
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800



Chapter 13

Functionalized Carbon Nanomaterials in Drug Delivery:
Emergent Perspectives from Application

Nabanita Saikia

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.71889

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons 
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, 
and reproduction in any medium, provided the original work is properly cited. 

Nabanita Saikia

Additional information is available at the end of the chapter

Abstract

Carbon nanotubes (CNTs) have attracted substantial research interest in biomedical sciences 
and bionanotechnology, rendered from its unique structure, electronic, mechanical, and opti-
cal properties. Despite the diverse potential applications, the integration of CNTs in biomedi-
cal research is one of the most challenging areas where nanotubes fall under much scrutiny. 
Pristine nanotubes are highly hydrophobic, and non-dispersible in most of the common aque-
ous and organic solvents and to render nanotubes biocompatible, functionalization is one 
of the key prerequisites. In this regard, covalent and noncovalent functionalization are the 
two widely adopted approaches for co-tethering biologically active molecules on the CNTs. 
Likewise, the hollow cavity of the nanotube facilitates in the endohedral encapsulation of bio-
molecules, peptides, DNA oligonucleotides, and proteins, thereby retaining the physiological 
attributes of the biological molecules. The chapter focuses on the emerging approaches to the 
functionalization of single-wall CNTs (SWCNTs) and the potential application of functional-
ized SWCNTs in tuberculosis and cancer chemotherapy using state-of-the-art density func-
tional theory, molecular docking and molecular dynamics simulation methods.

Keywords: carbon nanotubes, drug delivery, molecular dynamics, density functional 
theory

1. Introduction

1.1. Carbon: The fundamental building block of life

Carbon is the most versatile element in the periodic table that forms the basis of all kinds of life 
on earth. Elemental carbon displays a complex allotropy depending on the nature of hybrid-

ization; diamond (sp3 hybridized), graphite, graphene, fullerenes, and carbon nanotubes (sp2 
hybridized). Graphite is the most common allotrope of carbon and the word graphite in Greek 
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means ‘to write’. Graphene an acronym for the 2D layered graphite, is the mother of all carbon 
materials [1], as a graphene sheet can be wrapped to form 0D fullerenes, rolled to form 1D 
nanotubes, or stacked to form 3D graphite as depicted in Figure 1. The unearthing of “ground-

breaking experiments regarding the two-dimensional material graphene” by Geim and Novoselov in 
2010, heralded graphene as the next generation carbon material [2].

CNTs are hexagonally arranged, honey-combed lattice of carbon atoms formed by the rolling 
of graphene into seamless cylindrical structures (see Figure 2a). Nanotubes like graphene have 
a high diameter to length ratio (aspect ratio) [3] and demonstrate high electrical, mechani-
cal, and thermal conductivity along with structural stability [4–7]. CNTs are broadly classified 
as single-wall CNTs (SWCNTs) and multi-wall CNTs (MWCNTs). The SWCNT comprise of a 
single graphene sheet, with diameter ~ 0.5–1.5 nm and length of ~100 μm [8], while MWCNT 
is formed from the co-axial stacking of SWCNTs, with diameter ~1.4–100 nm, length between 
1 nm-μm, and internuclear distance of 0.3–0.4 nm between the co-axial tubes. The representa-

tion of a zigzag (m = 0), armchair (n = m), and chiral (n ≠ m) nanotube is depicted in Figure 2b-d. 
The (n, m) indices render remarkable electronic properties to the CNTs [9] and the sp2 hybrid-

ization along the tubular axis makes it chemically inert by nature.

Figure 1. Formation of SWCNT, fullerene and graphite from a single graphene monolayer.

Novel Nanomaterials - Synthesis and Applications232



The unique electronic properties exhibited by CNT are governed by the quantum confinement 
of electrons where the periodic boundary conditions come into interplay. Because of the quan-

tum confinement, electrons can propagate along the tube axis: forward and backward, along 
with the conservation of energy and momentum. Unlike metals which have a smooth density 
of states (DOS), CNTs are characterized by many van Hove singularities [10], and the DOS 
depends on diameter and chirality of the nanotube [11]. The conducting properties of CNT is 
an inverse function of its diameter, that is, with increase in diameter, band gap between the 
valence and conduction bands decreases and at a certain point both the bands overlap to give 
rise to metallic nanotubes. Semiconducting nanotubes on the other hand (with similar diam-

eter as metallic nanotubes) possess similar van Hove singularities near the Fermi level [12].

These unprecedented properties have largely contributed to the extensive biomedical research, 
especially as nanocapsules for therapeutic drugs, proteins, and gene delivery [13]. CNTs find 
application in bionanotechnology and pharmaceutical sciences, and current drug delivery 
modules have been incorporating CNTs for improved target specific detection and treatment 
of diseases. Although the potential application of carbon nanomaterials, particularly CNTs 
are farfetched, the concerns raised over the effect of large-scale synthesis of CNTs to the envi-
ronment, biocompatibility, toxicity, biodegradation and remediation cannot be undermined 
and needs to be addressed thoroughly. Hence, a detailed in vivo and in vitro toxicity analyses 
is mandatory in understanding CNT-based therapeutic regimes for sustained drug delivery 
applications.

Some of the questions that underlie the importance of the study are (i) understanding the 
mechanism of CNT uptake followed by the subsequent release of therapeutic molecules,  
(ii) in vivo biocompatibility, and (iii) long-term practical implication to direct exposure to the 

Figure 2. (a) A graphene sheet depicting the (b) zigzag and (c) armchair and (d) chiral CNT based on rolling of carbon 
atoms along chiral vectors through the circumference (OA) of nanotube.
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physiological environment. Although theoretical and/or experimental studies have attempted 
to address the main questions like mechanism of drug-nanotube interaction, the preferable 
binding sites of drugs onto nanotubes, drug activity under confinement, and change in redox 
properties of drugs under the physiological conditions, these studies are rather limited in pre-
dicting the likelihood of using CNT as carrier vehicles for the long-term storage and release of 
therapeutic and biologically active molecules in vivo.

The chapter in a very comprehensive yet succinct way addresses the potential applications 
of SWCNTs in drug delivery, managing to draw a fine line between the scopes of application 
and practical viability of integrating carbon nanomaterials in biomedical research. Herein, we 
report the theoretical aspects of modeling novel SWCNT-based drug delivery systems using 
the covalent and noncovalent functionalization schemes. Nanotubes of varying chirality and 
length are considered for functionalization, drug loading, and targeting onto the active bind-
ing sites of receptor proteins. With the successful incorporation of CNTs in cancer therapy, we 
propose a novel approach toward integrating CNTs in Tuberculosis (TB) therapy. To the best 
of our knowledge, theoretical studies on the potential application of CNTs in pharmaceutical 
sciences pertaining to TB and other bacterial diseases have not been discussed extensively. We 
address the recent theoretical advancements using the state-of-the-art density functional the-
ory (DFT), molecular docking, and molecular dynamics (MD) simulation methods. Molecular 
docking serves as an instrumental tool in computer-aided drug design for predicting the pre-
ferred binding mode of a ligand to a receptor (protein). Docking studies help characterize 
the protein binding cavity, understand the orientation of ligand with respect to the receptor 
protein, and the nature of interaction between the protein with functionalized nanomaterial, 
which can aid in the structure-based design of novel drug delivery systems for future experi-
mental studies.

2. Functionalization of CNTs

Traditional approaches to drug delivery function over a broad spectrum, resulting which, 
specificity toward drug administration and delivery are rarely accomplished. Development 
of polymer-based nanocomposite materials has enabled the successful engineering of drug 
delivery modules via the incorporation of nanomaterials and nanoparticles as nanocapsules 
for sustained release of therapeutics in a dosage-dependent manner. Nanotechnology, on 
the other hand, has revolutionized the pharmaceutical sector with the assimilation of func-
tionalized nanomaterials like CNTs in drug, gene delivery, and tissue engineering [14, 15]. 
CNTs play dual role by rendering directionality in targeting the tumor (malignant) cells and 
facilitating the controlled mediated release of therapeutic molecules. The application of CNTs 
as carrier payloads for anticancer drugs cisplatin [16], carboplatin [17], doxorubicin (DOX) 
[18–20], mechlorethamine [21], paclitaxel [22] and antitubercular drugs like isoniazid (INH) 
[23], rifampicin, pyrazinamide (PZA) [24] have been reported.

With the inherent limitations in application of pristine, unmodified nanotubes, functional-
ization is the collective approach toward tailoring nanotubes electronic properties. Pristine 

Novel Nanomaterials - Synthesis and Applications234



CNTs are generally hydrophobic with low solubility in most of the common aqueous and 
organic solvents and the hydrophobicity is accounted to the size, structure, and bundling 
effect which restricts the uptake and assimilation within the biological environment [25]. 
Functionalization assists in reducing the bundling effect which arises due to the van der 
Waals (vdW) attractive forces between adjacent nanotube surfaces and is efficient in increas-

ing the biocompatibility thereby facilitating cellular internalization and trafficking. It has 
been reported that the functionalized nanotubes (fCNT) exhibit better biocompatibility with 
reduced in vivo and in vitro toxicity [26–28]. The extent of functionalization depends on the 
nature and reactivity of sidewall (curvature), number of functional groups that can be co-
tethered along the sidewall, and steric hindrance between functional groups and nanotube 
sidewall. The subsequent sections discuss some of the adopted approaches in the functional-
ization of SWCNTs at the level of experiment and theory.

2.1. Solubilization of CNT through covalent functionalization

Some of the alternative schemes to functionalization of CNT is through covalent method using 
1,3-dipolar cycloaddition [29], [2 + 1] cycloaddition of dichlorocarbene, silylene, germylene 
[30], hydroboration [31], arylation, hydrogenation by Birch reduction [32], carboxylic acid 
groups [33], Diels-Alder reaction, esterification of carboxylated nanotubes [34] and fluori-
nation reactions [35]. Experimental and theoretical studies have shown that the extent of 
covalent functionalization depends on the curvature of nanotube as an increase in curvature 
decreases the reactivity toward sidewall functionalization [36].

2.1.1. 1,3-dipolar Cycloaddition (DC)

The solubility of CNT can be enhanced by the covalent functionalization using 1,3-DC reactions. 
Azomethine ylide (CH2NHCH2), ozone (O3), nitrone (CH2N(H)O), nitrile ylide (CHNCH2), nitrile 
imine (CHNNH) are the commonly used functional groups for 1,3-DC reaction. The intrinsic 
physical properties of CNTs such as photoluminescence and Raman scattering decreases upon 
covalent functionalization, due to chemical bond formation between the functional group and 
carbon atoms. Theoretical studies by Lu et al. [30] reported the reaction energies (E

r
), barrier 

heights (E
a
) and retro barrier height values of a series of 1,3-dipolar molecules on (5, 5) SWCNT 

using two-layered ONIOM (B3LYP/6-31G*:AM1) approach. Likewise, experimental studies by 
Prato and co-workers [37] substantiated the theoretical findings on the 1,3-DC functionalization 
of CNTs. 1,3-DC functionalization was also achieved through the addition of ozone wherein 
ozone adds onto the end caps and kink regions rather than nanotube sidewall due to increased 
strain and loss in conjugation. Lu et al. [38] reported the 1,3-DC reaction of ozone onto nano-

tube sidewalls using two-layered ONIOM (B3LYP/6-31G*:AM1) method.

Prato and co-workers [39] investigated the 1,3-DC reaction of azomethine ylide on both 
SWCNT and MWCNT. The water-soluble amine functionalized CNT was highly suitable 
for immobilization of biomolecules, and purification of pristine nanotubes during syntheses. 
Attachment of peptide molecules onto covalently functionalized SWCNT was reported by 
Prato and co-workers [40]. The C-terminal group of peptide chain was attached to N-terminal 
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side group to form a supramolecular complex of peptide wrapped nanotubes. Gallo et al. [23], 
incorporated fSWCNT and fullerenes as nanovectors for the functionalization of INH drug. 
Armchair (5, 5) SWCNT was functionalized via 1,3-DC reaction of azomethine ylide with the 
polyethylene glycol (PEG) oligomer tailored to the INH drug. Increasing the number of func-

tionalized units leads to an increase in HOMO-LUMO energy gap and global hardness, and 
decrease in binding (−3.52 to −6.65 eV) and solvation energy (−31.60 to −49.99 eV) values. An 
increase in global hardness with increase in functionalization suggests a net stabilization of 
the complex. It is noteworthy to mention that the optimum length of PEG oligomer used as a 
linker for the 1,3-DC functionalization is essential as longer PEG chains can interfere with drug 
administration, block the interaction between the nanotube and cell lines of the body, cellular 
uptake of drug, and degrade the therapeutic activity of drug molecules [41]. The PEG units 
with superior hydrophilicity, biocompatibility, and low immunogenicity can resist the opsoni-
sation and increase the retention time of the nanotube-drug conjugate system in vivo [42, 43].

The structure, electronic properties, and reactivity of a series of 1,3-DC functionalized arm-

chair (n, m) and zigzag (n, 0) SWCNTs with antitubercular drugs 2-methyl heptyl isonicotin-

ate (MHI) and PZA via. PEG linker was investigated using first-principles DFT calculations 
[44–46]. With increase in sidewall functionalization, the global hardness and HOMO-LUMO 
energy gap decreases suggesting an overall decrease in stability of the complex, which is 
indicative of the localized induced deformation in the nanotube at the site of covalent attach-

ment. On the other hand, the solubility of bare INH and PZA drugs was enhanced in presence 
of nanotube support. We showed that the optimum length and chirality of the nanotube is 
central to understand the electronic properties of functionalized nanotubes, particularly from 
a drug delivery perspective.

2.1.2. Functionalization using organic acids

Covalent functionalization of CNTs using carboxylic (−COOH) group was realized through 
oxidation with strong organic acids like H2SO

4
/HNO3 [47], phosphates, and sulfur-containing 

units. Acid functionalized CNTs are highly soluble in water under a wide range of pH and 
exhibit a significant reduction in the aggregation of nanotube bundles. The dispersibility 
facilitates in the sidewall, endohedral and end tip functionalization of CNT with organic acids 
and different functional groups. The sidewall functionalization of CNTs via cycloaddition 
reaction with azide, ozone, transition metal oxides, and carbenes [48] is illustrated in Figure 3.

Lu et al. [31] using two-layered ONIOM (B3LYP/6-31G*:AM1) approach reported the reaction 
pathway and site selectivity for [2 + 1] cycloaddition of dichlorocarbene, silylene, germyl-
ene, and oxycarbonylnitrene onto (5, 5) SWCNT. Dichlorocarbene addition occurs preferen-

tially at the 1,2-pair site. The silylene addition at 1,2-pair site was predicted to be exothermic 
(−20.7 kcal mol−1) and follows a barrier less reaction pathway. Germylene addition was exo-

thermic by 8.5 kcal mol−1, lower than dichlorocarbene and silylene and proceeds in absence 
of a transition state pathway. Oxycarbonylnitrene addition onto 1,2-pair site of SWCNT was 
exothermic by 66.2 kcal mol−1, higher than the other three cycloaddition groups. The transi-
tion state had an activation barrier of 7.2 kcal mol−1, which suggested that the cycloaddition 
reaction was facile in nature.
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2.2. Noncovalent functionalization of CNTs

Although covalent functionalization improves the solubility of CNT, it modifies the intrinsic 
electronic properties by deforming the C-C bond length, perturbing the π-delocalization, and 
shortening the length of the nanotube. Noncovalent functionalization provides the alternative 

Figure 3. Schemes for sidewall functionalization of SWCNT using covalent bonds. Adopted from Ref. [48].
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approach to improving the solubility of nanotubes without deforming the π-delocalization. 
For example, exohedral wrapping with polymeric molecules like PEG [49], polymers [50], ss-
DNA, and endohedral filling can help in increasing the solubility. Likewise, the polymer mol-
ecules can form a surface coating via π-stacking interactions, mediated by weak vdW forces, 
and hydrophobic interactions. The following subsection discusses some of the widely adopted 
approaches to the noncovalent functionalization of CNTs.

2.2.1. Functionalization via π-π stacking

The π-π stacking of organic molecules namely pyrene, anthracene, and porphyrin increases 
the solubility of pristine nanotubes and facilitates in the binding of proteins, polysaccharides, 
and peptides. Dai and co-workers [51] investigated the noncovalent functionalization of CNT, 
wherein succinimidyl ester group was co-tethered onto pyrene rings via butanoic acid side 
chains, facilitating the immobilization of proteins. The amide group of the protein replaces the 
N-hydroxysuccinimide group that propagates the transportation of biomolecules. Falvo and 
co-workers [52] reported the functionalization of MWCNT with streptavidin protein, wherein 
the MWCNT pre-functionalized with 1-pyrene butanoic acid succidymidyl ester (1-pbase) 
was co-tethered on the nanotube sidewall. The pyrenes formed π-π bonds with the MWCNT 
sidewall under the influence of which MWCNT undergoes a phase transfer with 1-base acting 
as a phase transfer catalyst.

The noncovalent functionalization of pyrene on SWCNT was investigated by Cosnier and 
co-workers [53] for application as modified electrodes in biosensing devices. Calomel elec-

trode was taken as the reference and Pt electrode (5 mm diameter) modified by casting 
20 μl THF solution of pristine SWCNT and B-doped SWCNT polished with 20 μm diamond 
paste as the counter electrode. The SWCNT/pyrene-biotin and B-SWCNT/pyrene-biotin 
was incubated in 20 μl avidin solutions for 20 min, and the response time for glucose sens-

ing was measured using amperometric response technique. The enzyme-modified SWCNT 
electrodes were incorporated as electrodes for glucose sensing. In-situ polymerization of 
MWCNT with polyimide (PI) results in the π-stacking interactions between the imide and 
aromatic benzene rings of CNT with subsequent wrapping of PI along the nanotube cir-

cumferential axis [54]. Polymer wrapping improves the thermal stability and renders the 
conjugated complex suitable for nanoelectronics devices with improved electronic, thermal 
and optical properties.

Noncovalent functionalization of porphyrin molecules with SWCNTs have been extensively 
studied as high yield light-harvesting systems with tunable electronic properties for biological 
and optoelectronic applications [55, 56]. Roquelet et al. [57], reported an efficient method for the 
synthesis of porphyrin/SWCNT complex utilizing a micelle-swelling technique in presence of 
organic solvent. The organic solvent leads to swelling of the micelle facilitating the interaction of 
porphyrin molecules to the micelle core and SWCNT. Dispersion corrected DFT calculations on 
the structure, electronic and optical properties of SWCNT functionalized tetraphenylporphyrin 
(TPP) molecule showed that diameter rather than chirality of the nanotube stabilizes the π-π 
stacking of TPP molecule [58]. The optical absorption of TPP was not affected by the diameter or 
chirality of CNT and the optical spectra showed the absorption of π-stacked TPP at almost the 
same position as the isolated TPP, indicating that the TPP absorption properties were preserved 
in the complex.
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2.2.2. Functionalization using biomolecules and nucleobases

Functionalization of CNTs with biomolecules is useful in the development of nanobio com-

posite devices. Immobilization of DNA in DNA-based biosensors is possible with the incor-

poration of CNTs in nucleic acid sensing, gene therapy, and biosensor fabrication [59–61]. 
DNA because of the base pairing sequence facilitates in the alignment of nanotube assembly 
[62]. Rodger and co-workers [63] investigated the interaction of CNT with DNA using linear 
dichroism (LD) method. DNA/CNT hybrid exhibited higher LD signals, higher than the sum 
of the LD spectrum of individual DNA and SWCNT. Jung et al. [64] developed methods 
for covalent linking of DNA oligonucleotides onto SWCNT films which were later immobi-
lized onto solid surfaces. The carboxylated/aminated DNA oligonucleotides were covalently 
attached to functionalized SWCNT, the length of which was controlled via oxidation with 
strong organic acids, leading to the formation of carboxylated SWCNT.

Li et al. [65] investigated the self-assembly of CNT and gold nanoparticles into multicom-

ponent structures using DNA oligonucleotides. The CNT pre-functionalized with -COOH 
facilitated in the grafting of ssDNA strands and multiple assemblies of nanotubes were thus 
possible using this technique. In another combined theoretical and experimental study by 
Sood and co-workers [66], interaction of DNA nucleobases namely adenine (A), guanine (G), 
cytosine (C), thymine (T) with (5, 5) SWCNT was reported. The ab initio studies showed that 
binding energies of nucleobases onto SWCNT was governed mainly by vdW forces and fol-
low the order: C > G > A > T, respectively. Likewise, the binding energies of A, G, C, T, U 
nucleobases on (7, 0) SWCNT was predicted to follow the order: G > C > A > T > U, and bears a 
monotonic dependence on nanotube diameter; that is, nanotubes with small diameter due to 
low curvature exhibits low interaction energy whereas for nanotubes with high diameter the 
interaction energy tend to be on the higher side [67].

2.2.3. Noncovalent functionalization using polymers

Polymer wrapping of CNTs mediated via noncovalent functionalization toward the synthe-

sis of highly dispersed, stable and reinforced functional dispersants in aqueous and organic 
solvents was reviewed by Fujigaya and Nakashima [68]. The polymer wrapping forms a 
thermodynamically stable coating and any unbound polymer could be removed via dialy-

sis, ultra-centrifugation or chromatographic separation techniques. Similarly, noncovalent 
functionalization of CNTs using polyethylene glycol (PEG) PEGylated-phospholipid chains 
forms an effective means of high loading of the drug and biomolecules at the free end of PEG 
chain and onto nanotube sidewall. PEGylated-phospholipid chain facilitates the high loading 
(about ~400%) of drug molecules onto CNT and characterizes as a potent carrier vehicle in 
drug delivery applications. PEG tailored SWCNT exhibit no toxicity for over several months, 
which was further substantiated from time-dependent assays performed onto mice. Drugs 
which normally remained insoluble within the biological systems, upon conjugation with 
PEG modified CNT revealed high solubility as well as retention time within the body. The 
noncovalent functionalization retained the physical properties of nanotubes without drasti-
cally perturbing the overall electronic properties.

First-principles studies on the interaction of conjugated polymers with (8, 0) SWCNT and 
(10 × 10) graphene sheet was investigated by Jilili et al. [69], to confirm the experimental 
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observation that polymers are suitable for noncovalent functionalization. The GGA approxi-
mation was predicted to be inadequate in describing the physisorbed systems, whereas LDA 
and vdW corrected GGA yield conclusive results. The electronic structure of SWCNT/gra-

phene was maintained around the Fermi energy with negligible charge transfer between the 
conjugates. The interaction of polymer-SWCNT/graphene was of weak vdW type with mini-
mal effects on the physical and electronic properties of SWCNT/graphene, important for an 
effective noncovalent functionalization.

3. Functionalized carbon Nanomaterials in drug delivery

Drug delivery is a process of administering drugs in a controlled, sustained manner to 
achieve maximal therapeutic efficacy upon transdermal administration. The foremost objec-

tives in developing novel drug delivery systems are to improve the therapeutic competence 
by [1] increasing bioavailability, [2] preventing toxicity, harmful side-effects by increasing the 
persistence of a drug, [3] reducing drug exposure toward non-target cells, and [4] minimiz-

ing drug degradation and loss [70–73]. Drug delivery systems are designed to improve the 
pharmacological and therapeutic profile of drug molecules with an ability to cross the cell 
membrane upon administration [74, 75]. The most important characteristic of SWCNT as a 
drug delivery system is its ability to penetrate the cell membrane [76], and facilitate the intra-

cellular internalization and trafficking within the cell cytoplasm [77]. A major breakthrough 
in nanoscience was the advent of CNTs as one of the most sought-after materials for designing 
novel drug delivery carrier modules to comply with the biotechnological and pharmaceutical 
objectives. CNT due to its needle-like cylindrical structure can easily penetrate the cell mem-

brane and enter the cell nuclei, while the cell does not recognize it as an intruder.

Functionalized CNTs can act as carriers for antimicrobial agents like amphotericin B [78, 79] 

and transport it within the mammalian cells. This reduces the antifungal toxicity as compared 
to the toxicity of free drug (40% of the cells being killed by CNTs-free formulation compared 
to no cell death by CNTs formulation). The surface-engineered CNTs can capture the patho-

genic bacteria in liquid media [80, 81]. In addition, SWCNTs exhibit unique optical proper-

ties such as near-infrared region (NIR) fluorescence, and Raman scattering. The fluorescence 
range spans the entire biological tissue transparent window and is, therefore, promising for 
drug detection and biological imaging [82–84].

3.1. SWCNTs in tuberculosis therapy

The science of bacteriology is credited to the contributions of Louis Pasteur and Robert Koch. 
It was the discovery of Mycobacterium tuberculosis by Koch that revolutionized medical his-

tory [85]. TB is a chronic disease caused by the infection of Mycobacterium tuberculosis [86] 

and is a leading cause of mortality worldwide. The World Health Organization (WHO) 2017 
annual report prompted to 10.4 million new TB cases, of which, India and Indonesia alone 
accounted for a third of the world’s TB-burden [87]. In 2016, a total of 9287 new TB cases 
were reported in the United States [88]. The drastic widespread of TB is mainly accounted to 
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poverty, homelessness, synergy with HIV/AIDS pandemic, multi-drug resistant (MDR), and 
extensively drug resistant (XDR) stains of M. tuberculosis [89].

Streptomycin was the first antitubercular drug discovered in 1943 [90] and since then several 
therapeutic drugs like para-amino salicylic acid (1946), isoniazid (INH) (1952), pyrazinamide 
(PZA) (1952), cycloserine (1952), ethionamide (1956), rifampicin (1957) and ethambutol (1962) 
have been discovered. The TB therapy involves a combination of four first-line drugs namely; 
INH, PZA, rifampicin, and ethambutol administered for a period of 2 months followed by 
minimum 4 months’ treatment regimen of INH and rifampicin [91]. PZA (pyrazine-2-carbox-

amide) is one of the first-line drugs used in TB treatment recommended by the WHO. PZA 
is metabolized into its active form (pyrazoic acid) by the amidase activity of M. tuberculosis 

nicotinamidase/pyrazinamidase (MtPncA) encoded by the pncA gene [92]. The administra-

tion of PZA in high dosage can cause minor to detrimental health problems and the antibiotic 
resistance of bacteria under prolonged exposure triggers the need for better drug delivery 
methods to directly bind with the TB bacteria.

We performed DFT, molecular docking and MD studies on the SWCNT-mediated PZA 
delivery onto the active site of M. Tuberculosis pncA enzyme [93]. The DFT calculations 
predict that the covalent functionalization was thermodynamically favored with negative 
binding energy values. The decrease in binding energy of PZA/SWCNT with increase in 
nanotube diameter illustrates that the curvature of nanotube plays an important role in 
determining the reactivity, and nanotubes with narrow diameter are thermodynamically 
favorable compared to tubes with larger diameter. The molecular docking studies sup-

ported the DFT results thereby establishing that, incorporation of SWCNT facilitates in 
target specific delivery of PZA within the binding site of pncA as shown in Figure 4. The 
narrow diameter nanotubes were better docked compared to the larger diameter nanotubes 
and length of PEG chain was predicted to be reasonably adequate for the delivery of PZA 
within the binding site of pncA. The presence of nanotube did not result in any structural 
deformation in pncA, rather the incorporation of SWCNT facilitated in the stabilization of 
PZA conjugated complex.

Noncovalent functionalization of SWCNT and boron nitride nanotubes (BNNTs) with PZA 
was investigated using DFT and MD simulation (see Figure 5) to comprehend the role of 
nanotube chirality on the electronic properties of the complexes [94]. BNNTs are structural 
analogs of CNTs with a wide band gap of ~5.5 eV, high chemical, and thermal stability. The 

potential application of BNNTs is rather limited in terms of its high chemical stability and 
poor dispersibility. The theoretical results predict the modification in electronic structure 
of both SWCNTs and BNNTs with the enhancement of electronic states, significant lower-

ing in HOMO-LUMO energy gap and the presence of new dispersionless states within the 
band gap. Depending on the nanotube chirality, PZA exhibits a preferential selectivity for 
adsorption, which is further confirmed from the band structure, DOS, total projected DOS, 
and frontier orbital analysis.

The functionalized nanotube facilitates in the loading and delivery of a PZA onto the active 
entering pathway of pncA without the nanotube affecting the structural conformation of 
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Figure 4. The docked conformation and hydrophobic surface of sidewall functionalized PZA/SWCNT within the active 
binding site of pncA protein, (a–b) PZA/(9,0) SWCNT (3 unit cells), (c–d) PZA/(9,0) SWCNT (5 unit cells), (e–f) edge 
functionalized PZA/(9,0) SWCNT (5 unit cells). Reprinted with permission from Ref. [93]. Copyright 2017, Elsevier.

Figure 5. (a) Adsorption sites in the model SWCNT, (b) Adsorption sites in a model (5, 5) BNNT; optimized geometries 
of (c) PZA, (d) (5, 5) CNT, (e) (8, 0) CNT and (f) (5, 5) BNNT. Adopted from Ref. [94].
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pncA as shown in Figure 6. The incorporation of nanotube yields better docking scores for 
PZA then the drug being administered in bare form. Although covalent functionalization aids 
in achieving target specific delivery of PZA within the active site of pncA, noncovalent func-

tionalization was predicted to be effective for engineering nanotube structure and electronic 
properties for successful drug delivery applications.

Zanella et al. [95] performed theoretical studies on the interaction of non-steroid anti-inflam-

matory drug nimesulide with pristine and Si-doped capped SWCNT. The adsorption of 
nimesulide on Si-doped capped SWCNT exhibit a higher binding energy of 1.8 eV compared 
to pristine capped SWCNT (0.32 eV) which was due to the high reactive bonding sites on 
Si atom. The strong interaction of nimesulide with Si-doped SWCNT served as better drug 
delivery carriers in comparison to pristine capped SWCNT.

Wang and co-workers [96] performed MD studies to investigate the mechanism of encap-

sulation of nifedipine drug within (10, 10) SWCNT. Their studies showed that the internal 

Figure 6. (a) Docked PZA/pncA, (b) electrostatic surface (c) PZA/(5, 5) SWCNT docked onto pncA, (d) electrostatic 
surface, (e) PZA/(8, 0) SWCNT docked onto pncA, (f) electrostatic surface, (g) docked PZA/(5, 5) BNNT with pncA,  
(h) electrostatic surface. Adopted from Ref. [94].
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adsorption of nifedipine was more stable than external adsorption by 5.3 to 7.8 kcal/mol. In 
solvent phase, the encapsulation of nifedipine was impeded due to competitive vdW and 
hydrophobic interactions in SWCNT-nifedipine-water complex. Encapsulation of nifedipine 
orients the distribution of water molecules inside SWCNT accompanied by the H-bond for-
mation between water molecules and oxygen atom of nifedipine. During the encapsulation 
process, SWNT undergoes weak fluctuations due to the oscillatory behavior of nifedipine 
encapsulated within the CNT.

4. SWCNTs in cancer therapy

Platinum-based Phase II and Phase III anticancer drugs hold promise in the treatment of can-
cer with new drugs being discovered, some of which are still under clinical trials. The two 
main limitations in use of Pt-based anticancer drugs are [1] the anticancer drugs undergo 
poor circulation in tissue cells and its activity is reduced with time due to the complex forma-
tion with plasma and tissue cells, and [2] tumor cells demonstrate resistance toward Pt-based 
drugs under prolonged exposure, rendering them ineffective as potent anti-tumor agents. 
Lippard and co-workers [16, 17] incorporated capped fCNT as longboat delivery vehicles for 
cisplatin anticancer drug through clathrin-dependent endocytosis and measured the changes 
in redox potential before and after release of the drug. The substituted c,c,t [Pt(NH3)2Cl2(OEt)
(O2CCH2CH2COOH)] pro-drug was attached to SWCNT functionalized with phospholipid 
tethered amine with PEG to solubilize the nanotube. Burger et al. [97] investigated the encap-
sulation of cisplatin in a phospholipid formulation. The lipid-coated cisplatin nanocapsules 
exhibit drug-lipid ratio and in vitro cytotoxicity 1000 times higher than free cisplatin. This 
method thus formed an effective approach in drug delivery and the means of producing lipid-
based nanocapsules for encapsulating different bio- and therapeutic molecules. Hilter and 
Hill [98] suggested three preferred orientations of cisplatin toward the entry into CNT and 
probable interactions using mechanical principles and mathematical modeling. The atomic 
interaction between nanotubes and cisplatin was calculated using hybrid-discrete-continuum 
approximation. In this approximation, cisplatin was taken as a collection of discrete atoms 
and the CNT was treated as a continuum body of repeating carbon atoms. Non-bonded inter-
action, suction, and acceptance energies were calculated using the Lennard-Jones (LJ) poten-
tial. For nanotube radius of 5.3 Å, cisplatin exhibited maximum suction energy, depending on 
the orientation of nanotubes as a function of radii.

We performed density functional studies on the noncovalent functionalization of non-Pt-based 
anticancer drug camptothecin (CPT) on graphene-based nanomaterials and its prototypes, 
including graphene oxide (GO) [99]. The noncovalent adsorption of CPT induces a significant 
strain within the nanosheets and the interaction was thermodynamically favored from ener-
getics perspective. In case of GO, surface incorporation of functional groups resulted in signif-
icant crumpling along the basal plane and the interaction was mediated by H-bonding rather 
than π-π stacking. The molecular docking studies of CPT onto Top1 (Figure 7a) showed CPT 
to be stacked between the Watson Crick AT and GC base pairs and the interaction was medi-
ated via π-π stacking (Figure 7b). For the binding of CPT functionalized graphene and GO 
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with topoisomerase I (top 1) CPT interacts through π stacking with AT and GC base pairs of 
DNA. The optimum interacting distance of CPT from AT and GC bases was calculated at 3.87 
and 3.38 Å, from the central aromatic rings (Figure 7b). The re-rank score of bare CPT drug 
was calculated as −89.01 a.u. with an H-bond score of −2.53 a.u. as shown in Table 1.

Likewise, for the docking of CPT/8 × 8 graphene with Top1 (Figure 8a) CPT gets docked 
between the AT and GC base pairs. However, graphene gets docked along the phosphate 
backbone of the ds-DNA helix as shown from Figure 8b indicating a strong interaction 
between the polar phosphate groups of the DNA helix. Compared to the docking of bare CPT 
drug, presence of graphene stabilizes the intercalation of CPT between the AT and GC base 
pairs, as observed from the increase in re-rank score values.

The docking of CPT/GO with Top1 as illustrated in Figure 9a, depicts CPT to get docked 
between AT and GC base pairs of DNA, mediated by π-π stacking interaction similar to that 
observed for bare CPT and CPT/8 × 8 graphene. However, in the presence of GO, GO under-
goes strong interactions with DNA bases and gets docked between the DNA helix and the 
interaction is stabilized by intermolecular H-bond between polar functional units on the basal 
plane of GO and DNA nucleobases (Figure 9b). The molecular docking studies on bare CPT 
and CPT functionalized graphene and GO systems showed that the interaction of CPT with 
Top1 is mediated by π-stacking interaction between the aromatic rings of CPT and the A and 
C bases of DNA. In presence of graphene and GO, CPT undergoes a similar trend in adsorp-
tion while the graphene and GO nanomaterial gets docked along the phosphate backbone 
indicating a strong preferential interaction with DNA.

Figure 7. (a) Secondary structure of Top1 protein with the CPT drug docked within the DNA, (b) interacting distance 
between CPT and the DNA base pairs of top 1. Reprinted with permission from Ref. [99]. Copyright 2017, Elsevier.
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Boucetta et al. [20] investigated the supramolecular MWCNT-DOX-copolymer complex for anti-
cancer activities. Since DOX, a clinically acclaimed anticancer drug belonging to the family of 
anthracyclines exhibit fluorescence properties, its uptake and interaction with nanotubes upon 
administration can be monitored using fluorescent spectrophotometry. The copolymer coated 
MWCNT formed supramolecular complexes with DOX via π-stacking and revealed enhanced 
cytotoxicity leading to highly efficient cell killing efficiency. Likewise, Liu et al. reported the 
use of DOX loaded PEG functionalized CNT for targeted delivery of anticancer drugs in tumor 

System Re-rank score 

CPT

Re-rank score 

nanosheet

H-bond score 

CPT

H-bond score 

nanosheet

CPT_Top1 −89.01 — −2.53 —

8 × 8 graphene/CPT docked onto 
Top1

−89.10 95.87 −2.57 0.00

8 × 8 GO/CPT docked onto Top1 −90.21 126.21 −2.29 −4.44

Table 1. The re-rank scores and H-bond scores for the best docked conformations of CPT and CPT/8 × 8 graphene, and 
CPT/8 × 8 GO sheets, respectively.

Figure 8. (a) Secondary structure of Top1 with the CPT/8 × 8 graphene sheet docked within the DNA, (b) binding of 
CPT/8 × 8 graphene sheet with DNA base pairs of top 1. Reprinted with permission from Ref. [99]. Copyright 2017, 
Elsevier.
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cells [22]. The SWCNT was pre-functionalized with PEG and DOX and a fluorescence probe 
(fluorescein) was loaded onto the nanotube via π stacking. The loading and subsequent release 
of DOX were found to be pH dependent; decrease in pH from 9 to 5 showed a decrease in 
DOX loading. Under acidic conditions (pH 5.5), DOX exhibited increased hydrophilicity and 
solubility with lysosomes and endosomes, facilitating the release of drug molecules from the 
nanotube. On decreasing the pH, surface loading of DOX onto nanotube surface lowered and at 
lower acidic pH, amine group of DOX underwent protonation resulting in increased solubility 
of DOX molecules.

5. Summary

Carbon nanotubes have proffered as one of the novel functional materials of the 21st cen-
tury, broadening the theoretical and experimental perspectives in research to explore its 
novel and intriguing properties. Due to the conjugated π-electron backbone and curvature 
(properties very similar to fullerene and graphene) they are highly reactive and depend-
ing on the size, length and (n, m) indices, the electronic properties can be tuned to fit the 
desired functionality. Since the synthesis of CNT yields a mixture of both metallic and semi-
conducting tubes of varying diameter and chirality, separation and purification of nano-
tubes pose a major problem which restricts the applicability. Secondly, nanotubes are highly 

Figure 9. (a) Secondary structure of Top1 protein with the CPT/8 × 8 GO sheet docked within the DNA, (b) the binding 
of CPT/8 × 8 GO sheet with DNA base pairs of top 1. Reprinted with permission from Ref. [99]. Copyright 2017, Elsevier.
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hydrophobic and non-dispersible in most of the common aqueous and organic solvents and 
tend to aggregate in bundles. To improve nanotube dispersibility, surface modification via 
functionalization is thus a sought-after approach and covalent and noncovalent functional-
ization methods can reduce the bundling effect and hydrophobicity. Covalent functionaliza-

tion although renders high stability to the nanotubes, it tends to distort the structural and 
inherent electronic properties. Noncovalent functionalization, on the other hand, retains the 
intrinsic properties of the nanotube, as it forms a surface coating on the nanotube sidewall, 
and facilitates the uptake of drugs, biomolecules, peptides, proteins, DNA, RNA, and genes 
within the biological systems.

Although CNTs demonstrate practical applicability in all facets of science, be it biology, phys-

ics, medicine, nanotechnology, catalysis, or materials science, its long-term implications need 
to be assessed from the perspective of human health to environmental risks. The long-term 
fate of CNTs released into the environment depends on the structural, morphological and 
synthetic treatments [100]. Methods of reducing toxicity in vivo and in vitro can be envisaged 
via functionalization of CNT. Proper assessment and in-depth study are essential to render 
nanotubes useful for diverse and environmentally benign applications.

We investigated the potential application of SWCNTs, graphene-based nanomaterials and 
its prototypes in TB and cancer chemotherapy using conventional DFT methods supported 
by molecular docking and MD simulation on the nature of interaction of therapeutic drug 
functionalized SWCNTs/graphene with the binding site of the protein. The functionaliza-

tion of SWCNTs with therapeutic drugs using covalent and noncovalent schemes were 
adopted to investigate the drug binding with the nanotube and the stability of the conju-

gated complexes. DFT results supported by molecular docking and MD simulation helps 
in contemplating the feasibility of SWCNT-based novel drug delivery in cancer and TB 
therapy.
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