prepared by F-T cyclic pro-

cess. Finally, the structural and magnetic properties of ferrogels are discussed briefly.

3. Fabrication and characterization of PVA hydrogel

The PVA polymeric powder (Mw = 60,000 g/mol, Merck Schuchardt OHG, Germany) with 
a degree of hydrolysis ≥98% was used for PVA solution. PVA hydrogels were fabricated by 
F-T cyclic process. First, the PVA polymer was dissolved in distilled water with a variation of 
weight compositions, namely 7.5, 10, 12.5, and 15 wt%. The solution was mixed and heated at 
70–90°C to improve the solubility of the PVA polymer in water, as suggested in the previous 
papers [48, 50, 51]. Once the mixture was perfectly dissolved, indicated by a physical change 
from liquid to paste, it was then loaded into a cylindrical plastic mold followed by F-T pro-

cess. The solution was cooled and kept at the frozen state at –10°C for 3 h. The process was 
continued by thawing at room temperature for 1 h. This F-T process was repeated to obtain 
PVA hydrogel samples up to five cycles. The PVA hydrogel samples were also prepared by 
varying the composition ratio of PVA and water as mentioned earlier.

The 1.5-T scanner (Signa Horizon; GE Medical Systems, Milwaukee, WI, USA) was used for 
the study of diffusion-weighted magnetic resonance imaging (DW-MRI). Apparent diffu-

sion coefficient (ADC) value was obtained from MRI with diffusion-weighted imaging (DWI) 
method following Stejskal-Tanner sequence. The ADC value was calculated by Functool soft-
ware (GE Medical Systems) for each sample. The characterization steps were similar to the 
previous reports [50, 51].

The consistency measurement was conducted using a penetrometer (Precision 73,515, 

Petroleum Analyzer Co., San Antonio, TX, USA) using a pressure sensor. The penetrometer 

Hydrogels162



was set under gravity force for 5 s, and the depth of penetration was measured in tenths of 

millimeters. The depth of penetration depended on the kinetic energy applied to the pen-

etrometer and the sample resistance. The resistance data were collected to obtain the consis-

tency value describing the required mechanical force to decelerate from its initial velocity to 

zero velocity.

4. Preparation of Fe
3
O

4
 nanoparticles from iron sand

Fe
3
O

4
 nanoparticles were prepared by coprecipitation method employing natural iron sand 

as a raw material. The preparation was the same as explained in the former papers [48, 52]. 
First, iron sand was extracted by permanent magnet several times to obtain microsized Fe

3
O

4
 

powders. HCl and NH
4
OH were used as dissolving and precipitating agents, respectively. 

Fe
3
O

4
 nanoparticles produced by the coprecipitation method were based on the following 

chemical reaction [52, 53].

   Fe  
3
   O  

4
   + 8HCl → 2  FeCl  

3
   +  FeCl  

2
   + 4 H  

2
   O  (1)

  2  FeCl  
3
   +  FeCl  

2
   + 8 NH  

4
   OH →  Fe  

3
   O  

4
   + 8 NH  

4
   Cl + 4 H  

2
   O  (2)

Both reactions were maintained at room temperature. A complete reaction was indicated by 
the color change of the solution and the formation of black precipitation. Finally, the precipi-
tated powders were rinsed several times using distilled water and then dried at 100°C for 1 h 
for ferrogel fabrication.

5. Fabrication and characterization of PVA/Fe
3
O

4
 hydrogel (Ferrogel) 

based on iron sand

Ferrogel was fabricated by distributing the prepared Fe
3
O

4
 nanoparticles in the PVA hydrogel 

paste solution, and then, they were stirred to obtain a uniform gel. Furthermore, the mixture 
gel was placed into a cylindrical mold to perform the similar F-T cyclic process as in the PVA 

hydrogels fabrication. The ferrogel samples were prepared by varying the concentration of 
PVA and Fe

3
O

4
 nanoparticles, as well as the number of F-T cycles.

Basic characterizations using X-ray diffractometer (XRD) and transmission electron micros-

copy (TEM) were conducted to analyze the crystal structure and particle morphology of 
Fe

3
O

4
 nanoparticles and ferrogels, respectively. Vibrating sample magnetometer (VSM) and 

superconducting quantum interference device (SQUID) measurements were taken to inves-

tigate the magnetic properties of the PVA ferrogels. Particle size and the distribution of Fe
3
O

4
 

nanoparticles in the PVA hydrogels were analyzed using small-angle X-ray scattering (SAXS) 
instrument as in the reported paper [48].
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The ferrogels were exposed to the external magnetic field of an electromagnet apparatus, 
which is able to generate a magnetic field up to 460 mT. The response of the ferrogel was 
measured by the extent of deflection and elongation. The top end of a ferrogel sample was 
fixed, whereas the lower end was free to deflect and elongate during the application of the 
external magnetic field. Variation in the magnetic field was obtained by changing the electric 
current of the electromagnetic apparatus. The Young’s modulus was measured using a uni-
versal mechanical tester.

6. Applications of PVA hydrogels for tissue engineering

PVA hydrogels fabricated through a number of F-T cycle processes have the ability to mimic 

a complex structure of human body. In a normal condition, water can be diffused into organic 
tissue during body’s metabolism. However, the diffusion of water can be disturbed if water 
molecules are passing through an abnormal tissue due to swelling of the tissue, for example 
in tumor tissue. Moreover, about two-thirds of the human body consist of water, in which 
water molecules have hydrogen atoms that allow for magnetic resonance imaging (MRI) 
observation. Diffusion-weighted MRI (DW-MRI) is a device with high sensitivity in detect-
ing “Brownian motions.” The diffusion of water molecules caused by heat energy associated 
with the temperature of the human body can be used for analyzing a variety of brain diseases 

including brain tumors [54]. Additionally, diffusion-weighted imaging (DWI) is a technique 
that can be used to measure diffusion of water molecules in biological tissue such as white 
matter in the brain. In the MRI observation, the value of apparent diffusion coefficient (ADC) 
is used widely for describing the diffusion coefficient of the material.

In order to investigate the diffusion properties and the consistencies of the fabricated PVA 
hydrogels applied for tissue replica, several PVA hydrogel samples have been produced by 

variation number of F-T cycles and PVA concentrations. ADC values of the PVA hydrogels 
were obtained by performing the DW-MRI measurement. Sari et al. [51] have shown the ADC 
values versus PVA concentration for PVA hydrogels with the F-T process of three to five 
cycles. It has been found that the increase of PVA concentration from 7.5 to 15 wt% decreases 
the ADC values corresponding to the diffusion coefficient of all PVA hydrogels.

The enlargement of the tumor cells causes a reduction in the volume of extracellular space, 
increases the intracellular viscosity, and then inhibits the movement of water molecules described 

by the decrease of ADC value. Moreover, for PVA hydrogel fabricated by cryogelation process, 
the decrease of ADC value is described by swelling indicated by the significant increase of crystal-
lization of hydrogel with increasing the number of F-T cycles. ADC value helps to distinguish a 
tumor tissue from a nontumor tissue. However, the abnormal tissue of brain tumor has a variety 
of classifications depending on the location and type of tumor tissue. Therefore, in the application 
of DW-MRI, it is necessary to find the most aggressive area at first to identify the highest cellular-

ity and the most restrictive for the movement of water molecules. The use of higher b-value is to 
obtain a brighter contrast and has the impact on the easiness of diffusion imaging. The higher 
b-value can produce images on the high value of signal-to-noise ratio (SNR). Otherwise, at 1.5 T 
or lower, a low b-value may produce a poor image quality and lower value of SNR [55].
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Figure 1 displays the ADC values of the PVA hydrogels measured from DW-MRI with b = 1000 
and 3000 s/mm2 as a function of F-T cycles and different PVA concentration. It has been found 
that the greater the concentration and number of cycles, the lower the diffusion coefficient 
of the PVA hydrogels. The crystallization, the degree of the physically cross-linked network, 
and the stiffness of hydrogel increase with the increase of the F-T cycle [15, 56]. The increase 
of crystallization indicates that the diffusion of water may be inhibited, so that the value of 
diffusion coefficient, described by ADC value, decreases. This is general diffusion behavior of 
a hydrogel, in which the diffusivity of a hydrogel decreases as cross-linking density increases 
and as the volume fraction of water within the hydrogel decreases [57]. It has also been indi-
cated that the linearity of the ADC value as a function of F-T cycles at b = 3000 s/mm2 is better 
than that at b = 1000 s/mm2. This result is in a good agreement with the former result [55].

Figure 2 shows the consistency measurement as a function of F-T cycles and different PVA 
concentration. The data show that the higher PVA concentration and a number of F-T cycles 
cause the lower consistency and ADC value [50]. These results are consistent with the former 
paper [58]. The Pearson correlation method was used to correlate the data and are presented 
in Table 1. It is shown that the average value of ADC at b = 3000 s/mm2 is good and slightly 

smaller than that at b = 1000 s/mm2. The data have a good correlation (correlation number of 
0.92—0.99), so that it can assess the abnormal tissue consistency [51].

Generally, ADC values of the human brain for both normal and abnormal cases are differ-

ent significantly. In the DW-MRI analysis, ADC value in the normal human brain is about 
0.75 mm2/s and the higher b-value results in the lower ADC value. A tissue having low ADC 
value eliminates signals faster than that on the tissue having higher ADC value, and therefore, 
the contrast should increase. Sari et al. [51] have analyzed some cases for human brain tumor 

from the DW-MRI images at b-value of 1000 and 3000 s/mm2. They also found that the tissue 
having low ADC value indicates lower consistency or harder than the tissue having high ADC 
value. The ADC measurement using b = 1000 s/mm2 can distinguish the harder tissue with the 

Figure 1. ADC value of PVA hydrogels on the DW-MRI at b-value of 1000 s/mm2 (closed symbols) and 3000 s/mm2 

(opened symbols) as a function of the number of F-T cycles and PVA concentration.
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normal one and provides a clearer image, although the ratio of normal and abnormal tissue is 

not as high as the use of b = 3000 s/mm2. A better value of correlation with the physical param-

eters gives a suggestion that the use of DW-MRI 1.5 T with b = 1000 s/mm2 provides a better 
image and the use of penetrometer is necessary for additional information for determining 

surgery. Otherwise, the use of DW-MRI 1.5 T with b-value higher than 1000 s/mm2 is more 

preferred to examine the swelling that occurs around the area of the abnormal tissue because 
it provides more contrast image.

Figure 2. Consistency measurement using digital penetrometer as a function of the number of F-T cycles and PVA 
concentration.

PVA hydrogels with different F-T cycle at constant PVA concentration of 10 wt% Data (s/mm2)

b = 1000 b = 3000

Two cycles 0.96 0.77

Three cycles 0.96 0.99

Four cycles 0.99 0.96

Five cycles 0.96 0.97

PVA hydrogels with different PVA concentration at constant F-T cycle for three 
times

Data (s/mm2)

b = 1000 b = 3000

7.5 wt% 0.98 0.93

10 wt% 0.99 0.99

12.5 wt% 0.94 0.99

15 wt% 0.92 0.98

Table 1. The Pearson correlation result for both data of PVA hydrogels with different F-T cycle and PVA concentration.

Hydrogels166



7. Stability and durability of PVA-Fe
3
O

4
 hydrogels (Ferrogels)

In order to study the stability and durability of ferrogel, a number of ferrogel samples have been 

fabricated with a variation of PVA and water ratio, the concentration of Fe
3
O

4
 nanoparticles, and 

a number of F-T cycles. The stability was investigated by observing the increase of the required 
external magnetic field to elongate and deflect the ferrogels until a certain length and distance 
over a particular time. The observations were conducted from the first day since the ferrogels 
fabricated until the fifth day. The ferrogels can be called relatively stable if the change of required 
magnetic field is considerably small over the time to get the same deformation condition.

Table 2 shows ferrogel samples with a variation of PVA and water ratio together with their 

elasticity moduli. It can be seen from the elasticity properties that the stiffness of ferrogel 
depends on the PVA concentration in water. Higher PVA concentration causes the increase of 
stiffness. The stability of ferrogels is shown in Figure 3. Figure 3 demonstrates the time depen-

dence of the required external magnetic field to elongate ferrogel up to 1 mm. It indicates that 

No. Ratio of PVA and water Fe
3
O

4
 (wt%) Number of F-T cycles Sample code Modulus elasticity (Pa)

1 13:100 10 4 PA.13 67.18

2 18:100 10 4 PA.18 69.96

3 23:100 10 4 PA.23 61.23

4 28:100 10 4 PA.28 119.10

5 33:100 10 4 PA.33 221.20

Table 2. Ferrogel samples prepared with different PVA and water ratio, together with the modulus elasticity.

Figure 3. Required magnetic field to elongate ferrogel up to 1 mm as a function of time for ferrogels with different PVA 
and water ratio.
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ferrogel becomes stiffer with the passage of time due to the decrease of water content. The 
ferrogel with PVA and water ratio of 23:100 (PA.23) shows a relatively small change of the 
required magnetic field up to five days indicating a relative stability compared to the others. 
This stability relates to the optimum portion of water inclusion binding in the PVA hydrogel.

Figure 4. Hysteresis curves of the deflection behavior of ferrogels with PVA and water ratio: (a) 13:100, (b) 18:100,  
(c) 23:100, (d) 28:100, and (e) 33:100.

Hydrogels168



Figure 4 presents magnetic field dependence of ferrogel deflection with different PVA 

and water ratio. Figure 4 displays interesting hysteresis loop in which the deflection 

increases with increasing magnetic field and returns to its original length through a 

different path, thereby decreasing the magnetic field. These noncontinuous deflection 
behaviors have also been observed by Zrínyi et al. [59] and modeled by Snyder et al. [60]. 
The hysteresis loops tend to shift day by day, indicating a rigid gel character due to the 

decrease of water content.

Ferrogels with different concentration of Fe
3
O

4
 nanoparticles and the modulus elasticity are 

presented in Table 3. It appears that there is no significant change in the modulus of elasticity 
with the increase of Fe

3
O

4
 concentration from 5 to 12.5 wt%. This result is consistent with the 

former report [40], in which the obtained elastic modulus was in the range of 0.17–0.75 MPa 
for a magnetoactive elastomer. Figure 5 shows the stability characteristic of the ferrogels 

with various Fe
3
O

4
 concentrations associated with Table 3. It implies that the increase of 

nano-sized Fe
3
O

4
 concentration tends to decrease the required magnetic field to elongate 

ferrogel up to the same length for each day, indicating the decrease of water content and 

stiffer ferrogels. Ferrogel with Fe
3
O

4
 concentration of 10 wt% (FP.10) appears to be mod-

erately stable compared to the others. For the ferrogels with Fe
3
O

4
 concentration less than 

10 wt%, the trapped magnetic particles in the PVA chain were less and therefore the distribu-

tion was inhomogeneous, creating more spaces which were filled with water. According to 
the structural model of hydrogel described by Goiti et al. [43], the trapped, free and linked 

water molecules attached to the PVA chain may cause a soft ferrogel and dry quickly due 
to rapid evaporation of the water. On the other hand, for ferrogels with Fe

3
O

4
 concentration 

more than 10 wt%, there might be a space filled by Fe
3
O

4
 nanoparticles so that the water is 

suppressed. The Fe
3
O

4
 nanoparticles could directly coincide with the polymer chain. For the 

ferrogel with Fe
3
O

4
 concentration of 10 wt%, it is expected to have a proportional amount of 

solids and liquid, resulting in a good cross-linked hydrogel and then the trapped water can 

maintain flexibility of the gel.

Figure 6 shows magnetic field dependence of ferrogel deflection with different concentra-

tion of Fe
3
O

4
 nanoparticles. The hysteresis behavior of the deflection curves depends on the 

concentration of Fe
3
O

4
 nanoparticles and the elasticity of ferrogel itself. It should be noted 

that the hysteresis behavior observed in ferrogel is not consequences from the magnetic 

particles [59]. It appears that ferrogels with Fe
3
O

4
 concentrations of 10 and 12.5 wt% have no 

significant change in the hysteresis loops up to the fifth day. The change and the distortion 

No Ratio of PVA and water Fe
3
O

4
 (wt%) Number of F-T cycles Sample code Modulus elasticity (Pa)

1 23:100 5 4 FE.5 60.54

2 23:100 7.5 4 FE.7 60.94

3 23:100 10 4 FE.10 61.23

4 23:100 12.5 4 FE.12 61.59

Table 3. Ferrogel samples prepared with different Fe
3
O

4
 concentrations, together with the modulus elasticity.
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Figure 5. Required magnetic field to elongate ferrogel up to 1 mm as a function of time for ferrogels with different Fe
3
O

4
 

concentrations.

Figure 6. Hysteresis curves of the deflection behavior of ferrogels with Fe
3
O

4
 concentration of: (a) 5 wt%, (b) 7 wt%,  

(c) 10 wt%, and (d) 12 wt%.

Hydrogels170



of hysteresis shape are influenced by magnetostatic and magnetostriction mechanisms in 
the ferrogel [61]. Sample geometry may also be one parameter for determining the mechani-
cal behaviors (elongation, deflection, etc.) of the ferrogel in the external magnetic field [60].

The modulus elasticity of ferrogels with a different number of F-T cycles was also investigated 
as shown in Table 4. In general, the greater the number of F-T cycles, the more rigid ferrogels 
will be obtained due to the evaporation of water. Figure 7 shows the durability of ferrogels 

produced by 4, 8, and 12 times F-T cycles. It is also clear that ferrogel produced by four times 
F-T cycles has better stability as indicated by relatively small changes of the external magnetic 
field required to elongate ferrogel up to the same length until the fifth day. The stability of 
the ferrogels can also be studied by observing the hysteresis loop of elongation as shown in 

Figure 8. Ferrogels fabricated by more than four cycles are generally unstable, implying that 
there is a reduction of water in the ferrogels during F-T cycle processes. This result is consis-

tent with the previous papers [34, 49]. Through the F-T cycles, crystallites will be formed and 
act as the cross-linking points in the polymer matrix. The amount and size of these crystallites 
depend on the number of F-T cycles, as well as composition and concentration of the initial 

solution [15].

No Ratio of PVA and water Fe
3
O

4
 (wt%) Number of F-T cycles Sample code Modulus elasticity (Pa)

1 23:100 10 4 FT.4 61.23

2 23:100 10 8 FT.8 535.2

3 23:100 10 12 FT.12 267.0

Table 4. Ferrogel samples prepared with a different number of F-T cycles, together with the modulus elasticity.

Figure 7. Required magnetic field to elongate ferrogel up to 1 mm as a function of time for ferrogels with a different 
number of F-T cycles.
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8. Structural and magnetic properties of Ferrogels

In addition to the substantial biomedical and biomechanical applications of PVA hydrogels 

and ferrogels, respectively, a basic study of structural and dynamical properties of ferrogel 

has to be investigated in detail. Structural studies using small-angle X-ray scattering (SAXS) 
measurement of PVA hydrogel and ferrogel have been reported by Puspitasari et al. [62] and 

Sunaryono et al. [48], respectively. Puspitasari et al. have confirmed that the crystallization 
of PVA hydrogel has a radius of approximately 2.9–3.3 nm and an average distance between 
polymer crystallites of 15–17.5 nm [62]. This result is consistent with the recent paper [48]. 
Moreover, Sunaryono et al. have illustrated the size distribution of Fe

3
O

4
 nanoparticles in the 

PVA hydrogel obtained by F-T cyclic process [48]. They have found that there are so-called 
primary particles (approximately 3 nm) and secondary particles as well as the clusters of mag-

netic nanoparticles in ferrogel observed by the synchrotron radiation (SAXS technique) with 
global fitting analysis data. The cluster size of the Fe

3
O

4
 in the ferrogel system was observed to 

be significantly reduced with decreasing concentration of the magnetic nanoparticles.

Figure 8. Hysteresis curves of the deflection behavior of ferrogels with the number of F-T cycles for: (a) 4, (b) 8, and  
(c) 12 times.
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Ferrogel has potential application for an artificial muscle or a soft actuator due to the com-

bined properties of good elasticity and flexibility from PVA hydrogel and specific magnetic 
behavior from the magnetic particles. Ramanujan et al. [40] have proposed two possible 

approaches of an artificial finger synthesized from PVA hydrogel and microsized iron oxide. 
First, they found that the deflection of ferrogel can be controlled by adjusting the concen-

tration of magnetic particles. The second one is by coating manipulation of ferrogel. They 
demonstrated a finger-like motion based on instantaneous elongation and defection under 
external magnetic field.

As mentioned previously, in order to apply the ferrogel as an artificial tissue, one should 
understand the behavior of magnetoelastic properties. Based on numerous references [40, 48], 

the magnetoelasticity of ferrogel basically depends on the particle size and concentration of 

the magnetic particles in the polymeric matrix. Due to the particle size effect, the magnetiza-

tion of microsized Fe
3
O

4
 particles in the ferrogel is generally higher than that of the nano-sized 

one. This may affect the threshold value of the magnetic field which is the minimum magnetic 
field required to start a large and instantaneous elongation or deflection of ferrogel. Figure 9 

shows the dependence of Fe
3
O

4
 concentration on the threshold magnetic field for both elonga-

tion and deflection of ferrogels with micro- and nano-sized Fe
3
O

4
 particles. It is found that the 

threshold magnetic field tends to decrease with increasing concentration of Fe
3
O

4
 particles. 

This result is consistent with the former report [40]. This result implies that the ferrogels 
are more sensitive to the external magnetic field with the increase of Fe

3
O

4
 concentration. 

Figure 9 reflects the magnetic response for both variation of ferrogels, in which the ferrogel 
with microsized Fe

3
O

4
 particles has smaller threshold value than the ferrogel with nano-sized 

Fe
3
O

4
 particles as a consequence of the higher magnetization.

Figure 10 displays the Fe
3
O

4
 concentration dependence of elongation and deflection behaviors 

for both ferrogels with micro- and nano-sized Fe
3
O

4
 particles as fillers. It indicates that ferro-

gel with microsized filler is more sensitive to deform ferrogel under external magnetic field. 
This result can be explained by the lower threshold value of the magnetic field as illustrated 
in Figure 9. Figure 11 shows the magnetoelastic hysteresis loops for ferrogels with different 

Figure 9. The threshold of magnetic field versus micro- and nano-sized Fe
3
O

4
 fillers for ferrogels during (a) elongation 

and (b) deflection. The solid lines are for the eye guidance.
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concentration of microsized Fe
3
O

4
 particles from 2.5 to 15%. The hysteresis loops are found to 

be narrower and smaller with decreasing magnetic filler concentration. This is attributed to the 
different magnetic response of ferrogel to be deformed and returned to its original length and 
position. This behavior is also associated with a magnetic remnant of the ferrogels. A higher 
magnetic concentration leads to a higher ferrogel ability to deform even under a low exter-

nal magnetic field. Moreover, a wider hysteresis loop for ferrogel with microsized filler was 
observed, indicating a stronger magnetic saturation. This is in a good agreement with the previ-
ous paper [27] that the ferrogel with large particle size has the best magnetosensitive effect, so it 
can be applied for drug release system.

Figure 11. Hysteresis loops of the deflection versus electric current (proportional to the magnetic field) for ferrogels with 
different concentrations of Fe

3
O

4
 microparticles: 2.5 wt%, 7.5 wt%, and 15 wt%.

Figure 10. (a) Elongation and (b) deflection of ferrogels under 329 mT versus the concentration of micro- and nano-sized 
Fe

3
O

4
 particles as fillers. The solid lines are for the eye guidance.
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9. Conclusions

PVA hydrogel and ferrogels with Fe
3
O

4
 micro- and nano-sized particles as fillers have been 

successfully prepared by freezing-thawing (F-T) cyclic method. We can conclude the chapter 
as the following:

• In the biomedical application, a study of hydrogen (water molecules) diffusion behavior in 
the PVA hydrogel by analyzing the ADC value can be used as a parameter of brain tumor 
grading. The b-value of 1000 s/mm2 and higher providing a better image quality and con-

trast is recommended for brain tumor grading.

• The time dependence of the elongation and deflection curves as a function of PVA 

concentration, particle concentration, and a number of F-T cycles can be used to deter-

mine the durability and performance of the ferrogel under certain external magnetic 
fields. It has been suggested that ferrogel with PVA and water ratio of 23:100 and 
four times F-T cycles, respectively, has the best elastic properties. Ferrogel fabricated 
by a F-T cyclic process has the best magnetoelastic response when it has a relatively 

large magnetic particle size as the filler with a concentration of 10–15 wt% in the PVA 

hydrogel.
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