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Abstract

The numerical and/or analytical modeling of the temperature field developed by the 
magnetic systems in the external alternating magnetic fields is essential in the Magnetic 
Hyperthermia. Optimization of the all parameters involved in the burning process of 
the malignant tissues can be realized more efficiently using a mathematical model. The 
analytical models can be used for the validation of any numerical complex models of the 
heating processes. This work focuses on the parameters which influences the therapeu-
tic temperature field developed by the magnetic systems within the malignant tissues 
when the magnetic field is applied. An analytical model was developed to predict and 
control the bioheat transport within a malignant tissue. This model was compared with 
a numerical model which was developed in the same conditions of the thermal analysis. 
Infusion of a diluted suspension of magnetic nanoparticles (MNP) into liver tissue was 
modeled using the Darcy’s equation. The MNP concentration and the temperature field 
were computed for different parameters as: (i) ferrofluid infusion rates, (ii) particle zeta 
potential and (iii) magnetic field parameters. The convection-diffusion-deposition of the 
particles within tissues was considered in this analysis. This study indicates the essential 
role of these parameters to predict accurately the hyperthermic temperature field. The 
model presented in this paper predicts the optimum MNP dosage and the temperature 
at every point within the malignant tissue.

Keywords: finite element method (FEM), Magnetic Hyperthermia, modeling of the 
temperature field, magnetite nanoparticles

1. Introduction

The Magnetic Hyperthermia is one of the most promising therapies in the cancer treat-
ment [1]. The malignant tissues are destroyed when their temperature reach a therapeutic 
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hyperthermic temperature in the range 40–46°C [2, 3]. The main problem of this technique 
is to understand and to control as precisely as possible the temperature field developed 
by the magnetic systems injected within malignant tissues when the external alternating 
magnetic fields are applied.

Some experimental data realized in a tissue equivalent (agarose gel) evidences the particle 
diffusion within the tissue after their injection [4, 5]. The diffusion-convection and deposition 
of the particles have a strong influence on the radial particle distribution within the tissue 
volume and as a consequence on the temperature field in tissues [6].

In this paper, the temperature within a malignant tissue surrounded by a healthy tissue was 
studied considering the radial magnetic nanoparticles (MNP) concentration as an effect of the 
ferrofluid injection at the center of tumor. The MNP with different sizes having a lognormal 
particle size distribution were considered. The temperature developed by the magnetic sys-

tems in the external time-dependent magnetic field was analyzed for different values of the 
parameters. During the injection process of the particles within the tissues, their convection 
and deposition influences strongly the concentration of the particles. An analytical model was 
developed to predict the temperature field for different important parameters as: (i) ferrofluid 
infusion rates, (ii) particle zeta potential and (iii) optimal particle dosages. The results were 
compared with a numerical model in Comsol Multiphysics and Matlab. The values of tem-

peratures computed using the analytical and numerical models in the same conditions were in 

very good agreement.

2. The analytical temperature model

Modeling the heat transport within the malignant tissues is an important element in the 
Magnetic Hyperthermia. The development of an analytical model for a complex system or 
process is usually an important breakthrough with a strong impact in the field.

In this case we are presenting an analytical model which will be a powerful analysis tool 
for hyperthermia treatment planning due to its ability to predict accurately the temperature 
field within the malignant tissues. The model will provide a tool to study the main parame-

ters which influence significantly the temperature field and to give a tool to optimize them. 
For each patient, an individual therapy planning is required in correlation with the tumor 
location, geometry, shape and size. The elaboration of a patient model by segmentation of 
images from computerized tomography or magnetic resonance imaging scans is the first 
step—and the most important one—of hyperthermia treatment planning. This segmenta-

tion is used to compute the temperature field in the tumor located in a patient organ.

In our simulations a spherical concentric configuration composed of a malignant tissue sur-

rounded by a healthy tissue was considered (Figure 1). The malignant tissue has a radius R
1
 

and the healthy region has the shell thickness R
2
 − R

1
. At the center O of this geometric structure, 
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a ferrofluid volume V
f
 was injected with the volumetric flow rate (ferrofluid infusion rate)  

Q
v
 (μl/min) using a needle of a syringe with the radius r

o
. The ferrofluid flow within this geom-

etry starts from the center O where is localized the injection site (IS).

In this analysis, MNP with different sizes were considered. A lognormal distribution was 
defined by the following distribution function [7]:

  g [R]  =   1 _____ 
𝜎R  √ 

___
 2π  
   exp  [−     [ln  ( R ⁄ R  

0
   ) ]    2 
 _______ 

2  σ   2 
  ]  and  ∫ 

0
  ∝    g [R]  dR = 1  

R is the particle radius, ln[R
0
] is the median and σ is the standard deviation of R.

2.1. The radial distribution of the MNP concentration

The ferrofluid (composed by small magnetite particles and water) was considered an incom-

pressible diluted colloidal fluid with the small concentration (c ≤ 5% by volume). The presence 
of the small magnetite particles does not significantly affect the transport properties of the 
fluid [8]. The velocity of the magnetic particles within tissues was computed as a solution of 
the continuity equation in the spherical coordinates:

  ∇ ∙  v →   = 0  (1)

The radial velocity of the particles—the component of the velocity vector:   v →   ( v  r  , 0, 0)   is given by:

   v  
r
   =   B __ 

 r   2 
    (1.1)

Figure 1. The geometric configuration of a malignant and healthy tissue structure.
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where the variable r defines the radial distance from the IS localized at the center of this 
geometry. The constant  B =   

 Q  
v
  
 

___
 π    was computed considering the ferrofluid velocity at the tip of 

the needle as:

  U =   
 Q  

v
  
 _____ 

 S  
needle

  
   =   B __ 

 r  
0
  2 
    (1.2)

  S  
needle

   = π  r  
0
  2   is the needle cross sectional area. The radial velocity of the particles depends on the 

volumetric flow rate Q
v
 (μl/min) and the radial variable r:

   v  
r
   =   

 Q  
v
  
 ___ π  r   2 
    (2)

Local velocity of the particles (2) depends on the pressure gradient developed within geom-

etry as result of the ferrofluid injection process. The ferrofluid flow through tissues was mod-

eled using the Darcy’s equation [8]:

  ∇ P  
i
   = −   

 ε  
i
   μ
 ________ 

 K  
i
  
   v →    (i = 1, 2)   (3)

In this analysis, the index i = 1 defines the tumor (malignant tissue) and the index i = 2 defines 
the healthy tissue. The expression of the pressure in the malignant tissue is P

1
(r):

   P  
1
   (r)  =   

 ε  
1
   μ
 ___ 

 K  
1
  
    [   1 __ r   −   1 __ 

 R  
1
  
   ]    

 Q  
v
  
 ___ π   +   

 ε  
2
   μ
 ___ 

 K  
2
  
   [   1 __ 

 R  
1
  
   −   1 __ 

 R  
2
  
   ]    

 Q  
v
  
 ___ π  ,  r  

o
   ≤ r ≤  R  

1
   . (4.1)

and P
2
(r) in the healthy region:

   P  
2
   (r)  =   

 ε  
2
   μ
 ___ 

 K  
2
  
   [   1 __ r   −   1 __ 

 R  
2
  
   ]    

 Q  
v
  
 ___ π    R  

1
   ≤ r ≤  R  

2
    (4.2)

was computed solving the Darcy’s equation (3) for the concentric tissues. On the external 
border of the geometry, the pressure is zero, P

2
(r = R

2
) = 0. The pressure developed in this 

geometric configuration depends significantly on the parameter Q
v
, ferrofluid viscosity μ and 

tissues characteristics (porosity ε
i
 and permeability K

i
).

The mass concentrations of the particles, C
i
 = C

i
(r) (i = 1, 2) (expressed in mg/cm3) are the solu-

tions of the modified convection-diffusion equation [8, 9]:

    
∂  C  

i
  
 ___ ∂ t   + ∇ ∙  (  u →    

i
    C  

i
  )  = ∇ ∙  ( D  

i
  ∗ ∇ C  

i
  )  −  k  

f
  i   C  

i
    (5)

where   k  
f
  i   represent the values of the deposition rate coefficients of the particles within the 

malignant and healthy tissues which were computed using the relations (A1.3)–(A1.5) from 
Appendix 1.
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The expression  ∇ ∙  (  u →    
i
    C  
i
  )   describes the particle convection, the term  ∇ ∙  ( D  

i
  ∗  ∇  C  

i
  )   - the particle dif-

fusion and   k  
f
  i   C  
i
    - the mean volumetric deposition rate of the particle on the solid phase.

The deposition processes play an important role in the spatial distribution of the particles. 
The temperature field within geometry is strongly dependent on the volumetric deposition 
rate of the particles on the solid phase   k  

f
  i   C  
i
   . The coefficients   k  

f
  i  

   k  
f
  i  =   

3 (1 −  ε  
i
  ) 
 __________ 

2  ε  
i
    d  
c
  
    η  

s
  i   v  
r
  ,  (i = 1, 2)   

were computed considering the superposition of the effects developed by the hydrodynamic 
forces, van der Waals interactions, gravity effect and the repulsive electrostatic double layer 
forces. The particle deposition on the cellular structure of tissues depends on the particle 

diameter D, the radial velocity v
r
 of the particles, tissues characteristics (porosity ε

i
 and per-

meability K
i
) and particle zeta potential ζ

p
(Appendix 1) [10–16]. At equilibrium, Eq. (5) have 

the following solutions (Appendix 1 - relations (A1.15)):

   C  
i
   (r)  =  (    e   −   

 A  
i
  
 __ 2r    __________  √ 

_
 r    )  {  (const1)   

i
   Bessel I [ √ 

______
 1 − 4  m  

i
    ,   

 A  
i
  
 __ 2r   ]  +   (const2)   

i
   Bessel K [ √ 

______
 1 − 4  m  

i
     ,   

 A  
i
  
 __ 2r   ] }   (6)

where the expressions m
i
 and A

i
 are:

   m  
i
   = −   

3 (1 −  ε  
i
  ) 
 _______________ 

2  ε  
i
    d  
c
  
    η  

s
  i    

 Q  
v
  
 ____ π  D  
i
  ∗ 
   and  A  

i
   =   

 Q  
v
  
 ____ π  D  
i
  ∗ 
  .  

The collector efficiency   η  
s
  i   as result of the electrostatic repulsive forces is given by the relation 

(A1.2) from Appendix 1.

Boundaries conditions: The constants, (const1)
i
 and (const2)

i
, were computed using the fol-

lowing boundary conditions:

(i) C
2
 = 0 on the external boundary of the geometry (r = R

2
);

(ii) Neumann boundary condition at the all inner interfaces:

   C  
1
   (r =  R  

1
  )  =  C  

2
   (r =  R  

1
  )   

   D  
1
  ∗      
∂  C  

1
  
 ___ ∂r

  |   
r= R  

1
  
   =  D  

2
  ∗      
∂  C  

2
  
 ___ ∂r

  |   
r= R  

1
  
    

(iii) at the injection site (IS), at the top of the needle (r = r
o
) the concentration has the particular 

expression C
1
 = C

max
.

The radial distribution of the MNP concentrations computed as solutions of Eq. (5) depends 
mainly on: (i) the ferrofluid infusion rate Qv; (ii) tissue and particle characteristics as poros-

ity, permeability and particle size (Table 1). The convection, diffusion and deposition of the 
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particles influence strongly the spatial distribution of the particles after their injection within 
tissues. At equilibrium, the temperature field depends significantly on the spatial distribution 
of the particles. In this analysis, the volume fractions of the particles were considered:

   Φ  
i
   (r)  =   

 C  
i
   (r) 
 ____  ρ  

MNP
      (7)

ρ
MNP

 is the mass density of the magnetic particles. At the injection site - at the center of the 
geometry - the maximum value of the volume fraction was   Φ  

max
   =   

 C  
max

  
 ____  ρ  

MNP
     :

2.2. The temperature field

The temperature field within malignant and healthy tissues is described by the solutions: 
T
i
 = T

i
(r, t), (i = 1, 2) of the bioheat transfer equation (Pennes equation) in the living tissues [6]:

   ρ  
i
    c  
i
     
∂  T  

i
  
 ___ ∂ t   = ∇ [ k  

i
   ∇ T  

i
  ]  +  ρ  

b
   w  
b
   c  
b
   [ T  
art

   −  T  
i
  ]  +  Q  

met
  i   +  Q  

i
   (r) ,  (8)

with the following thermal characteristics (Table 2): ρ
i
—the mass density, c

i
—specific heat 

capacity, k
i
—the thermal conductivity, ρb—mass density of the blood, cb—specific heat capac-

ity of the blood, T
art

—blood temperature,   Q  
met

  i   —metabolic heat production and Q
i
(r) (W/m3)—

power density (volumetric heating rate) dissipated by the magnetic particles within geometric 
configuration when the magnetic field is applied.

As a result of the spatial distribution of the particles, the total volumetric heating rate Q
i
(r) 

depends on the radial dependent volume fractions of the particles Φ
i
(r). When MNP with 

different sizes are injected within tissues, the volumetric heating rate of the ferrofluid is [7]:

Hamaker constant A (J) 3 ∙ 10−21 – 4 ∙ 10−20

Particle radius R (nm) 5 – 30

Collector diameter d
c
 (mm) 0.05 – 0.50

Tissue porosity: ε
i
(i = 1, 2)

ε
1
—malignant tissue porosity; ε

2
—healthy tissue porosity

ε
1
 = 0.1–0.8; ε

2
 = 0.2

Permeability K
i
(i = 1, 2)

K
1
—malignant tissue permeability;

K
2
—healthy tissue permeability

K
1
 = 10−14;

K
2
 = 5 ∙ 10−13;

Water mass density ρ
W

 (kg/m3) 1000

Boltzmann coefficient k
b
 (J/K) 1.38 ∙ 10−23

Absolute fluid viscosity μ (kg/(s m)) 0.001

ζ
p
—particle zeta potential (mV) −10 to −50

ζ
c
—collector zeta potential (mV) −20

Table 1. Parameters values used in simulations [9, 10].

Numerical Simulations in Engineering and Science310



   Q  
i
   (r)  =  Φ  

i
   (r)   P ¯¯    (9)

The size distribution of particles influences strongly the heating rate. For a magnetic system 
which contains the particles with different sizes, the volumetric heating rate is given by

   P ¯¯   =  ∫ 
0
  ∝   P [R] g [R] dR,  

where the volumetric heating rate released by one particle P[R] and susceptibility χ″ [R] 

depend strongly on the particle radius:

  P [R]  =  μ  
0
   f π  χ   ″   [R]   H  

0
  2  and  χ   ″   [R]  =   

 μ  
0
    M  

s
  2  V [R] 
 __________ 

3  k  
B
   T     

2π f τ [R] 
 _________________ 

1 +   (2𝜋f τ [R] )    2     (10)

H
0
 is the intensity of the magnetic field, f—frequency of the magnetic field, μ

0
 = 4π ∙ 10−7 H/m 

the permeability, M
s
 is the saturation magnetization and k

B
 = 1.38 ∙ 10−23 J/K is Boltzmann con-

stant. The effective relaxation time contains the Brown relaxation time τ
B
[R] and the Néel 

relaxation time τ
N
[R] as function of the particle radius:

   τ [R]  =   
 τ  
N
   [R]   τ  

B
   [R] 
 _________ 

 τ  
N
   [R]  +  τ  

B
   [R] 

    

   τ  
B
   [R]  =   

3 η  V  
H
    [R] 
 _______________________ 

 k  
B
   T

  ;  τ  
N
   [R]  =  τ  

0
      √ 

__
 π  
 __ 

2
     

exp  [  K V [R] 
 ___________ 

 k  
B
   T  ] 
 ______________ 

 √ 

___________

   
K V [R] 

 ___________ 
 k  
B
   T    

  .  

τ
0
 is the average relaxation time, η carrier liquid viscosity,   V  

H
    [R]  = V [R]    (1 +   δ __

 R  )    
3

   is the hidrodin-

amic volume of the particles, δ is the surfactant layer thickness and K is the anisotropy con-

stant of the magnetic particles. Using the spherical symmetry, Eq. (8) can be written as [17]:

    
 k  
i
  
 __ 

 r   2 
     ∂ __ ∂ r   [ r   2    

∂  T  
i
  
 ___ ∂ r  ]  +  M  

i
   [T]  =  ρ  

i
    c  
i
     
∂  T  

i
  
 ___ ∂ t    (11)

Thermal and magnetic characteristics Magnetite Tumor tissue Healthy tissue

Mass density (kg/m3) 5180 1160 1060

Specific heat capacity (J/kg K) 670 3600 3600

Thermal conductivity (W/mK) 40 0.4692 0.512

Magnetization (kA/m) 446 – –

Anisotropy constant K (kJ/m3) 9 – –

Frequency f (kHz) 100–650 – –

Magnetic field amplitude H (kA/m) 0–15 – –

Table 2. The thermal and magnetic characteristics [9, 10].
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with   M  
i
   [T]  =  ω  

b
  i    ρ  
b
    c  
b
   [ T  

e
  i  (r)  −  T  

i
  ] .  For i = 1, 2, the expressions   T  

e
  i  (r)   are:

   T  
e
  1  (r)  =  T  

B
  1   +   

  Q  
1
   (r) 
 __________ 

 ω  b  
1    c  
b
    ρ  
b
  
   and  T  

e
  2  (r)  =  T  

B
  2   +   

  Q  
2
   (r) 
 __________ 

  ω   2   
b
    c  
b
    ρ  
b
  
    

where

   T  
B
  1   =  T  b   +   

 Q  
met

  1  
 ______ 

 ω  b  
1    c  
b
    ρ  
b
  
   and  T  

B
  2   =  T  b   +   

 Q  
met

  2  
 ______ 

 ω  b  
2    c  
b
    ρ  
b
  
  .  

Eq. (8) was solved in Appendix 2 at the thermal equilibrium. The general solutions are 
obtained:

   T  
1
   (r)  =  c  

1
     
cosh  ( β  

1
   r) 
 _____________ r   +  c  

2
     
sinh  ( β  

1
   r) 
 _____________ r   +  v  

1
     
cosh  ( β  

1
   r) 
 _____________ r   +  v  

2
     
sinh  ( β  

1
   r) 
 _____________ r    (A2.3)

and

   T  
2
   (r)  =  c  

3
     
cosh  ( β  

2
   r) 
 _____________ r   +  c  

4
     
sinh  ( β  

2
   r) 
 _____________ r   +  v  

3
     
cosh  ( β  

2
   r) 
 _____________ r   +  v  

4
     
sinh  ( β  

2
   r) 
 _____________ r    (A2.4)

The expressions v
1
, v

2
, v

3
 and v

4
 are:

   v  
1
   =   

1
 __ 

 β  
1
  
  ∫  r  [ a  

1
   +  b  

1
    Φ  

1
   (r) ]  sinh  ( β  

1
   r) dr and  v  

2
   = −    1 __ 

 β  
1
  
   ∫  r  [ a  

1
   +  b  

1
    Φ  

1
   (r) ]  cosh  ( β  

1
   r) dr  

   v  
3
   =   

1
 __ 

 β  
2
  
  ∫  r  [ a  

2
   +  b  

2
    Φ  

2
   (r) ]  sinh  ( β  

2
   r) dr and  v  

4
   = −    1 __ 

 β  
2
  
   ∫  r  [ a  

2
   +  b  

2
    Φ  

2
   (r) ]  cosh  ( β  

2
   r) dr  

with the following notations:

   a  
1
   =  β  

1
  2   T  

B
  1   and  a  

2
   =  β  

2
  2   T  

B
  2    

   b  
1
   =   

 β  
1
  2     ̄  P   
 ______ 

 ω  b  
1      c  

b
      ρ  

b
  
     and b  

2
   =   

 β  
2
  2     ̄  P   
 ______ 

 ω  b  
2      c  

b 
    ρ  
b
  
    

   β  
1
  2  =   

 ω  b  
1    c  

b
    ρ  
b
  
 ________________ 

 k  
1
  
  ;  β  

2
  2  =   

 ω  b  
2    c  

b
    ρ  
b
  
 ________________ 

 k  
2
  
    

The integration constants: c
1
, c

2
, c

3
, c

4
 were computed from the following boundary conditions.

Boundary conditions:

(i) The temperature T
1
 is finite at the center (r→ 0) of the geometric structure (Figure 1). As 

a result, the constant c
1
is zero. Therefore, the temperatures: T

1
(r) and T

2
(r) are (Appendix 2):
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 T  

1
   (r)  =  c  

2
     
sinh  ( β  

1
   r) 
 _____________ r   +  v  

1
     
cosh  ( β  

1
   r) 
 _____________ r   +  v  

2
     
sinh  ( β  

1
   r) 
 _____________ r  
      

  T  
2
   (r)  =  c  

3
     
cosh  ( β  

2
   r) 
 _____________ r   +  c  

4
     
sinh  ( β  

2
   r) 
 _____________ r   +  v  

3
     
cosh  ( β  

2
   r) 
 _____________ r   +  v  

4
     
sinh  ( β  

2
   r) 
 _____________ r  

   (12)

(ii) Dirichlet boundary condition was considered on the external surface of the healthy tissue:

   T  
2
   [r =  R  

2
  ]  =  37   °  C  (13)

(iii) The Newman boundary conditions are considered at malignant—healthy tissue interface. 
The heat flux coming from the malignant tissue is completely received by the healthy region. 
The continuity condition of the heat fluxes is imposed at tumor—healthy region interface:

   k  
1
     [  ∂  T  

1
  
 ___ ∂ r  ]    R  

1
  
   =  k  

2
     [  ∂  T  

2
  
 ___ ∂ r  ]    R  

1
  
    (14)

   T  
1
   [r =  R  

1
  ]  =  T  

2
   [r =  R  

1
  ]   (15)

3. Results and discussions

In this analysis, the magnetite system with sizes in the range (5–30) nm was considered. The 
temperature field within a liver tissue was computed for different values of the magnetic field 
parameters. The malignant and healthy tissues are two concentric domains having the diam-

eter of 20 mm and 100 mm, respectively (Figure 1). The temperature values depend strongly 
on the particle size and magnetic field parameters (frequency and amplitude). The values of 
the magnetic field parameters: (H

0
 and f) verify the criterion of exposure safe and tolerable for 

the ablation of the whole tumor according with Hergt condition: H
0
 f < 5 ∙ 109Am−1 s−1 [7]. Eqs. 

(1), (3), (5) and (8) were solved in a numerical model using the finite element method (FEM). 
Their numerical solutions were compared by the previous analytical solutions in the same 
mathematical conditions.

Figure 2(a) shows the radial dependence of the particle velocity for values of the ferrofluid 
infusion rate Qv in the range of 5–30 μl/min. The velocity of the particles on radial direction, 
decreases with the distance from IS according with the relation (2). The parameter Qv influ-

ences significantly the particles velocities within tissues. Figure 2(b) shows the radial depen-

dence of the pressure for the same values of the parameter Qv. In agreement with relations (4.1) 
and (4.2), the pressure decreases with the distance from IS. The pressure developed within 
geometry as result of ferrofluid infusion depends strongly on the Qv. Higher values of Qv 
determines higher values of pressure and faster movements of the particles within tissues. As 
result of the convection process, the particles move on larger distances or remain in the small 
vicinity of the IS (at small radial distances). The parameter Qv and implicitly the pressure gen-

erated within tissue by the ferrofluid infusion influences strongly the convection—diffusion—
deposition processes of the particles and implicitly the spatial distribution of the particles.
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The radial distribution of the particles and temperature field were analyzed for different val-
ues of the parameter Qv in the range 10–40 μl/min. Figure 3(a) shows the evolution with dis-

tance from IS of the volume fraction of the particles Φ
1
(r) within tumor for different values of 

Qv. The value of the concentration at IS was C
max

 = 10 mg/cm3. Consequently, the maxim value 
of the volume fraction at IS was Φ

max
 = 1.93 ∙ 10−3. Variation of the parameter Qv determines 

different spatial distributions of the particles within the malignant tissue which influences 
strongly the temperature field (Figure 3(b)). Practically, the temperature values within the 
malignant tissue can be controlled in the therapeutic range (42–46)°C by using an optimum 
value of Qv during the ferrofluid infusion process.

Figure 3. The influence of the parameter Qv on the radial dependent volume fraction of the particles (a) and the 
temperature field (b).

Figure 2. (a) The radial velocity of the magnetite particles within tissues; (b) the pressure on radial direction within 
malignant tissue.
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The evolution with the parameter Qv of the deposition rate coefficient of the particles   k  
f
  1   was 

studied for different porosities of the malignant tissue, in order to understand the influence of 
this parameter on the deposition process of the particles on the solid porous matrix (Figure 4). 
The coefficient   k  

f
  1   decreases with the increase of the value of the parameter Qv. Also the deposi-

tion of the particles decreases with the increase of the tissue porosity. The particles with high 

velocities (high values of Qv) as a result of the high pressure gradient have no capability to 
remain deposited on the solid matrix.

The repulsive electrostatic double layer forces influences the particle deposition process and 
implicitly the spatial distribution of the particles. Temperature field depends strongly on 
the particle zeta potential ζ

p
. Figure 5(a) shows the evolution with radial distance from IS 

of the volume fraction of the particles Φ
1
(r) for different values of the particle zeta potential 

ζ
p
 =  − 10 to − 40 mV. As a result of the strong repulsive electrostatic double layer forces, a num-

ber of the particles are deposited in the solid structure of tissue. This effect influences signifi-

cantly the spatial distribution of the temperature (on radial direction) as Figure 5(b) shows. As 
a consequence, the temperature gradients become smaller in the case of smaller repulsive elec-

trostatic double layer forces. The repulsive electrostatic interactions (as a result of the repulsive 
electrostatic double layer (EDL) forces) influence strongly the mass concentration of the par-

ticles and the spatial temperature field. The particle zeta potential ζ
p
 can be controlled in the 

ferrofluid (as liquid medium) due to the ionic conditions measured by pH and ionic strength.

The values of the magnetic field parameters: (H
0
 and f) are essential in the optimization of 

the Magnetic Hyperthermia therapy. In the following, the increase of the temperature on the 
radial direction with the frequency of the magnetic field was followed.

Figure 4. The evolution with the parameter Qv of deposition rate coefficient of the particles,   k  f  1   within the malignant 

tissue.
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Figure 6(a) and (b) show a 3D and 2D view of the radial temperature field within the malig-

nant tissue for different values of the frequency of the magnetic field. It was considered a 
small value of both Qv and the tissue porosity in order to analyze a temperature field with 
strong non-uniformity (and implicitly high thermal gradients).

Figure 7(a) shows the values of the main parameters Qv and f which determines the same 
temperature on the radial direction. Figure 7(b) shows the isothermal surfaces for different 
values of values of the main parameters Qv and f.

Figure 6. The evolution with the frequency of the magnetic field of the temperature field on radial direction Qv = 10 μl/min; 
ɛ

1
 = 0.2 and ξ

p
 = −30 mV. (a) 3D view and (b) 2D view.

Figure 5. The influence of the parameter—zeta potential ξ
p
 on the radial dependent volume fraction of the particles (a) 

and the temperature field (b).
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The analytical temperature was compared with the numerical results given by the finite ele-

ment method (FEM) in Comsol Multiphysics using the same parameters in the same math-

ematical conditions. Good agreements were found between the predictions of the analytical 
model and numerical results.

The simulations allow (i) the optimization of the main parameters which influences strongly 
the heating of the tumor in the therapeutic temperature range and (ii) provide better tempera-

ture control through treatment preplanning.

4. Conclusion

The model developed in this paper analyzes the essential role of the ferrofluid infusion rate in 
the radial MNP distribution after their injection within a malignant tissue. Analytical correla-

tions between the following parameters: (i) the particle velocity, (ii) the pressure developed in 
geometry during the ferrofluid infusion and (iii) the particle concentration were done in order 
to understand and predicts the temperature field within tissues when an external magnetic 
field is applied. The temperature field is concentrated within the malignant tissue. The tem-

perature on the tumor border (approximately 38–39°C) not affects the healthy tissue.

The thermal energy deposited within the malignant tissue provides from the MNP distrib-

uted as result of convection-diffusion-deposition of the particles after their injection inside tis-

sue. The ferrofluid infusion rate influences significantly the radial distribution of the particles 
and consequently the temperature field.

The temperature field within the malignant tissues can be controlled by the control of the ferro-

fluid infusion rate Qv during the infusion process. The particles having higher velocity moves 

Figure 7. The isothermal surfaces for different parameters. (a) Isothermal surfaces for different values of the parameter 
Qv and frequency of the magnetic field f and (b) isothermal surfaces for different values of the tissue porosity and 
frequency of the magnetic field f.
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on larger distances on radial direction from the injection site within tumor. As a result, the 
particles which not remain in the vicinity of the injection site are distributed in the tumor vol-
ume. This important effect determines a temperature field with small temperature gradients. 
The model developed in this paper can be used as a planning tool to compute the temperature 
field for different parameters.

Appendix 1

2.1. Convection-Diffusion-Deposition of the particles

1) The computation of the deposition rate coefficients of the particles,   k  
f
  i  

The mean deposition rate coefficients of the particles are expressed by the following relation 
[10–16]:

   k  
f
  i  =   

3 (1 −  ε  
i
  ) 
 __________ 

2  ε  
i
    d  

c
  
    η  

s
  i   v  

r
   ,  (i = 1, 2)   (A1.1)

The porous media contains the spherical collector cells with diameters d
c
 ranged from 0.05 

to 0.50 mm. The coefficients   k  
f
  i   depend on the particle diameter D, collector diameter d

c
, 

porosities of the malignant and healthy tissues ε
i
, and the radial velocity v

r
. The collector 

efficiency   η  
s
  i   describes the ratio of the particles captured by the solid surface to those brought 

into a unit structural cell of the porous medium [8, 13]. This coefficient is given by the 
expression:

   η  
s
  i  =  α   i   η  

0
  i  .  (A1.2)

The single collector contact efficiency   η  
0
  i    is the fraction of the particles brought to the collec-

tor surface by the Brownian diffusion, interception and/or gravitational sedimentation. This 
coefficient was computed by N. Tufenkji and M. Elimelech considering the superposition of 
the effects developed by the hydrodynamic forces, van der Waals interactions and gravity 
effect [13]:

   η  
0
  i   =     η  

D
  i   

⏟

    

 
transport by 

  diffusion  

   +     η  
I
  i  

⏟

    

 
transport by 

  
interception

  

   +     η  
G
   

⏟

    

 
transport by 

  
gravitation

  

    

with:

   η  
D
  i   = 2.4   ( A  

s
  i )    1/3   N  

R
  −0.081    ( N  

Pe
  )    −0.715   N  

vdW
  0.052  ;  η  

I
  i  = 0.55  A  

s
  i   N  

R
  1.675    ( N  

A
  )    0.125  ;  

   η  
G
   = 0.22  N  

R
  −0.24    ( N  

G
  )    1.11   N  

vdW
  0.053 .  
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The following non dimensional coefficients are defined [13]:

1.   N  
R
   =   D 

__
  d  
c
     —the aspect ratio;

2.   N  
Pe

   =   
U  d  

c
  
 

____
  D  

w
     —Peclet number which defines the ratio of the convective transport to diffusive 

transport;

3.   N  
vdw

   =   A 
___

 kT   —van der Waals number—the ratio of van der Waals interaction energy to the par-

ticle’s energy;

4.   N  
A
   =   A

 
_____________

 
12 𝜋𝜇  R   2  U   —attraction number—combined influence of van der Waals attraction forces 

and fluid velocity on particle deposition rate due to interception;

5.   N  
G
   =   2 

__
 9     
 R   2  ( ρ  

MNP
   −  ρ  

ferrof
  ) g
  

____________
 

𝜇U   —gravity number—the ratio of Stokes particle settling velocity to approach 
velocity of the fluid;

6.    A  
s
  i  =   

2 (1 −  γ  
i
  5 ) 
 

___________
  

2 − 3  γ  
i
   + 3  γ  

i
  5  − 2  γ  

i
  6    ; γi = (1 − ε

i
)1/3—porosity dependent parameter of Happel’s model.

Deposition of the particles on the pore wall is influenced by the electrostatic repulsive forces. 
The attachment (collision) efficiency coefficient (filter coefficient) αi (i = 1, 2) represents the frac-

tional reduction in deposition rate of the particles due to the presence of the electrostatic 

repulsive energies [15]. Bai and Tien (1999), Chang and Chan [16] computed the expression 

of αi. The analytical expression was compared successfully with the experimental data. They 

found the following correlation equation:

   α   i  = exp  [  1 __ 
2
   (ln  ( α  

C−C  
i  )  + ln  ( α  

B−T  
i  ) ) ] ,  (i = 1, 2) .  (A1.3)

The expression of   α  
C−C

  i    is given by Chang and Chan [15, 16]:

   α  
C−C  
i   = 0.024   ( N  

DL
  )    0.969    ( N  

E1
  )    −0.423    ( N  

E2
  )    2.880    ( N  

LO
  )    1.5  + 3.176   ( A  

s
  i )    1/3    ( N  

R
  )    −0.081    ( N  

Pe
  i  )    −0.715    ( N  

LO
  )    2.687   

+ 0.222  A  
s
  i    ( N  

R
  )    3.041    ( N  

Pe
  )    −0.514    ( N  

LO
  )    0.125  +   ( N  

R
  )    −0.24    ( N  

G
  )    1.11  ( N  

LO
  )   (A1.4)

The expression of   α  
B−T

  i    is given by Bai and Tien [15, 16]:

   α  
B−T  
i   = 2.527 ∙  10   −3    ( N  

LO
  )    0.7031    ( N  

E1
  )    −0.3121    ( N  

E2
  )    3.5111    ( N  

DL
  )    1.352   (A1.5)

In the absence of the electrostatic double layer forces, αi become 1. The nondimensional coef-
ficients: N

LO
, N

E1
N
E2

 and N
DL

 have the following expressions:

7.   N  
LO

   =   4A
 

_____________________________
 

36 π μ  R   2  U    is London number;

8.   N  
E1

   =   
 ε  
r
    ε  

0
   ( ζ  
p
  2  +  ζ  

c
  2 ) 
 

___________________________
 6 π μ R U    is the first electrokinetic parameter;
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9.   N  
E2

   =   
2  ζ  

p
    ζ  
c
  
 

_______________
  ζ  

p
  2  +  ζ  

c
  2     is the second electrokinetic parameter;

10. N
DL

 = 2 κ R is the double layer force parameter;

κ is Debye length for the colloidal suspension; ζ
p
 is particle zeta potential; ζ

c
 is collector zeta 

potential (Table 1) and  U =   
 Q  
v
  
 

_____
  S  

needle
      is the ferrofluid velocity at the top of the needle.

The repulsive electrostatic double layer (EDL) forces appear in the liquid medium due to the 
ionic conditions measured by pH and ionic strength.

2. The computation of the MNP concentrations C
i
 = C

i
(r) as solution of Eq. (5)

At equilibrium, in the steady-state:    
∂  C  

i
  
 

___
 ∂t   = 0  and Eq. (5) becomes:

  ∇ ∙  ( v →    C  
i
  )  = ∇ ∙  ( D  

i
  ∗ ∇ C  

i
  )  −  k  

f
  i   C  
i
   ,  (A1.6)

where the deposition rate coefficients of the particles   k  
f
  i   are given by the relations (A1.1):

    1 __ 
 r   2 

     ∂ __ ∂ r   ( v  r    r   
2   C  

i
  )  −   1 __ 

 r   2 
     ∂ __ ∂ r   ∙  ( D  

i
  ∗   r   2    

∂  C  
i
  
 ___ ∂ r  )  = −  k  

f
  i   C  

i
    (A1.7)

    ∂ __ ∂ r   ( v  r    r   2   C  
i
   −  D  

i
  ∗   r   2    

∂  C  
i
  
 ___ ∂ r  )  =  M  

i
    C  
i
    (A1.8)

    ∂ __ ∂ r   { C  
i
    r   2  (  

 A  
i
  
 __ 

 r   2 
   −   1 __ 

 C  
i
  
     
∂  C  

i
  

 ___ ∂ r  ) }  =  m  
i
    C  
i
    (A1.9)

with the following constants:

   M  
i
   = −   

3 (1 −  ε  
i
  ) 
 _______________ 

2  ε  
i
    d  
c
  
    η  

s
  i  B;  m  

i
   =   

 M  
i
  
 ___ 

 D  
i
  ∗ 
  ;  A  

i
   =   B ___ 

 D  
i
  ∗ 
  ; B =   

 Q  
v
  
 ___ π    (A1.10)

Solution of Eq. (A1.9) has the following form:

   C  
i
   (r)  =  C  

0
  i   (r)  exp  [−   

 A  
i
  
 __ r  ]   (A1.11)

Considering   C  
0
  i   =  C  

0
  i   (r) , Eq. (A1.10) can be written as:

  −   ∂ __ ∂ r   { ( r   2  exp  [−   
 A  
i
  
 __ r  ] )    

∂  C  
0
  i  
 ___ ∂ r  }  =  m  

i
    C  

0
  i   exp  [−   

 A  
i
  
 __ r  ]   (A1.12)

or:

   r   2  (   ∂   2   C  
0
  i  
 ____ ∂  r   2 

  )  +  (2r +  A  
i
  )  (  ∂  C  

0
  i  
 ___ ∂ r  )  +  m  

i
    C  

0
  i   = 0  
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which is equivalent with

    ∂ __ ∂ r   { r   2    
∂  C  

0
  i  
 ___ ∂ r  }  +  A  

i
   (  ∂  C  

0
  i  
 ___ ∂ r  )  +  m  

i
    C  

0
  i   = 0  (A1.13)

The solutions of Eq. (A1.13) are given by the following expressions:

   C  
0
  i   (r)  =   

 (const1)   e     
 A  

i
  
 __ 2r    Bessel I [ √ 

______
 1 − 4  m  

i
     ,    

 A  
i
  
 __ 2r   ] 
   ___________________________________________________   √ 

_
 r     +   

 (const2)   e     
  A  

i
  
 ________ 2r     Bessel K [ √ 

______
 1 − 4  m  

i
     ,    

 A  
i
  
 __ 2r   ] 
   _______________________________________________________   √ 

_
 r      (A1.14)

 Bessel I [ √ 
______

 1 − 4  m  
i
     ,    

 A  
i
  
 

__
 2r   ]   and  Bessel K [ √ 

______
 1 − 4  m  
i
     ,    

 A  
i
  
 

__
 2r  ]   are modified Bessel functions I and K of the 

order   √ 
______

 1 − 4  m  
i
     . The expressions    

 
A

  
i

  
 

__
 2r    are the variables of these functions. The general solutions of 

Eq. (5) are computed using the expressions (A1.14) in the expression (A1.11):

   C  
i
   (r)  =  (    e   −  

 A  
i
  
 __ 2r    _______  √ 

_
 r    )  (  (const1)   

i
   Bessel I [ √ 

______
 1 − 4  m  

i
     ,   

 A  
i
  
 __ 2r   ]  

                                                    +   (const2)   
i
   Bessel K [ √ 

______
 1 − 4  m  

i
     ,   

 A  
i
  
 __ 2r   ] )   (A1.15)

(const1)
i
 and (const2)

i
 are the four integration constants which are determined from the fol-

lowing four boundary conditions:

i. C
2
 = 0 on the external boundary of the geometry (r = R

2
);

ii. Neumann boundary condition at the all inner interfaces;

   C  
1
   (r =  R  

1
  )  =  C  

2
   (r =  R  

1
  )   

      D  
1
  ∗      
∂  C  

1
  
 

___
 ∂r  |   

r= R  
1
  
   =  D  

2
  ∗      
∂  C  

2
  
 

___
 ∂r  |   

r= R  
1
  
   

iii.  at the injection site (IS), at the top of the needle (r = r
o
) the concentration has the particular 

expression C
1
 = C

max
.

The constants (const1)
i
 and (const2)

i
 were computed in the Wolfram Mathematica 10 software.

Appendix 2

2.2. The temperature model

At the thermal equilibrium, Eq. (7) are:

    1 __ 
 r   2 

     ∂ __ ∂ r   [ r   2    
∂  T  

i
  
 ___ ∂ r  ]  +  β  

i
  2  ( T  

e
  i  (r)  −  T  

i
  )  = 0 or   

 ∂   2   T  
i
  
 ____ ∂  r   2    +   2 __ r     

∂  T  
i
  
 ___ ∂ r   −  β  

i
  2   T  

i
   +  β  

i
  2   T  

e
  i  (r)  = 0  (A2.1)

Using substitution R
i
 = rT

i
, these equations become:
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 d   2   R  

i
  
 ____ 

d  r   2    −  β  
i
  2   R  

i
   +  β  

i
  2  r  T  

e
  i  (r)  = 0  (A2.2)

with solutions
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These expressions contain the following notations:
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The solutions of Eq. (A2.1) are:
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and
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c
1
, c

2
, c

3
, c

4
 are the integration constants and β

i
 (i = 1, 2) have the expressions:
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