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Abstract

Internal tandem duplication mutations in the FLT3 gene (FLT3/ITD) are detected in 
10–15% of children and 30% of adult patients with AML and are associated with an 
extremely poor prognosis. Although several antagonists against FLT3/ITD have been 
developed, few of them are effective for the treatment of FLT3/ITD+ AML because of 
the emergence of drug-resistant cells. The mechanisms responsible for drug resis-
tance include the acquisition of additional mutations in the FLT3 gene and/or activa-
tion of other prosurvival pathways such as microenvironment-mediated resistance. 
Recent studies have strongly suggested that the reciprocal interaction between the 
microenvironment and AML cells generates specific machinery that leads to chemore-
sistance. This chapter describes the molecular mechanism responsible for the refrac-
tory phenotype of FLT3/ITD+ AML cells resulting from the communication between 
the microenvironment and FLT3/ITD+ leukemia cells. Understanding this mechanism 
enables the discovery of novel and innovative therapeutic interventions for resistant 
FLT3/ITD+ AML.
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1. Introduction

Mutations in the FLT3 gene represent the most common genetic aberrations among patients 

with acute myeloid leukemia (AML) [1, 2]. Internal tandem duplication mutations in the 

FLT3 gene (FLT3/ITD), which are expressed in human acute myeloid leukemia (AML) 
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stem cells, are found in ~30% of patients with AML [3]. FLT3/ITD+ AML is one of the most 

intractable hematological malignancies because of the emergence of resistant clones to 

FLT3/ITD inhibitors or chemotherapies [3, 4]. FLT3/ITD allows ligand-independent acti-

vation and phosphorylation of the FLT3 receptor. Ectopic FLT3/ITD expression in IL-3–

dependent mouse Ba/F3 or 32D hematopoietic cells results in growth factor–independent 

proliferation and produces acute leukemia in mice [5, 6]. Studies have indicated that FLT3/

ITD transforms mouse hematopoietic cell lines via the activation of the STAT5, RAS-MAPK, 

and PI3-kinase/AKT pathways [5, 7, 8] and blocks differentiation by suppressing C/EBPα, 
PU1, and RUNX1 [9–11]. Other studies have reported that JAK2 and STAT3 are tyrosine 

phosphorylated by constitutively active FLT3 [12]. ROCK1 [13], CDKN1a [14], SURVIVIN 

[15, 16], RUNX1 [9, 17], CXCR4 [18, 19], SOCS1 [20], PIM1 kinase [21, 22], FLT3-ligand  

[23, 24], SHP-2 [25], and micro-RNA-155 [26], and other molecules are reported to be 

involved in FLT3/ITD signaling. Although FLT3/ITD has been associated with extremely 

poor patient prognoses, FLT3 inhibitors fail to show significant efficacy in anti-AML 
therapies. For instance, AC220 (quizartinib), a second-generation class III tyrosine kinase 

inhibitor (TKI) used in phase II clinical trials, is a very potent and specific inhibitor of 
FLT3/ITD compared with other TKIs; however, FLT3/ITD+ cells can become refractory 

to AC220 [9, 27]. The mechanism responsible for the resistance of FLT3/ITD+ AML cells 

against FLT3/ITD inhibitors can be classified into FLT3/ITD-dependent and FLT3/ITD-
independent mechanisms [4, 28]. The former is generally acknowledged as the acquisition 

of mutations in the FLT3 gene in addition to preexisting FLT3/ITD mutations. The emer-

gence of additional mutations in the kinase domain makes FLT3/ITD no longer sensitive 

to FLT3/ITD inhibitors by altering the three-dimensional structure of FLT3 kinase, mak-

ing FLT3 inhibitors difficult to physically interact with FLT3 protein. This mechanism is 
detailed in the excellent reviews [4, 28]. Although the development of further mutations 

in the FLT3 gene is associated with being refractory to the FLT3 inhibitor, most patients 

who became refractory to the FLT 3/ITD inhibitors lacked additional mutation in the FLT3 

gene. Therefore, the resistant mechanism of these cases was likely to be attributed to alter-

ation of the activity or levels in the molecules or pathways independent of FLT3/ITD [29], 

which includes microenvironment-mediated resistance.

Human AML stem cells residing in the endosteal niche of the bone marrow are relatively 

chemoresistant [30, 31]. This resistance results from survival cues in the form of various 

cytokines and adhesion molecules provided by niche cells [32]. Studies using the FLT3/

ITD inhibitors have demonstrated that FLT3/ITD+ AML blasts circulating in the peripheral 

circulation were very sensitive to these inhibitors, whereas those residing in the marrow 

endosteal region remained resistant to the FLT3/ITD inhibitor [33]. Reports have demon-

strated that stromal cells protect FLT3/ITD AML cells from apoptosis induced by FLT3/ITD 

inhibitors [34–36]. These studies suggest that leukemia niches provide survival cues that 

protect FLT3/ITD+ AML blasts from being eradicated by the FLT3/ITD inhibitors. In agree-

ment with these observations, early study demonstrated that releasing leukemia cells from 

the marrow niche into the peripheral circulation by blocking the CXCL12/CXCR4 interac-

tion is effective in increasing their sensitivity to cytoreductive treatment [37]. These findings 
indicate that targeting cells via a cell-autonomous mechanism alone may not be sufficient 
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for treating FLT3/ITD+ AML and that antagonizing these protective interactions between 

FLT3/ITD+ AML blasts and leukemia niches represents a novel therapeutic strategy to eradi-

cate resistant FLT3/ITD+ AML cells.

2. Microenvironmetal factors inducing the resistance of FLT3/ITD+  

AML cells to FLT3 inhibitors

2.1. CXCL12/CXCR4 signaling pathways as a mechanism responsible for the resistance of 

FLT3/ITD AML cells to the FLT3 inhibitor

One of the machineries that holds AML cells in the bone marrow microenvironment is the 

interaction between CXCL12 and CXCR4 (Figure 1). CXCL12, a chemokine known as stro-

mal cell–derived factor-1 (SDF1) that is expressed by the bone marrow microenvironment, is 
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Figure 1. FLT3/ITD+ AML cells in protective microenvironment. Suggested model for the resistance mechanism 

mediated by the environmental factors is shown. Retention of FLT3/ITD+ cells in the bone marrow microenvironment 

increases the risk of resistant phenotype of FLT3/ITD+ AML cells. This is mediated by adhesion molecules as well as the 

interaction between CXCL12 that is provided by the microenvironment and the CXCR4 on the AML cells. FLT3/ITD 

increases cell migration to CXCL12, thereby enhancing the interaction between AML cells and the microenvironment. 

Hypoxia and adrenergic inputs in the marrow environment that can enhance expression of CXCL12 and/or CXCR4 

likely increase this interaction even further. FLT3/ITD itself activates or modulates several intracellular molecules, 

such as ROCK1, RUNX1, PIM1, ERK, STAT3, SURVIVN, CDKN1A, miR-155, and SOCS1, through which FLT3/ITD 

increases cell proliferation. In addition to FLT3/ITD, growth factors, such as FLT3 ligand, stem cell factor (SCF), and 

GM-CSF, can also enhance activity and/or expression of these molecules, events providing survival signaling to the 

cells independent of FLT3/ITD. Therefore, cells will be able to survive even if FLT3/ITD activity is abrogated by the 

inhibitors.
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responsible for retaining hematopoietic stem cells in the marrow niche through its receptor 

CXCR4 that is expressed on HSCs [38–41]. Similar to normal hematopoietic cells, CXCR4 is 

expressed in most AML cells that express CXCR4 and migrate in response to CXCL12 [42]. 

Antagonizing CXCR4 inhibits the engraftment and development of AML in a human xeno-

graft human AML model, suggesting that CXCR4 is required for human AML to home to 

the marrow niche [43]. High expression of CXCR4 is associated with the poor prognosis of 

patients with AML [44, 45]. An early study indicated that FLT3/ITD enhanced chemotaxis 

to CXCL12 that is expressed in the niche [42]. The data suggest that FLT3/ITD facilitates the 

interaction between AML cells and the microenvironment via the enhancement of CXCL12/

CXCR4 signaling. The expression of CXCR4 is upregulated by various cytokines, including 

stem cell factor [46], VEGF, bFGF, EGF, IL2, IL4, IL6, IL7, IL10, and IL15 [47]. The induc-

tion of CXCR4 expression by the cytokines derived from the niche suggests that these cyto-

kines promote the migration of AML cells to the microenvironment, thereby increasing the 

interaction between AML cells and the microenvironment. Indeed, stem cell factor enhances 

the migration of human AML cells to CXCL12 [48] and enhances their homing to the bone 

marrow [49]. By contrast, FLT3 ligand [50], TNFα, and INFγ downregulate CXCR4 expres-

sion [47]. Adrenergic inputs downregulate CXCL12 in the marrow environment during the 

daytime [51] but upregulate CXCR4 on HSCs at night [52]. Hypoxia induces the expression 

of CXCL12 [53] and CXCR4 [54] by inducing HIF-1α expression. Hypoxic conditions in the 

bone marrow niche that induces the expression of CXCL12 and CXCR4 can increase the 

lodging of AML cells in the bone marrow microenvironment. A recent study suggested that 

the mobilization of FLT3/ITD+AML cells into the peripheral circulation using the CXCR4 

antagonist AMD3465 enhanced the antileukemia effect of chemotherapy and FLT3 inhibi-

tor sorafenib, resulting in a reduced burden of AML and prolonged survival of mice [19]. 

A combination of AMD3100 (Plerixafor), Sorafenib, and G-CSF in FLT3-mutated patients 

yielded an overall response rate of 77% [55]. These data indicate that disrupting the interac-

tion between FLT3/ITD+AML cells and the bone marrow microenvironment by antagonizing 

CXCR4 is beneficial to overcome the resistance of leukemia cells against the FLT3 inhibitor 

or chemotherapy.

Although reports have indicated that CXCL12/CXCR4 signaling can induce apoptosis in 

human AML cells by regulating BCL-X
L
, NOXA, and BAK [56, 57], stromal cells gener-

ally protect FLT3/ITD+ AML cells from apoptosis induced by FLT3/ITD inhibitors [34–36], 

and CXCL12 increases the number of FLT3/ITD+ mouse hematopoietic progenitor cells 

cultured in the absence of hematopoietic growth factors. These data indicate that CXCL12 

can provide a survival effect on the hematopoietic progenitor cells expressing FLT3/
ITD [58]. Consistent with CXCL12 as a survival factor for FLT/ITD+ cells, targeting the 

microenvironment by the CXCR4 antagonist overcomes the resistance of FLT3/ITD+ AML 

cells to the FLT3/ITD inhibitors [18, 19, 34, 59–61]. Antagonizing CXCR4 by BL-8040 and 

FLT3/ITD inhibition demonstrates synergistic effects in inducing the apoptosis of FLT3/
ITD+AML cells. The mechanism by which CXCL12 and CXCR4 provide resistance to FLT3/

ITD+ AML cells includes the expression of ERK, BCL2, MCL1, and CYCLIN D1 via the 

downregulation of miR-15a/16-1 expression [18]. Microenvironment-mediated resistance 
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of FLT3/ITD+ AML cells to FLT3 inhibitors through CXCL12 was partially abrogated by 

activating p53 in the stromal cells using an HDM2 inhibitor, suggesting that the com-

bination of HDM2 antagonists and the FLT3 inhibitor may provide therapeutic efficacy 
[34]. These data demonstrate that, while antagonizing CXCR4 induces the mobilization of 

FLT3/ITD+AML cells into the peripheral circulation, which, in turn, sensitizes cells to FLT3 

inhibitors, antagonizing CXCL12/CXCR4 signaling itself can abrogate resistance to FLT3 

inhibitors [18, 19, 34, 59–61]. The data clearly indicate that the resistance of FLT3/ITD+ 

AML cells to FLT3/ITD inhibitors depends on the stromal cells and is at least partially 

mediated through CXCL12/CXCR4.

2.2. Cytokine signaling in the microenvironment as salvation factors for FLT3/ITD+ AML

CXCL12 is not the only cytokine that confers the resistance of FLT3/ITD+AML cells to the FLT3 

inhibitor. Stromal cells secrete various cytokines and growth factors, such as angiopoietins, 

TNF-α, G-CSF, GM-CSF, and VEGF [36]. FLT3 ligand, stem cell factor, IL-3, GM-CSF, or G-CSF 

existing in the marrow environment can provide a protective effect on the FLT3/ITD+ AML 

cells against FLT3/ITD inhibitors [23, 24]. For instance, the culture of FLT3/ITD+ 32D cells 

with the FLT3-inhibitor AC220 in the absence of growth factors induces the rapid decline 

in the viable cell number, whereas the addition of IL-3 significantly inhibits the cytotoxic 
effect of AC220 (Fukuda & Hirade, unpublished observation). Similarly, FLT3 ligand that is 

expressed in the marrow microenvironment increases the resistance of FLT3/ITD+ AML cells 

to the FLT3 inhibitor [23]. These cytokines subsequently enhance the expression or activity 

of SURVIVIN, CDKN1a, ERK, N-RAS, and PIM1, all of which are known to be involved in 

the resistant phenotype against FLT3/ITD antagonists. The data indicate that cytokines in 

the marrow environment provide resistant activity to the FLT3/ITD+AML cells against FLT3 

inhibitors (Figure 1).

2.3. STAT3/SURVIVIN signaling pathways

SURVIVIN, an antiapoptotic protein that is upregulated by FLT3/ITD, regulates the pro-

liferation of FLT3/ITD+ hematopoietic progenitor cells [16, 62] and mediates the resistance 

of FLT3/ITD+ AML cells against the FLT/ITD inhibitor ABT-869 [15]. Zhou et al. reported 

that SURVIVIN expression was upregulated by FLT3/ITD, and its expression was even 

higher in the resistant FLT3/ITD+ AML cells compared with cells sensitive to ABT-869. 

On the other hand, antagonizing SURVIVIN recovered the sensitivity of resistant FLT3/

ITD+ AML cells to ABT-869, indicating that SURVIVIN expression is one of the mecha-

nisms responsible for the resistance to ABT-869. SURVIVIN expression was mediated by 

the activation of STAT protein, and antagonizing STAT3 using SRC-STAT3 inhibitor IDR 

E804 abrogated the expression of SURVIVIN, coincident with a significant reduction of 
ABT-869–resistant FLT3/ITD+AML cell proliferation in vivo. The combination of ABT-869 

with IDR E804 further decreased the burden of ABT-869–resistant FLT3/ITD+AML in a 

xenograft model in mice compared with the administration of ABT-869 or IDR E804 alone 

[15], suggesting that STAT3 is also involved in the resistance to ABT-869. Consistent with 
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this finding, recent data have demonstrated that the stroma-based activation of STAT3 Y705 

confers resistance to AC220 in FLT3/ITD+AML [63]. The culture of FLT3/ITD+ AML cells in 

direct contact with stromal cells or in the conditioned medium harvested from the stromal 

cells increased the IC50 of AC220 in FLT3/ITD+AML cells, with a concomitant increase 

in the phosphorylation of STAT3Y705 in the AML cells, compared with control medium 

without stromal cells. Pharmacologic inhibition of STAT3 using BP-5-087 [64] decreased 

the IC
50

 of AC220 in the FLT3/ITD+ AML cells cultured in direct contact with stromal cells 

or in the conditioned medium derived from stromal cells, indicating that STAT3 confers 

FLT3/ITD+ AML resistance to AC220 that is induced by stromal cells. This finding is con-

sistent with SURVIVIN being a direct transcriptional target of STAT3 in FLT3/ITD+AML 

and lymphoma cells [15, 65], suggesting that the STAT3/ SURVIVIN axis protects FLT3/

ITD+AML cells from the antileukemia effect by the FLT3 inhibitors. SURVIVIN expression 

is also upregulated by exogenous factors such as FLT3-ligand [15, 16], which hampers 

the efficacy of the FLT3 inhibitor and is involved in the resistant phenotype of FLT3/ITD+ 

AML cells [23]. Likewise, stem cell factor [66] and GM-CSF [67], all of which are provided 

by the marrow microenvironment, increase the expression of SURVIVIN (Figure 1). These 

data suggest that the marrow niche protects FLT3/ITD+ AML cells from FLT3/ITD antago-

nists through the upregulation of SURVIVIN by the hematopoietic growth factors secreted 

by the marrow environmental cells (Figure 1). Therefore, antagonizing SURVIVIN and/or 

STAT3 would overcome the resistance of FLT3/ITD+ AML to FLT3 inhibitors.

2.4. ERK/MAPK signaling pathways

An additional mechanism responsible for the resistance to the FLT3 inhibitor by the niche is the 

activation of ERK/MAPK signaling pathways. FLT3 inhibitors induce apoptosis in FLT3/ITD+ 

AML cells , whereas direct contact and proximity to stromal cells were protective toward FLT3/

ITD+ AML cells against FLT3 inhibition. Coculture of FLT3/ITD+ AML cells with bone marrow 

stroma cells was associated with cell cycle arrest and persistent activation of ERK, even in the 

presence of the FLT3 antagonist [36]. On the other hand, inhibition of MEK significantly abro-

gated the protective effect of stromal cells or FLT3 ligand in FLT3/ITD+ AML cells, indicating 

that ERK activation provided by the stromal cells is responsible for the resistance to FLT3 inhi-

bition in FLT3/ITD+ AML cells. It was also reported that direct cell contact is more essential for 

the persistent activation of ERK compared with exposure to soluble factors [36]. Consistently, a 

recent report demonstrated that the treatment of FLT3/ITD+ AML cells with FLT3 inhibitors for 

over 48 hours induced rebound in ERK phosphorylation [68], suggesting an adaptive feedback 

mechanism capable of reactivating ERK signaling in response to upstream target inhibition in 

the FLT3/ITD+ AML. These data suggest that antagonizing ERK/MAPK signaling pathways can 

overcome the resistance of FLT3/ITD+AML to the FLT3 inhibitors (Figure 1).

2.5. Cyclin-dependent kinase inhibitor 1a/Pbx1 signaling pathways

The report by Yang et al. also noted the cell cycle arrest of FLT3/ITD+ AML cells cocul-

tured by stromal cells [36], indicating that stromal cells provide factors that induce cell 

cycle quiescence. CDKN1a is one of the cyclin-dependent kinase inhibitors that is known 
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to block G
1
/S and G

2
/M transition [69–71]. It is reported that cell cycle quiescence of leu-

kemia stem cells is one of the mechanisms that leads to refractoriness to anticancer drugs 

that normally eliminate cells in S-phase [30]. In human AML cells, CDKN1a is upregu-

lated by growth factors, such as stem cell factor, FLT3-ligand, and GM-CSF [14, 70, 72], 

all of which are present in the marrow microenvironment. Consistent with FLT3 ligand–

induced upregulation of CDKN1a, FLT3/ITD also upregulates CDKN1a via Stat5 [73]. Abe 

et al. reported that knocking down CDKN1a significantly decreases proliferation and cell 
cycle progression in FLT3/ITD+ cells concomitant with an increase in Pbx1 mRNA expres-

sion [14], indicating that CDKN1a that is upregulated by FLT3/ITD negatively regulates 

proliferation and cell cycle progression of FLT3/ITD+ cells. Knocking down Pbx1 expres-

sion using shRNAs abrogated the enhanced proliferation that was induced by CDKN1a 

deletion. The data demonstrate that FLT3/ITD not only contains stimulating activity but 

also harbors inhibitory activity on cell proliferation, which is mediated by upregulating 

CDKN1a and downregulating PBX1 expression. More importantly, FLT3/ITD confers 

resistance to the FLT3 inhibitor by inducing the expression of CDKN1a [14]. When FLT3/

ITD was antagonized with AC220, a selective inhibitor of FLT3/ITD, CDKN1a expres-

sion was decreased coincident with PBX1 mRNA upregulation and a rapid decline in the 

number of viable FLT3/ITD + Ba/F3 cells; however, the cells eventually became refractory 

to AC220. Overexpressing CDKN1a in FLT3/ITD + Ba/F3 cells delayed the emergence of 

cells that were refractory to AC220, whereas silencing CDKN1a accelerated their develop-

ment. These data indicate that FLT3/ITD can inhibit FLT3/ITD+ cell proliferation through 

the CDKN1a /PBX1 axis and that antagonizing FLT3/ITD contributes to the subsequent 

development of cells that are refractory to the FLT3/ITD inhibitor by disrupting CDKN1a 

expression because of FLT3/ITD inhibition. Similarly, the upregulation of CDKN1a may 

represent one mechanism responsible for the FLT3 ligand–induced resistance of FLT3/

ITD+ AML cells against the FLT3 inhibitor [23] because CDKN1a expression is induced by 

FLT3 ligand [14]. The data also suggest that CDKN1a, which is upregulated by hematopoi-

etic growth factors, such as SCF and GM-CSF, which are secreted by stromal cells, is also 

responsible for the refractory phenotype of FLT3/ITD+ AML cells (Figure 1).

2.6. RUNX1 in the resistance of FLT3/ITD+ AML

A recent report demonstrated that FLT3/ITD signaling is associated with a common 

expression signature as well as a common chromatin signature. The study identified 
that FLT3/ITD induces the chronic activation of MAPK-inducible transcriptional fac-

tor AP-1 and that AP-1 cooperates with RUNX1 to shape the epigenome of FLT3/ITD+ 

AML [74]. RUNX1 is a core-binding transcription factor that plays an important role 

in hematopoietic homeostasis, particularly in differentiation and proliferation [75, 76]. 

RUNX1-deficient cells showed increased susceptibility to AML development in collabo-

ration with MLL-ENL, N-RAS, and EVI5 [77–79], suggesting that RUNX1 can function 

as a tumor suppressor in myeloid malignancies. By contrast, RUNX1 also promotes the 

survival of AML cells and lymphoma development and can function as an oncogene [80, 

81]. These data suggest that the RUNX1 has a dual function that promotes and attenuates 
the proliferation of hematological malignant cells. Hirade et al. identified that RUNX1 
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expression is upregulated by FLT3/ITD and functions as an oncogene in FLT3/ITD+ cells 

[9]. Another group demonstrated that RUNX1 cooperates with FLT3/ITD to induce acute 

leukemia, validating RUNX1 as an oncogene in FLT3/ITD signaling [17]. With respect 

to the function of RUNX1 in the resistance to the FLT3 inhibitor AC220, antagonizing 

RUNX1 significantly accentuated the antiproliferative effect of AC220 in FLT3/ITD+ 32D 

cells. RUNX1 expression was elevated in the FLT3/ITD+ 32D cells, which became refrac-

tory to AC220, whereas knocking down RUNX1 significantly inhibited the emergence and 
proliferation of FLT3/ITD+ cells refractory to AC220, demonstrating that RUNX1 mediates 

the development of FLT3/ITD+ AML cells resistant to AC220 in FLT3/ITD+ cells. RUNX1 

upregulation by AC220-resistant cells was not due to the additional mutation in the FLT3 

gene because the upregulation of RUNX1 by AC220 was no longer observed when resis-

tant cells were incubated without AC220. The data indicate that the epigenetic mechanism 

is likely involved in the upregulation of RUNX1 by AC220 refractory cells [9]. Because 

RUNX1 cooperated with MAPK-inducible transcription factor AP1 [74] and MAPK is reg-

ulated by various growth factors existing in the marrow microenvironment, it is highly 

likely that RUNX1 function is indirectly modulated by the microenvironmental factors. 

On the other hand, RUNX1 directly binds to the CXCR4 promoter region, and RUNX1 

transactivates CXCR4 in a DNA binding–dependent manner, indicating that RUNX1 tran-

scriptionally upregulates CXCR4 expression [78]. These findings strongly suggest that the 
upregulation of RUNX1 by FLT3/ITD increases the expression of CXCR4, which, in turn, 

enhances the chemotaxis of FLT3/ITD+ AML cells to stromal niche cells, thereby increas-

ing the likelihood of the cells being protected from the insult by the FLT3 inhibitor in the 

niche. On the other hand, RUNX1 downregulates the expression of cell adhesion factors 

that promote the residency of stem cells and megakaryocytes in their bone marrow niche 

[82], suggesting that RUNX1 expression that is induced by FLT3/ITD likely alters the 

interaction between the FLT3/ITD+ AML cells and niche cells and is involved in the resis-

tance to the FLT3 inhibitor (Figure 1).

2.7. FLT3/ITD evades external inhibitory cytokine control

While it has been unclear how leukemia cells escape from normal cytokine control that 

is indispensable to maintain normal hematopoiesis, a recent study demonstrated that 

FLT3/ITD facilitates the development of myeloproliferative disease by inhibiting the 

interferon response [20, 26]. Interferon exhibits an anti-proliferative effect on primitive 

hematopoietic cells [83–86], including FLT3/ITD+ cells [20]. In FLT3/ITD+ cells, activated 

STAT5 up-regulates SOCS1 expression, which inhibits the antiproliferative effect induced 

by interferon-α or interferon-γ [20]. SOCS1 protects FLT3/ITD+AML cells from external 

interferon control, thereby promoting myeloproliferative disease. Another report also 

uncovered a novel mechanism responsible for the escape of FLT3/ITD+ AML cells from 

interferon signaling. Micro-RNA 155 (miR-155) is significantly overexpressed in FLT3/

ITD AML [87–92] and promotes myeloproliferative disease induced by FLT3/ITD. This 

was coincided with repression of the interferon response compared with that with wild-

type FLT3. Inhibition of miR-155 resulted in the elevation of the interferon response and 

reduction in the proliferation of human FLT3/ITD+ AML cells. The data indicate that 
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 miR-155 promotes FLT3/ITD+ AML cell proliferation by blocking interferon signaling [26]. 

Taken together, FLT3/ITD stimulates AML cell proliferation by evading external antipro-

liferative cytokine control that is normally provided by the microenvironment (Figure 1). 

It remains to be determined if these mechanisms are involved in the resistance against 

FLT3 inhibitors.

FLT3/ITD+ AML is also found in patients with acute promyelocytic leukemia who harbor the 

PML-RARα fusion gene resulting from chromosomal translocation. Recent data have dem-

onstrated that the combination of the FLT3/ITD inhibitor and ATRA, which targets PML-

RARα, displays a synergistic effect of reducing the burden of FLT3/ITD+ AML both in vitro 

and in a xenotransplantation model [93–95]. This is a promising strategy to facilitate the 

differentiation of FLT3/ITD + AML in the patients; however, recent data have also indicated 

the inactivation of retinoids in the marrow niche, thereby inhibiting the differentiation of 
AML cells [96–98]. In this regard, the effect of ATRA with the FLT3/ITD inhibitor may be 
more complicated than anticipated because the marrow niche may impede the long-term 

effect of ATRA.

2.8. Interaction of FLT3/ITD+ AML cells with the microenvironment via adhesion 

molecules

The interaction between AML cells and the microenvironment is mediated by various factors, 

such as CXCL12, and adhesion molecules. CXCL12 can activate adhesion molecules, particu-

larly very late antigen-4 (VLA-4) and lymphocyte function–associated antigen-1 (LFA-1) on 

hematopoietic stem and progenitor cells, which also regulate the homing process [99]. FLT3/

ITD decreases the expression of VLA4 expression, coincident with a significant reduction in 
cell adhesion to VCAM1 [58]. While the data indicate that FLT3/ITD negatively regulates the 

expression of VLA4 and adhesion to its ligand VCAM1, the inhibition of FLT3/ITD by Fl-700 

decreases the affinity of VLA4 to soluble VCAM1 [100], indicating that FLT3/ITD modulates 

the interaction between VLA4 and VCAM1. The interaction of leukemia cells with the micro-

environment is also mediated via E-selection [101]. A recent report has demonstrated that 

a dual inhibitor for E-selectin and CXCR4 (GMI-1359) exerts efficient antileukemia effects in 
an FLT3/ITD+ AML xenograft model by mobilizing AML cells into the peripheral circulation 

from the bone marrow [102, 103]. The data suggest that antagonizing adhesion molecules 

that retain FLT3/ITD+ AML cells in the bone marrow microenvironment is beneficial to abate 
the resistance of AML cells to the FLT3 inhibitor by mobilizing AML cells into the blood 

circulation.

Taken together, these data provide evidence that stromal cells, or other cells comprising 

the microenvironment, support FLT3/ITD+AML cells via soluble factors and adhesion mol-

ecules, which, in turn, activate survival or proliferative signaling in the AML cells (Figure 1). 

However, the machinery provided by the microenvironment is not confined to these factors 
described above. A recent report has indicated that bone marrow mesenchymal stromal cells 

transfer their mitochondria to AML cells to support their proliferation [104, 105], possibly 

representing an additional mechanism that can enhance the resistance to the FLT3 inhibitor 

in FLT3/ITD+ AML. Likewise, it is highly possible that microsomes containing micro-RNAs 
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secreted from the microenvironment modulate the function of FLT3/ITD+ AML cells, although 

this hypothesis remains yet to be proven.

3. Functional interaction between FLT3/ITD and CXCR4 in the  

migration and homing of AML cells that are associated with resistance

Because CXCL12/CXCR4 provides a survival signal to FLT3/ITD+ AML cells, it suggests 

that CXCL12/CXCR4 signaling accentuates FLT3/ITD signaling activity. By contrast, FLT3/

ITD regulates cell migration to CXCL12 [50], indicating that FLT3/ITD modulates CXCR4 

signaling. Therefore, FLT3/ITD and CXCL12/CXCR4 signaling mutually interacts. While an 

earlier study demonstrated that patients with FLT3/ITD+ AML have higher CXCR4 expres-

sion than those with FLT3 wild-type AML [45], subsequent studies have demonstrated con-

troversial findings. We and other groups have demonstrated that overexpressing FLT3/ITD 
in mouse Ba/F3 cells or human CD34+ cells significantly downregulated CXCR4 expression 

[50, 59]. Incubating human CD34+ cells with FLT3 ligand also decreased the expression of 

CXCR4 [50]. Moreover, the mRNA expression of CXCR4 was significantly lower in patients 
with FLT3/ITD+ AML than in those with wild-type FLT3 [9, 106]. These data indicate that 

FLT3/ITD can reduce the expression of CXCR4 in contrast to the data of the earlier report. 

The mechanism responsible for the modulation of CXCR4 expression by FLT3/ITD remains 

subject to investigation. PIM1, which is activated by FLT3/ITD, upregulates CXCR4 [107]. 

Similarly, RUNX1, which is elevated in FLT3/ITD+ AML, upregulates CXCR4 transcription 

[78]. On the other hand, CEBPα, a transcriptional factor that increases CXCR4 expression 

[108], is inactivated by FLT3/ITD [11, 109]. Therefore, the inactivation of CEBPα by FLT3/

ITD can decrease CXCR4 expression. Because FLT3/ITD inhibits CEBPα but enhances PIM1 

and/or RUNX1 expression, the balance between the inactivation of CEBPα and activation of 

PIM1 and/or RUNX1 may determine the expression of CXCR4 in FLT3/ITD+ AML.

Although the FLT3 ligand, as well as FLT3/ITD, increases the migration of mouse hematopoi-

etic cells to CXCL12 [19, 50, 106], FLT3 signaling can decrease the migration of CD34+ cells and 

mouse Ba/F3 cells toward CXCL12 [50, 59]. Enhancing migration and decreasing migration in 

response to CXCL12 by FLT3/ITD appear to be controversial, but the reduction of migration 

toward CXCL12 is most likely a consequence of a decrease in CXCR4 expression, which, in turn, 

induces the quantitative reduction of CXCR4 signaling. Jacobi et al. reported that the transient 

expression of FLT3/ITD decreases CXCR4 expression in human CD34+ cells, coincident with 

their reduced migration toward CXCL12 [59]. This is consistent with the reduction in CXCR4 

expression in CD34+ cells or Ba/F3 cells incubated with FLT3 ligand that is accompanied by 

a decrease in CXCL12-mediated migration [50]. These data indicate that FLT3/ITD, as well 

as normal FLT3 signaling, can inhibit CXCL12/CXCR4 signaling by downregulating CXCR4 

expression. By contrast, the sustained expression of FLT3/ITD enhances migration in response 

to CXCL12, even with a significant downregulation of the CXCR4 level [50]. Augmentation in 

cell migration toward CXCL12 despite the reduction in CXCR4 expression suggests that the 

increase in migration was not due to the qualitative increase in CXCR4 signaling. A subsequent 

study by Onishi et al. confirmed that enhanced migration by FLT3/ITD was mediated through 
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the qualitative change in CXCR4 signaling [106]. The data indicated that molecules and/or path-

ways downstream of CXCR4 that are regulated in the presence of FLT3/ITD were overlapped 

but distinct from those regulated in the absence of FLT3/ITD, suggesting that FLT3/ITD reg-

ulates CXCR4 signaling pathways functionally distinct from those of normal cells [106]. This 

implies that FLT3/ITD functionally alters CXCR4 signaling. These findings strongly suggest that 
FLT3/ITD can negatively regulate CXCR4 signaling by qualitatively decreasing CXCR4 signal-

ing by downregulating CXCR4 expression, whereas it also increases CXCR4 signaling activity 

by changing the global gene expression downstream of CXCR4 (Figure 2). One of the mol-

ecules responsible for the activation of CXCR4 signaling by FLT3/ITD is Rho-associated kinase-1 

(ROCK1). ROCK1 promotes the migration of CXCR4+ cells to CXCL12, whereas antagonizing 

ROCK1 displays the opposite effect. CXCL12 transiently upregulates ROCK1 expression but 

subsequently downregulates its expression in the absence of FLT3/ITD. This downregulation is 

associated with the attenuation in cell migration to CXCL12, suggesting the presence of negative 

Figure 2. Quantitative and/or qualitative regulation of CXCR4 signaling by FLT3/ITD. CXCL12/CXCR4 signaling 

augments FLT3/ITD activity, but in contrast, FLT3/ITD modulates CXCL12/CXCR4 signaling, indicating that CXCL12/

CXCR4 and FLT3/ITD signaling mutually interacts. Regulation of CXCR4 signaling by FLT3/ITD is classified into two 
categories: one is quantitative regulation and the other is qualitative mechanism. FLT3/ITD regulates expression of 

CXCR4, depending on the transcriptional mediators or kinases. For instance, inactivation of CEBPα by FLT3/ITD can 
decrease CXCR4 expression, whereas activation of PIM1 and/or RUNX1 can increase CXCR4 expression. Downregulation 

of CXCR4 diminishes cell migration to CXCL12, whereas upregulation of CXCR4 expression leads to enhancement in 

cell migration to CXCL12. On the other hand, FLT3/ITD modulates global gene expression downstream of CXCR4, which 

leads to the enhancement of cell migration to CXCL12. Classification of genes that are regulated by CXCL12 in FLT3/

ITD− cells and those in FLT3/ITD+ cells based on the molecular pathways or biological process demonstrated that they 

are functionally overlapped but distinct. The data suggest that FLT3/ITD functionally alters CXCL12/CXCR4 signaling. 

For instance, downregulation of ROCK1 expression by CXCL12 that is normally observed in control cells is abrogated by 

FLT3/ITD, which is responsible for the enhancement in cell migration to CXCL12 by FLT3/ITD.
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feedback in CXCL12/CXCR4 signaling mediated by modulating ROCK1 expression to prevent 

excessive migration in normal cells. By contrast, FLT3/ITD or FLT3 ligand enhances the expres-

sion and prevents the subsequent downregulation of the ROCK1 level that is normally induced 

by CXCL12, thereby abrogating the negative feedback generated by CXCL12 and ROCK1. The 

loss of negative feedback on ROCK1 expression induced by FLT3 signaling resulted in the sus-

tained activation of CXCL12/CXCR4 signaling, thereby enhancing the migration of FLT3/ITD+ 

cells toward CXCL12. Enhanced chemotaxis is also mediated through RAS [58].

An additional molecular machinery that specifically mediates the migration of FLT3/ITD+ cells 

is PIM1 kinase. The expression and kinase activity of PIM1 are upregulated in FLT3/ITD+ AML 

cells [110]. Enhanced PIM1 activity induced by FLT3/ITD is essential for the migration and 

homing of AML cells [107]. The effect of PIM1 on the migration and homing of FLT3/ITD cells 

is mediated by the increase in CXCR4 owing to its recycling by the phosphorylation of serine 

339 on CXCR4. These data indicate that PIM1 activity is essential for the proper CXCR4 surface 

expression and migration of FLT3/ITD+ AML cells toward CXCL12. In addition to regulating 

migration and homing, PIM1 modulates the resistance of FLT3/ITD+ AML cells to FLT3 inhibi-

tors [21, 22]. Targeting PIM1 synergizes with FLT3 inhibition [111] and restores the sensitivity 

of FLT3 inhibitors in FLT3/ITD+ AML cells [21]. A recent study in abstract form indicated that 

the microenvironment-induced expression of PIM kinase supports chronic leukemia (CLL) sur-

vival and promotes CXCR4-dependent migration [112]. Although this was investigated in CLL, 

the data suggest that microenvironmental factors increase the expression of PIM1 kinase, which 

promotes the resistance of FLT3/ITD+ AML. The upregulated PIM1 kinase, in turn, would facili-

tate the migration of FLT3/ITD+ AML toward CXCL12 by activating CXCR4 signaling, thereby 

increasing the interaction between FLT3/ITD+ AML cells and microenvironment cells. In this 

regard, antagonizing PIM1 represents an additional therapeutic strategy to abrogate the interac-

tion between FLT3/ITD+ AML cells and marrow niches, particularly for those that have become 

resistant to FLT3/ITD inhibitors. Similarly, ROCK1 enhances not only CXCL12-induced migra-

tion [106] but also the proliferation of FLT3/ITD+ cells [13]. Therefore, antagonizing ROCK1 is 

likely to be beneficial to interfere with the communication of FLT3/ITD+ AML cells between the 

marrow niches and inhibit their proliferation. These data suggest that FLT3/ITD increases the 

communication with the bone marrow microenvironment by enhancing the chemotaxis toward 

CXCL12. Together with CXCL12 protecting FLT3/ITD+ AML cells from the insult of FLT3 inhibi-

tors, the findings strongly indicate that reciprocal interaction between FLT3/ITD and CXCL12/
CXCR4 signaling exists that accentuates the resistance to FLT3 inhibitors.

4. Effect of FLT3 mutation on the microenvironment

Normal hematopoietic stem cells drive hematopoiesis, but this process requires appro-

priate factors secreted by adjacent cells, adhesion molecules, neighboring cells such as 

mesenchymal stromal cells, osteolineage cells, and endothelial cells that exist in the micro-

environment [113]. In agreement with the microenvironment mediating the tight control 

necessary for normal hematopoiesis, earlier studies have demonstrated that malfunction 

of microenvironmental cells can lead to the development of myeloproliferation, which 

represents one of the outcomes of aberrant hematopoiesis. Walkley et al. demonstrated 
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that the loss of retinoic acid receptor gamma (PARγ) resulted in myeloproliferation in 
mice; however, the transplantation of the marrow cells into PARγ-deficient cells did not 
cause myeloproliferation in wild-type recipients, whereas the transplantation of wild-

type marrow cells caused myeloproliferation in PARγ-deficient recipients, indicating that 
myeloproliferation caused by the loss of PARγ was microenvironmental [114]. The micro-

environmental effect on aberrant myeloproliferation is also supported by experiments 
using Rb-deficient cells. Knocking out Rb resulted in myeloproliferation in mice; however, 
the genetic defect in both hematopoietic cells and the microenvironment was necessary for 

the development of myeloproliferation [115]. Furthermore, deletion of DICER1 in primi-

tive osteolineage cells led to myelodysplastic syndrome and AML [116], indicating that 

malfunction of DICER1 in the niche component was sufficient to cause myeloid malig-

nancy. These findings indicate that the genetic alteration and/or malfunction of the micro-

environment can induce myeloid malignancies.

Reports have demonstrated that HSCs regulate their own niches by instructing neighboring 

stromal cells to produce supportive factors or alter the overall microenvironment [117–119]. 

While the marrow niche supports leukemia cell proliferation or protects cells from chemother-

apeutic insult by providing various survival signals, recent evidence has demonstrated that 

leukemia cells modulate the marrow environment to create a supportive niche favoring sur-

vival for AML cells, just as healthy HSCs regulate their niche. Zhang et al. demonstrated that 

chronic myeloid leukemia (CML) cells modulate the microenvironment in favor of CML cells 

over healthy HCS by modulating CXCL12 expression and alter the localization of HSCs. CML 

cells modulate cytokine expression in the microenvironment, such that they support CML cells 

[120]. A study by Schepers et al. identified that myeloproliferative neoplasia (MPN) remodels 
endosteal bone marrow niches by stimulating mesenchymal stem cells to produce function-

ally altered osteoblastic lineage cells. This results in the creation of a self-reinforcing leuke-

mic niche that impairs normal hematopoiesis and favors leukemic stem cell function [121]. 

Several cytokines, such as thrombopoietin and CCL3, that direct cell-cell interaction, altera-

tion of TGF-β, and Notch and inflammatory signaling were involved in the expansion and/
or remodeling in osteoblastic lineage cells. The osteoblastic lineage cells remodeled by myelo-

proliferation compromised normal HSCs but effectively support leukemia stem cells [121]. 

Similarly, the latest study by Mead et al. demonstrated that FLT3/ITD modulates the marrow 

microenvironment and impaired the number of HSCs. In the marrow of FLT3ITD/ITD mice, FLT3/

ITD-induced myeloproliferation was associated with a progressive decline in the HSC com-

partment. Notably, when FLT3ITD/ITD marrow cells were transplanted with marrow competi-

tor cells from wild-type mice into healthy recipients, the HSCs derived from the competitor 

cells were significantly reduced, demonstrating the presence of a cell extrinsic mechanism that 
diminishes the competitor HSC. Loss of competitor cells in the recipient mice that developed 

FLT3/ITD-induced myeloproliferation was coincided with the disruption of stromal cells in 

the recipient marrow, an activity that was associated with reduced numbers of endothelial and 

mesenchymal stromal cells showing increased inflammation-associated gene expression. The 
study finally discovered that tumor necrosis factor (TNF), a cell-extrinsic negative regulator of 
HSCs, was overexpressed in the marrow niche cells in FLT3ITD/ITD mice, and anti-TNF treatment 

partially rescued the loss of HSCs. These data clearly demonstrate that FLT3/ITD compro-

mises HSCs through an extrinsically mediated mechanism of disrupting HSCs that support 
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bone marrow stromal cells by generating an inflammatory environment [122]. The same study 

also demonstrated that the expression of FLT3 mRNA and protein is absent in HSCs, strongly 

suggesting that FLT3/ITD protein is not expressed in most primitive HSCs, even if FLT3/ITD 

mutation exists in the FLT3 gene in HSCs. Because these HSCs harboring the FLT3/ITD gene 

but lacking the expression of FLT3/ITD protein would not be targeted by the FLT3 inhibitors, 

they may represent a reservoir for the development of resistant clones, in which additional 

mutations can be accumulated. The lack of mutant FLT3/ITD protein in HSCs harboring FLT3/

ITD mutation on the FLT3 gene implies that current strategies targeting FLT3/ITD protein or 

activity would be ineffective. In this regard, disrupting the FLT3 gene, for instance, by using a 
gene-editing strategy, would represent an additional approach to eliminate HSCs containing 

FLT3/ITD mutation. Moreover, because FLT3/ITD+ AML restructures the marrow environment 

in favor of AML cells over normal HSCs, factors provided by FLT3/ITD+ AML cells that influ-

ence the marrow environment would represent a novel therapeutic target.

5. Summary

FLT3/ITD+ AML can become refractory to FLT3 inhibitors. Factors derived from the marrow micro-

environment represent one such mechanism responsible for the refractory phenotype to FLT3/

ITD inhibitors. Understanding the molecular mechanism involved in microenvironment-medi-

ated resistance will shed light on the development of innovative therapeutic strategies against 

FLT3/ITD+ AML, especially for FLT3/ITD+ AML that has become refractory to FLT3 inhibitors.
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