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Abstract

The stress responses observed in mammalian cells can be classified as heat shock 
response, unfolded protein response, autophagic response, deoxyribonucleic acid 
damage response, antioxidant response, and sirtuin response at the intracellular and 
molecular levels. Factors that strengthen the hemodynamic structure causing low-level 
molecular damage and activating one or several stress response pathways are called hor-
metins. Hormetins can be categorized as physical, physiological, biological, and nutri-
tional hormetins. Nutritional hormetins provide an interesting, comprehensive research 
topic because of their effects on health and lifespan. Dietary phytochemicals, with their 
low-level stress-inducing effects, are potential nutritional hormetins. Resveratrol, cur-
cumin, epicatechin, isothiocyanates, ferulic acid, and certain vitamin-minerals can induce 
a heat shock response, unfolded protein response, autophagic response, deoxyribonucleic 
acid damage response, antioxidant response, and sirtuin response causing the stimula-
tion of kinases and transcription factors. Studies have shown that these phytochemicals 
are related to nuclear factor-erythroid 2, sirtuins, nuclear factor-kappa B, and heat shock 
response pathways. In this chapter, the stress response of dietary phytochemicals will be 
systematically examined in a hormetic manner for delay of age-related diseases, healthy 
aging, and longevity based on current data.

Keywords: aging, longevity, health, stress response, hormesis, nutritional hormetin, 
phytochemical

1. Introduction

The term hormesis, based on toxicology, is described as a biphasic dose response in which 

environmental factors show a stimulant effect at low doses and a toxic effect at higher doses 
[1]. A comprehensive current definition of “hormesis” is "chemical and environmental factors 

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



having a beneficial effect to cells in an organism at low doses, whereas they are damaging 
at high doses" [2]. Hemodynamic is the ability of live systems to provide protection against 

stress, and to maintain adaptation, survival, and continuity of health. Hemodynamic impair-

ment, increased molecular heterogeneity, altered cellular function, and decreased adaptive 

stress responses are some factors that determine health status and lifespan [3, 4]. The devel-

opment of adaptive stress response with mild and periodic stress is hormetically related to 

the strengthening of the hemodynamic structure, the reduction of disease risks, and healthy 
aging. Hormesis in aging implies that mild stress produces biologically beneficial effects by 
inducing protective mechanisms in the cells and the organism [5]. Stress response can be 
defined as the response of cells, tissues, and organisms to physical, chemical, or biological 
factor(s) affecting adaptation and lifespan by initiating a series of biological events. In terms 
of hormetic level, stressors at a mild level activate various signaling pathways, maintaining 

intrinsic changes leading to a high level of stress-adaptive response. Stress response in mam-

malian cells can be classified into seven basic pathways at the intracellular and molecular 
levels: (1) heat shock response; (2) unfolded protein response; (3) autophagic response; (4) 
deoxyribonucleic acid (DNA) repair response; (5) antioxidant response; (6) sirtuin response; 
and (7) nuclear factor-kappa B (NF-κB) inflammatory response. The conditions and factors 
identified as hormetic activate the pathway of one or more stress responses by mild molecular 
impairment and strengthen the hemodynamic structure. Hormetins can be grouped under 

three categories: (1) physical hormetins (exercise, thermal shock, and irrigation); (2) physi-
ological hormetins (mental interrogation and focusing); (3) biological and nutritional horme-

tins (infections, micronutrients, phytochemicals, and energy restriction) [4, 6, 7].

Dietary phytochemicals are potential nutritional hormetins with mild stress-inducing effects. 
In the Greek language “phyto” means plant, so phytochemical means “plant chemical.” 
Phytochemicals are non-nutrient biologically active compounds produced to protect plants 

against microbial infections that occur because of environmental factors damaging the plant. 

Therefore, phytochemicals, which are secondary plant metabolites found primarily to pro-

tect their structures and properties in vegetables, fruits, grains, and various plants, may have 

positive effects on human health when taken in the diet. Phytochemicals are generally clas-

sified according to their chemical structure. The main groups with bioactive properties from 
these groups are phenolic compounds [8, 9]. Ferulic acid, resveratrol, epigallocatechin gal-

late (EGCG), luteolin, quercetin, and curcumin as phenolic compounds are dose-dependently 

responsible for the stimulation of kinases and transcription factors and produce a heat shock 
response, unfolded protein response, autophagic response, DNA repair response, antioxidant 
response, and sirtuin response [6, 10–13]. In this chapter, the stress response of dietary phy-

tochemicals will be systematically examined in a hormetic manner for delay of age-related 

diseases, healthy aging, and longevity based on current data.

2. Dietary Phytochemicals as Nutritional Hormetins

When dietary phytochemicals are invoked in relation to neurodegenerative diseases, cardiovas-

cular diseases, cancer, aging, and longevity, especially in the heat shock response, antioxidant  
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response, NF-κB inflammatory response, and autophagic response were emphasized regard-

ing their hormetic adaptive stress response pathways. The characteristics and importance of 

these stress response pathways are summarized in what follows.

The major effectors involved in heat shock response are heat shock proteins (HSPs), which are 
cytoprotective proteins that facilitate cellular protein folding, prevent protein aggregation, 

and provide protein degradation activation. They also affect the cell survival by interacting 
with various molecules in the regulation of apoptosis and mitochondrial activities. HSPs are 
divided into five main groups: the Hsp100 family, Hsp90 family, Hsp70 family, Hsp60 fam-

ily, and the small Hsp family. Hsp70 regulates protein homeostasis, thereby, it can provide 

protection against cancer, neurodegeneration, and infections [14, 15]. Hsp90 regulates the sta-

bility and intracellular sorting of client proteins found in many oncogenic processes. Thus, 

Hsp90 inhibition may prevent cancer progression [16]. Hsp27 can protect against neurode-

generative diseases by controlling apoptosis, cytoskeleton regulation, oxidative stress, and 
protein folding [17]. In general, HSPs provide the survival of cancer cells by overexpression in 
cancer cells. Thus, the inhibition of Hsp27, Hsp70, and Hsp90 can be targeted in the treatment 

of cancers in which HSPs are known to be over-expressed [18]. The nuclear factor-erythroid 

2-related factor 2 (Nrf2)/antioxidant response element (ARE) is the main effective pathway 
in the formation of antioxidant stress responses. Under basal conditions, Nrf-2 is present in 

the cell cytoplasm bound to Keap1 protein. However, when combined with oxidative stress 

and chemo-blocking factors, Nrf2 is released from Keap-1 into the nucleus; it activates the 
ARE and induces the expression of the antioxidant enzymes including glutathione peroxidase 
(GPx), catalase, hemoxygenase (HO)-1, and the phase II detoxification enzymes, including 
glutathione S-transferase (GST). Extracellular signaling protein kinases are responsible for 
the release of Nrf2 from Keap-1 by phosphorylation of extracellular signal-regulated kinases 
1 and 2 (ERK1/2), protein kinase C (PKC), and c-Jun N-terminal kinase (JKN). Thus, Nrf2 
associated with the cell defense mechanism, may have protective effects against oxidative 
stress-induced tissue degeneration, premature aging, cancer, neurodegenerative diseases, 

cardiovascular diseases, acute and chronic lung diseases, and autoimmune and inflammatory 
diseases [19–22]. Among the factors that induce Nrf2 in the formation of antioxidant stress 

responses are isothiocyanates and Michael acceptors. Michael acceptors are susceptible to 

flavonoids, chalkones, terpenoids, curcumin, cinnamic acid derivatives, and thiophenes, and 
interact with these phytochemicals to modulate the Nrf-2 pathway [23, 24]. The effector NF-κB 
protein complex action regulates the expression of genes involved in innate and adaptive 

immunity, inflammation, cellular stress response, cell survival, and proliferation. Therefore, 
this pathway can be effective in pathogenesis of inflammatory and autoimmune diseases, 
septic shock, viral infections, tumorigenesis, and neurodegenerative diseases. Various dietary 
phytochemicals such as curcumin and resveratrol can suppress NF-κB activation and protect 
against immunological and inflammatory diseases, cancer, and neurodegenerative diseases 
[12]. In an autophagic response, hypoxia-inducible factor (HIF)-1 and the activated mam-

malian target of rapamycin (mTOR) are important. mTOR is involved in cell proliferation 
and protein synthesis via insulin and insulin-like growth factor (IGF)-1 signaling. It can also 
cause the suppression of autophagy, and reduced autophagy is associated with decreased 

longevity. Thus, the increase in autophagy is associated with an increase in inflammatory 
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response, cellular senescence, decreased proteotoxic protein aggregation, and the removal 

of intracellular pathogens, cumulatively resulting in an increased innate immune response 

that leads to longevity [25]. HIF-1 regulates genes related to angiogenesis, iron and glucose 

metabolism, cell proliferation and cell survival. Various dietary phytochemicals, with HIF-1 
inhibition, have protective effects against neurodegenerative diseases, cancer, cardiovascu-

lar diseases [12, 26]. In this section, hormetic effects of phenolic compounds predominantly 
expressed as hormetin including ferulic acid, curcumin, resveratrol, EGCG, luteolin, quer-

cetin, and sulforaphane will be discussed in relation to these stress response pathways. The 

stress pathways, transcription factors, and biological outcomes of these phytochemicals have 

been summarized in Table 1.

2.1. Ferulic acid

Ferulic acid (4-hydroxy-3-methoxycinnamic acid) is a cinnamic acid derivative phenolic com-

pound. It is also the preliminary metabolite for curcumin and lignins. Grain bran, whole grains, 

artichoke, eggplant, banana, cabbage, and coffee are rich in ferulic acid. Ferulic acid has a posi-
tive effect on diseases such as cancer, Alzheimer’s disease, Parkinson disease, and diabetes 
through various pathways. Among the mechanisms of action of ferulic acid are the antioxidant 

response, heat shock response, and NF-κB inflammatory response, especially in the adaptive 
stress response pathways [27–29]. Ferulic acid showed a protective effect against heat stress-
induced intestinal epithelial barrier dysfunction in IEC-6 intestinal epithelial cells in a dose-
dependent manner in male Sprague-Dawley rats in vitro and in vivo [30]. In a study conducted 

on the human neuroblastoma cell line SH-SY5Y, ferulic acid increased dose-dependent HO-1 
expression through Nrf2 [31]. In a study on PC12 cells, ferulic acid increased HO-1 expression 

through ERK1/2-Nrf2 signaling pathway and protected against lead acetate-induced neurite 
outgrowth inhibition [32]. On the other hand, 1-feruloyl glycerol and 1-feruloyl diglycerol 

predominate in water-soluble forms of ferulic acid in rat primordial astrocytes, suppressing 

nitric oxide (NO) synthesis and inducible nitric oxide synthase (iNOS) expression by suppress-

ing the NF-κB pathway. Accordingly, these ferulic acid forms may provide a protective effect 
against neurodegenerative diseases [33]. The tumor necrosis factor (TNF)-α induces endothe-

lial dysfunction by reducing NO bioavailability. Ferulic acid increased tyrosine-dependent NO 

production and suppressed the NF-κB pathway in TNF-α-stimulated inflammatory human 
umbilical vein endothelial cells (HUVECs) [34]. Another study showed that ferulic acid dem-

onstrated a cardioprotective effect by increasing Hsp70 through the NO-ERK1/2 pathway in 
mice cardiomyocytes and suppressing the NF-κB pathway [35]. In another study, HeLa and 

mouse primary hepatocyte cells activated basal autophagy with an mTOR inhibition almost 
equivalent to that of rapamycin [36]. As a result, ferulic acid can exert a protective effect against 
neurodegenerative diseases, cardiovascular diseases, and cancer inflammatory diseases by act-
ing on stress pathways and thus can positively affect longevity.

2.2. Curcumin

Curcumin (1,7-bis (4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione), also known as 
diferuloylmethane, is a yellow phenolic compound, found in Curcuma longa (turmeric) a 

Gene Expression and Regulation in Mammalian Cells - Transcription Toward the Establishment of Novel Therapeutics6



Phytochemicals Stress pathways Transcription 

factors

Biological outcomes References

Antioxidant response 

pathway

Nrf-2 HO-1↑ [31, 32]

Ferulic acid NFκB inflammatory pathway NFκB NO↓, iNOS↓ [33]

Heat shock response 
pathway

HSF-1 Hsp70↑ [35]

Autophagic response 

pathway

— mTOR inhibition [36]

Antioxidant response 

pathway

Nrf2 Glutathione, GR, GST, HO-1, 
NQO1

[43, 44]

Curcumin NFκB inflammatory pathway NFκB SOD-2↑, Hsp60↑ [42, 45]

Heat shock response 
pathway

HSF-1 Overexpressed Hsp27↓, 

Hsp70↓, Hsp90↓

Hsp27↑, Hsp70↑

[39, 40]

[41, 42]

Sirtuin response pathway — SIRT3↑ [42]

Antioxidant response 

pathway

Nrf2 Glutathione↑, HO-1↑ [49, 50]

Resveratrol NFκB inflammatory pathway NFκB iNOS↓, IL-6↓, TNF-α↓ [54, 55]

Heat shock response 
pathway

HSF-1 Hsp25↑, Hsp70↑ [47, 48]

Autophagic response 

pathway

— mTOR inhibition [52, 53]

Sirtuin response pathway — SIRT1↑ [47, 48]

Antioxidant response 

pathway

Nrf2 GST↑, NQO1↑, HO-1↑ [59, 60, 62, 

64]

EGCG NFκB inflammatory pathway NFκB IL-12p40↓, IL-6↓ [65–67]

Heat shock response 
pathway

HSF-1 Overexpressed Hsp90↓ [58]

Autophagic response 

pathway

— HIF-1α, mTOR inhibition [68, 69]

Antioxidant response 

pathway

Nrf2 HO-1↑, CYP1A1↑, NQO1↑, 

GST-P1↑, GCLC↑, GCLM↑

[76–78, 80, 

81, 83]

Luteolin NFκB inflammatory pathway NFκB TNF-α↓, NO↓ [73–75, 81]

Autophagic response 

pathway

— HIF-1α inhibition [82]

Sirtuin response pathway — SIRT1↑ [81]

Antioxidant response 

pathway

Nrf2 GSH↑, GPx↑, GR↑, GST↑, 

GCLC↑, GCLM↑, HO-1↑

[89–95]

Quercetin NFκB inflammatory pathway NFκB COX-2↓ [90, 94]

Heat shock response 
pathway

HSF-1 Overexpressed Hsp27↓, 

Hsp70↓

[85–87]
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plant of the ginger family. Curcumin is the compound responsible for the chemical and bio-

logical properties of this spice, as well as its color and taste. Numerous studies have shown 

that curcumin is associated with antioxidant, anti-inflammatory, antimutagenic, antimicro-

bial, and anticancer effects, mitigating chronic diseases and increasing longevity [37, 38]. 

HSPs, HSF1, and histone deacetylase (HDAC) 6 are upregulated in cancer. Expression of Hsp 
27, Hsp70, Hsp90, HSF1, and HDAC-6, which are overexpressed in K-562 and HL-60 leu-

kemia cells, was reduced when curcumin was administered [39]. Also, curcumin appeared 

to reverse the inhibition on Hsp70 induced by the gp120 V3 loop peptide and increased the 
expression of Hsp70 in primary rat cortical neuronal apoptosis [40]. In addition, curcumin 

can protect against endosulfan toxicity by decreasing endosulfan-induced apoptosis through 

increased Hsp 27 expression in human peripheral blood mononuclear cells (PBMCs) [41]. In 

hyperglycemic HepG2 human hepatoma cells, curcumin increased the expression of NF-κB 
and Hsp70, sirtuin (SIRT)-3, glutathione peroxidase (GPx)-1, and superoxide dismutase 
(SOD)-2 in a dose-dependent manner [42]. On the other hand, curcumin may act as an anti-

oxidant in the stress-response pathway. Primary cell cultures of cerebellar granule neurons 

of rats increased the expression of HO-1, glutathione, glutathione reductase (GR), GST, and 
SOD through Nrf-2 depending on the dose and duration and thereby protected against 
hemin-induced toxicity [43]. In mice liver cells with T-cell lymphoma, the expression of GST, 
GR, and NAD(P)H:quinine oxidoreductase (NQO1) enzymes was increased by activation of 
curcumin Nrf-2 [44]. Lipopolysaccharide (LPS)-stimulated BV2 mouse microglia cells also 
inhibited microglial activation by inhibiting the curcumin Hsp60/TLR4/MyD88/NF-κB path-

ways [45]. As a result, curcumin can show protective effects against cancer, neurodegenera-

tion, and inflammation by acting on stress-response pathways.

2.3. Resveratrol

Resveratrol (3,5,4′-trihydroxy-trans-stilbene) is a phenolic compound found in some plants 
such as grapes, berries, peanuts, and Japanese knotweed, with purported medical uses. 
Several studies have shown that resveratrol affects chronic diseases and longevity through 
anti-carcinogenic, anti-inflammatory, and antioxidant properties [46]. Resveratrol dose-
dependently increased expression of Hsp70 and SIRT-1 in human neuroblastoma SH-SY5Y 

Phytochemicals Stress pathways Transcription 

factors

Biological outcomes References

Autophagic response 

pathway

— HIF-1, mTOR inhibition [88, 96–101]

Antioxidant response 

pathway

Nrf2 HO-1↑, SOD-1↑,NQO1↑ [104–111]

Sulforaphane NFκB inflammatory pathway NFκB TNF- α↓, IL-6↓ [109]

Autophagic response 

pathway

— HIF-1α inhibition [114]

↑: increased; ↓: decreased.

Table 1. Summary of stress pathways, transcription factors, and biological outcomes of phytochemicals
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cells induced by neurotoxicity with high-dose homocysteine [47]. It has been reported that 

resveratrol induced Hsp25 and Hsp70 proteins in G93A-SOD1 mutant mice cells and can 
prevent motor neuron losses [48]. Resveratrol dose-dependently increased glutathione 
expression through the Nrf2 pathway in normal human keratocytes [49]. In the human neu-

roblastoma cell line SH-SY5Y, resveratrol dose-dependently increased HO-1 expression and 
HO-1-dependent autophagic flux and prevented rotatone-induced apoptosis [50]. It has been 

determined that resveratrol dose-dependently reduced the vascular endothelial growth factor 

(VEGF), leptin, interleukin (IL)-6, and IL-8 expression in hypoxia-induced human adipocytes 
and prevented adipokine-induced inflammation and angiogenesis [51]. In addition, resvera-

trol induced autophagy by directly inhibiting mTOR in HeLa cells [52]. Prostate cancer cells 

induced autophagy through inhibition of the Akt/mTOR pathway in PC3 and DU145 cells 
[53]. In murine RAW 264.7 macrophages and microglial BV-2 cells, resveratrol also inhibited 
microglial activation by suppressing the NF-κB pathway [54]. In another study, resveratrol 

showed anti-inflammatory effect by suppressing the NF-κB pathway in RAW 264.7 murine 
macrophages in a dose-dependent manner [55]. These studies suggest that resveratrol has 

anti-inflammatory, antioxidant, anti-carcinogenic effects and can strengthen hemodynamic 
structure, which in turn can positively affect the aging process and longevity.

2.4. Epigallocatechin gallate

The major catechin EGCG, which is found in green tea at a level of 48–55%, has protective 

effects against chronic diseases such as neurodegenerative diseases, metabolic syndrome, and 
cancer by its anti-inflammatory and antioxidant effects [56, 57]. EGCG, with Hsp90 inhibi-

tion, showed a protective effect against cancer in a novel human prostate cancer progression 
model [58]. In primary vascular endothelial cells, GST and NQO1 enzymes were increased 
dose-dependently by Nrf2 [59]. In another study, EGCG increased the level of HO-1 expres-

sion by Nrf-2 activation in endothelial cells, resulting in the passage of caveolin-1 from the 

plasma membrane to the cytosol, accumulating in the caveolae-regulating signaling pathways 

associated with vascular disease pathology [60]. Accordingly, EGCG may reduce endothe-

lial inflammation and protect against atherosclerosis [61]. EGCG also showed a protective 

effect against oxidative stress-induced cerebral ischemia through Nrf2/ARE activation [62]. 

EGCG suppressed the Nrf-2 pathway in a lethal dose with biphasic dose-response effect in 
mice hepatocytes [63]. EGCG has been shown to inhibit oxidative stress damage induced by 

HO-1 through Nrf2 in HUVECs with ambient fine particulate matter (≤2.5 μm in aerodynamic 
diameter PM2.5) [64]. EGCG dose-dependently suppresses endothelial inflammation through 
NF-κB inhibition in high glucose-induced HUVECs [65]. It can also suppress NF-κB activa-

tion in cardiac fibroblasts and can show a protective effect against cardiac fibrosis [66]. EGCG 

inhibited lipopolysaccharide-induced inflammation with NF-κB suppression in bone marrow-
derived macrophages (BMMs) isolated from ICR mice [67]. EGCG also showed a protective 

effect against human papillomavirus-16 oncoprotein-induced lung cancer and IGF-1 stimu-

lated lung cancer angiogenesis through HIF-1α inhibition [68, 69]. In addition, primary bovine 

aortic endothelial cells stimulate autophagy in cells, leading to degradation of lipid droplets. 

In this way, EGCG may be effective in the prevention of cardiovascular diseases [70]. EGCG 

regulates ultraviolet B (UVB)-mediated autophagy through the mTOR signaling pathway  
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and significantly alleviates the toxic effects of UVB irradiation in macular retinal pigment epi-
thelial cells. Thus, it may also have a protective effect against macular degeneration [71]. As a 

result, EGCG can be effective in the prevention of neurodegeneration, cancer, cardiovascular 
diseases, inflammatory diseases, and macular degeneration through stress pathways.

2.5. Luteolin

Luteolin (3′,4′,5,7-tetrahydroxy flavone) is a phenolic compound found in broccoli, pepper, 
thyme, celery, lettuce, oregano, artichoke, and carrots; it has antioxidant, anticancer, anti-inflam-

matory, and neuroprotective effects [72]. Luteolin destabilized the Hsp90 client protein c-Jun 
and Akt and inhibited LPS-induced production of TNF-α and NO dose-dependently in mac-

rophages [73]. In addition, luteolin prevented TNF-α-induced endolytic monocyte adhesion in 
mice by suppressing vascular inflammation and the IKBα/NF-κB pathway in HUVECs [74]. In 

psoriatic skin, luteolin inhibited keratinocyte activation by decreasing NF-κB, which increased 
dose-dependently [75]. Luteolin and luteolin-7-O-glucoside modulated Nrf2/mitogen-activated 

protein kinase (MAPK) mediated the HO-1 signaling cascade in RAW 264.7 cells [76]. In wild-

type mouse traumatic brain injury models, luteolin showed neuroprotective action by Nrf2/ARE 
pathway activation [77]. Luteolin inhibited tBHP-induced oxidative stress by increasing ERK2/
Nrf2/ARE signaling pathway activation and HO-1, glutamate cysteine ligase catalytic (GCLC), 
and glutamate cysteine ligase modifier (GCLM) subunit transcription in rat primary hepato-

cytes [78]. In addition, in HepG2, Hepa1c1c7, and RL-34 HepG2 hepatocytes, it dose-depend-

ently inhibited the expression of phase I enzyme cytochrome P450 1A1 (CYP1A1), and phase II 
enzymes NQO1 and GST-P1 through an aryl hydrocarbon receptor (AhR) and Nrf2 pathways 
[79]. In HepG2 human hepatocytes, luteolin also dose-dependently activated the PI3K/Nrf2/

ARE system, increased HO-1 expression, and reduced the expression of lipopolysaccharide-
induced NO, iNOS, and cytosolic phospholipase A2 (cPLA2) in hepatocytes [80]. Luteolin also 

reduced acute mercuric chloride-induced hepatotoxicity by anti-inflammatory and antioxidant 
responses by regulating the SIRT1/Nrf2/TNF-α pathways [81]. The induction of VEGF by oxi-
dative stress has an important role in the pathogenesis of premature retinopathy. Luteolin has 

shown a protective effect against retinal neovascularization by reducing hypoxia-induced VEGF 
expression through decreasing HIF-1α expression in human retinal microvascular endothelial 
cells (HRMECs) [82]. Luteolin reduced 4-hydroxy-2-nonenal-induced cell death of neuronal-like 
catecholaminergic PC12 cells by regulating unfolded protein response and the MAPK, Nrf2/

ARE pathways [83]. As a result, luteolin also affects neurodegeneration, endothelial function, 
and liver function through stress-response pathways as do other hormetic phytochemicals.

2.6. Quercetin

Quercetin (3,3′,4′,5,7-pentahydroxyflavone) is found in many vegetables and fruits. It has anti-
inflammatory, anticarcinogenic, and antioxidant effects on cardiovascular diseases, cancer, 
neurodegenerative diseases, and can reduce aging and positively increase the life span [84]. 

Quercetin inhibited the growth of A549 and H460 cancer cells with Hsp70 inhibition in lung 
cancer cells and increased sensitivity to chemotherapy [85]. Quercetin inhibited the t-AUCB-
induced autophagy by inhibiting Hsp 27 and Atg 72 in glioblastoma cells [86]. In addition, 
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quercetin inhibited Hsp70 in U937 human monoblastic leukemia cell line [87]. Quercetin 

inhibited hypoxia-induced AMPK by dramatically inducing apoptosis in hypoxia and reduc-

ing the activity of HIF-1 in HCT116 cancer cells [88]. Quercetin dose-dependently increased 

glutathione, glutamylcysteine synthetase (GSH), GPx, GR, and GST expression in liver HepG2 
cells through p38/MAPK and Nrf-2 activation [89]. Quercetin protected against toxicity and 

inflammation by increasing Nrf-2 expression and decreasing NF-kB and cyclooxygenase 
(Cox)-2 expression in a time-dependent manner in mycotoxin ochratoxin A-induced liver 

HepG2 cells [90]. Furthermore, dose-dependently, through p62 and Nrf2-ARE activation, quer-

cetin increased HO-1, GCLC, and GCLM subunit expression and showed a protective effect 
against hepatotoxicity [91]. Quercetin, depending on the dose, inhibited the production of LPS-
induced NO production in BV2 microglial cells, suppressed the NF-κB pathway, and activated 
the Nrf2-dependent HO-1 pathway [92, 93]. Quercetin showed a protective effect against indo-

methacin-induced gastrointestinal oxidative stress and inflammation through Nrf-2 activation 
and NF-kB inhibition in human intestinal Caco-2 cells [94]. In malignant mesothelioma MSTO-
211H and H2452 cells, quercetin also inhibited cell growth and showed cytoprotective effect 
with Nrf-2 activation [95]. In a study on porcine renal proximal tubule cell line LLC-PK1 cells 

and C57BL/6j mice, quercetin inhibited renal ischemia/reperfusion injury by increasing AMP 
phosphorylase, inhibiting mTOR phosphorylation, and activating autophagy [96]. A combina-

tion of quercetin, resveratrol, and catechin was administered to human metastatic cancer cell 

lines MDA-MB-231 and MDA-MB-435; quercetin was shown to be the most effective compound 
for Akt/mTOR inhibition and can prevent breast cancer growth and metastasis [97]. Quercetin 

inhibited mTOR by expressing SESTIN 2, p53, and activating AMPK in a dose-dependent man-

ner and induced apoptosis via increased intracellular ROS in HCT116 colon cancer cells [98]. 

The mTOR complex has an important role in cell growth, protein synthesis, and autophagy, 
with the inhibition of quercetin mTOR/PI3K/Akt in cancer and other diseases where exces-

sive mTOR complex activity is observed [99]. In addition, quercetin, by affecting autophagy 
with the inhibition of proteasome and mTOR activity, can be both protective and therapeutic 
against cancer with the death of human breast cancer cell lines MCF7 and MDA-MB-453, the 
cervical adenocarcinoma cell line HeLa, the ovarian cancer cell line OVCAR3, and the human 
B-lymphoblastoid cell line IM-9 [100]. Quercetin inhibited tumor growth and angiogenesis by 

inhibiting VEGF regulated by AKT/mTOR in HUVECs [101]. As a result, quercetin may exert a 

protective effect against cancer, especially by acting on stress-response pathways.

2.7. Sulforaphane

Sulforaphane (SulR-1-isothiocyanato-4-methylsulfinyl butane) is an isothiocyanate found 
extensively in cruciferous vegetables. Studies have shown that sulforaphane has a protective 
effect against cancer, diabetes, cardiovascular diseases, neurodegenerative diseases, and kid-

ney diseases, and is mostly influenced by an Nrf-2-mediated antioxidant response [102, 103]. 

Sulforaphane may prevent diabetic auric damage and cardiomyopathy by increasing Nrf2 activa-

tion in mice [104, 105]. Sulforaphane showed protective effect against ethanol-induced oxidative 
stresses and apoptosis in neural crest cells by generating an antioxidant response with Nrf2 acti-

vation [106]. Sulforaphane activates the Nrf2/ARE pathway and inhibits 3-nitropropionic acid-
induced toxicity in striatal cells by inhibiting MAPKs and NF-κB pathways [107]. In MSTO-211H 
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cells administered with sulforaphane, Nrf2-mediated HO-1 expression was regulated by the 

PI3K/Akt pathway [108]. Sulforaphane inhibited muscle inflammation by inhibiting Nrf-2 and 
NF-kB in dystrophin-deficient mdx mice [109]. Sulforaphane showed a protective effect against 
acute alcohol-induced liver steatosis by activation of Nrf2 and synthesis of antioxidant proteins 

in HepG2 E47 liver cells [110]. Sulforaphane increased Nrf2 expression in TRAMP C1 prostate 
cancer cells and affected epigenetic regulation [111]. Sulforaphane induced autophagy through 
ERK activation in immortalized mouse CN1.4 cortical and human SHSY5Y neuronal cells [112]. 

Huntington’s disease, a neurodegenerative disease, involves damage to the ubiquitin proteasome 
system. In a mouse study, sulfate inhibited proteasomal and autophagic activation and cytotoxic-

ity resulting from proteasomal impairment [113]. Sulforaphane inhibited HIF-1α expression in 
HCT116 human colon cancer cells and AGS human gastric cancer cells, but inhibited hypoxia-
induced VEGF expression only in HCT116 cells [114]. Sulforaphane affects the stress-response 
pathways and can show protective effects, especially against neurodegeneration and cancer.

3. Conclusion

Dietary phytochemicals can exert a protective effect against cancer, neurodegenerative dis-

eases, cardiovascular diseases, inflammatory and immune diseases by acting on multiple 
stress-response pathways. Therefore, healthy aging and longevity can be achieved by pre-

venting the deterioration of hemodynamics. In addition, it is necessary to emphasize that 

the hormetic stress pathways of each dietary phytochemical is a very wide ranging subject. 

Therefore, the mechanisms of action of important phytochemicals and stress response path-

ways in this chapter have been summarized in the light of data obtained in recent years; this 
may lead to a broader outlook on this subject and to new studies.
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