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Abstract

Change in climate variables, especially air temperature, can substantially impact water 
availability, use, management, allocation, and projections for rural and urban applica-
tions. This study presents analyses for detecting summer air temperature change by 
investigating trends of two separate climate-periods in the USA High Plains. Two trend 
periods, the reference period (1895–1930) and the warming period (1971–2006), were investi-
gated using parametric and nonparametric methods. During the reference period, mini-
mum air temperature (T

min
) was statistically stationary at a nonsignificant increasing rate 

of 0.02°C/year. However, from early 1970s, T
min

 increased at a significant rate of 0.02°C/
year. The maximum air temperature (T

max
) had a weaker warming signal than T

min
 during 

the reference period. During the warming period, T
max

 had a cooling trend at a nonsignifi-
cant rate of −0.004°C/year. About 22% of the High Plains had significant warming trends 
before 1930. Compared to the summers before 1930, the summer temperatures of the 
High Palins since the 1970s increased, on average, by 0.86°C. Overall, parametric meth-
ods lead to the conclusion that 50% of the study area experienced a significant warming 
trend in T

min
. In comparison, nonparametric methods indicated that 94% of the study 

area experienced a warming trend. Overall, in recent decades, summer average tempera-
tures in the High Plains have been warming as compared to the early twentieth-century 
decades, and the warming is most likely driven primarily by increasing nighttime T

min
.

Keywords: climate change, water resources, air temperature, USA High Plains, 
parametric and nonparametric tests, Kendall tau, generalized linear models

1. Introduction

The United Kingdom Meteorological Office Hadley Centre/Climate Research Unit 
(HadCRUT3) [1], the United States National Climatic Data Center (NCDC) [2], and the 
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Goddard Institute for Space Studies (GISS) [3] regularly monitor and update global and 

hemispheric surface temperature changes. The three institutions use similar data; however, 

they employ different interpolation techniques and 30-year climatological (base) periods 
(HadCRUT: 1961–1990, NCDC: 1901–2000, and GISS: 1951–1980) to construct global sur-

face temperature anomalies. Despite the differences in methods, all three groups produced 
similar global temperature anomalies for the period of 1880–2009 [4]. These anomalies 

show evidence of a warming trend in temperatures over the period of 1880–2009. The 

global temperature anomalies presented by NCDC [4] and GISS [3] reveal three trend peri-

ods of distinct means and trends in global temperatures: the period of 1880–1930 with 
the mean value of −0.21°C; the period of 1935–1975 with the mean of about 0.0°C; and the 
period of 1976–2006 that has a warming trend of about 0.02°C/year. The HadCRUT global 
temperature anomalies have a similar profile; however, due to a variant base period of 
1961–1990, the reference level (zero line) is shifted higher and the three mean values are 

offset from GISS and NCDC.

While aforementioned analyses provide global averages, changes in trends and magnitudes 

of climatic variables can vary between the regions. Thus, it is important to identify these 

changes locally, which can provide important and useful information on a variety of topics, 

including agricultural science and practices, hydrologic analyses, climate change studies, etc. 

The rationale of this study was to investigate the potential changes in regional temperatures 

starting from the early 1970s, by referencing that period to an earlier period with the least 

observed changes (warming) since the advent of temperature monitoring and archiving in the 

late nineteenth century. The two periods investigated are (i) 1895–1930 as the reference period 

and (ii) 1971–2006 as the warming period. The assumption of the reference period is that, as 

indicated in the NCDC, GISS, and HadCRUT data, this period has the least warming signal 
in measured temperature records, which started in the late nineteenth century. The years 

between the reference period and the warming period (1936–1965) were used as the 30-year 

climatological (base) period. This base period was selected as the independent period for 

estimating the anomalies of the reference period and warming period. The study was con-

ducted on summer temperatures that were computed as the average of June, July, and August 

monthly temperatures.

Other studies [5–9] estimated trends in air temperatures and other variables, and their 

uncertainties, using various statistical methods to derive and test the trends and presented 

extrapolation methods used. Each statistical method can have advantages or disadvantages, 

depending on application characteristics and objectives of the study. Folland et al. [7] pre-

sented one of the earliest global and hemispheric surface warming trends that attempted to 
quantify the major sources of uncertainty. They calculated the global and hemispheric annual 
temperature anomalies by combining land surface air temperature and sea surface tempera-

tures. They observed that the best linear fit to annual global surface temperature showed an 
increase of 0.61 ± 0.16°C between 1861 and 2000.

Time-dependent variables such as temperature have a probable confounding effect of serial 
autocorrelation that may violate statistical assumptions in some of the trend studies that fit 
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simple ordinary least squares. This is because the standard errors of serially correlated vari-
ables are typically underestimated. Santer et al. [10] corrected the effects of serial correlation 
by adjusting the sample size to an equivalent sample size, which is regarded as the number 
of effectively independent observations in a sample. However, the student’s t-test adjusted by 

the equivalent sample size performed poorly, because the equivalent sample size was poorly 
estimated and it was incorrectly assumed that the adjusted statistic has a student’s t distribu-

tion under the null hypothesis [11].

In this study, parametric and nonparametric statistical methods are used to investigate 

trends in the air temperature series. The parametric method used the autoregressive pro-

cess in the time series to fit generalized least squares that are superior to simple ordinary 
least squares. Autoregressive processes are used in climate research since they provide 
approximations of discretized ordinary linear differential equations subject to stochastic 
forcing [12]. For the nonparametric method, the Kendall tau trend analysis was applied in 

this study. The advantage of nonparametric methods is that the statistical assumption of 

normality in the data is not strictly necessary. The two statistical methods were combined 

to assess trends in the minimum air temperature (T
min

), maximum air temperature (T
max

), 

and mean air temperature (T
mean

). This study has three specific objectives: (i) to character-

ize potential trend differences between the reference period and warming period in the 
summer temperatures of the High Plains, (ii) to identify the temperature variable with 

the warmest trend, and (iii) to analyze the performance of parametric and nonparamet-

ric  statistical methods in characterizing trends in temperature series in terms of mean 

anomalies.

2. Materials and methods

2.1. Input data

Monthly data for T
max

, T
min

, and T
mean

 for 204 weather stations across the High Plains were 
obtained from the United States Historical Climatology Network (USHCN) (Figure 1). Data 

from all 204 stations were complete for the entire study period (1896–2006). Thus, the spatial 
sampling error was assumed homogenous for the entire study period. The USHCN data were 

downloaded from the NCDC [6] (http://www.ncdc.noaa.gov), which maintains, distributes, 
and conducts data quality checks. Inhomogeneity and missing data are typically caused by 
changes in instrumentation, measuring techniques, station location, observation frequency, 
and environment shifts due to relocations [13, 14]. The NCDC ensures good-quality data 
by subjecting the data to a comprehensive quality control, inhomogeneity correction, and 
removal of all monthly mean outliers that differed from their climatology by more than 2.5 
standard deviations [15–17]. The NCDC homogenizes the dataset to remove impacts of urban 

warming and other artifacts on measured temperature [15, 18]. In the case of missing data, a 

network of surrounding stations is used to interpolate the missing values, thus producing a 

continuous data series.

Identifying Changes in Trends of Summer Air Temperatures of the USA High Plains
http://dx.doi.org/10.5772/intechopen.71788

147



2.2. Spatial domain and gridding

The High Plains region of the central United States extends over 12 states: Nebraska, Kansas, 
and South Dakota as the main states of interest, surrounded by buffer areas of North Dakota, 
Minnesota, Wyoming, Montana, Colorado, Iowa, Missouri, Oklahoma, and Texas. The regional 

climate is described as middle-latitude dry continental climate with abundant sunshine, mod-

erate precipitation, frequent winds, low humidity, and high evaporation rates [19]. This study 

divides the region into 36 grids of 2 degrees in size. On average, there were six weather stations 

in every grid. Studies have shown that monthly temperature anomalies are mainly a function 

of large-scale circulation patterns [20]. Therefore, the number of stations required to describe 
the monthly anomalies over an area is comparatively less extensive [20]. For instance, for a 

global terrestrial coverage at a 5-degree grid, estimates indicated that the effective number of 
independent stations at a monthly timescale was about 100 well-spaced sampling sites [21].

2.2.1. Creating anomalies and gridding

The monthly anomalies of T
mean

, T
min

, and T
max

 were computed based on the climate anomaly 

method (CAM) [22]. The period from 1936 to 1965 was considered the base period for deter-

mining the norm monthly temperatures for June, July, and August. The monthly anomalies at 

Figure 1. A map of the study region, the US High Plains, showing the locations of the weather stations (black dots) used 

in the study, and the elevation across the region in meters. DEM: Digital Elevation Model.
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each station were derived as the difference between the actual monthly temperature and the 
respective mean monthly norm temperature. The summer anomalies were then computed as 

the average of the three monthly anomalies (June, July, and August) for each year. By averag-

ing the summer anomalies of stations in each grid, a 2-degree grid of summer temperature 

anomalies was created over the entire High Plains region. For long-term average spatial vari-

ability across the region (Figure 2), the summer temperatures in each grid were averaged for 

the entire study period (1895–2006).

2.3. Parametric trend analysis

The generalized linear model (GLM) was used to estimate linear trends in the temperature 

series. The serial autocorrelation in the residual term was accounted for using the autoregres-

sive error model, as described below. Considering a time series of summer temperature anom-

alies, y
t
, from one of the grids in Figure 1, GLM estimates the trend (β) in the series as follows:

   y  
t
   = α + t𝛽 +  ω  

t
  , t = l, ⋯  n  

t
    (1)

The term ω
t
 represents the residuals that contain a deterministic process and a random pro-

cess (errors) as:

   ε  
t
   =  ω  

t
   (1 −  ϕ  

1
   B −  ϕ  

2
    B   2  − ⋯  ϕ  

p
    B   p )  ;  ε  

t
  ~IN (0,  σ   2 )   (2)

Figure 2. Spatial patterns of normal temperature across the US High Plains for the period from 1895 to 2006 in the 
summer months (June, July, and August).

Identifying Changes in Trends of Summer Air Temperatures of the USA High Plains
http://dx.doi.org/10.5772/intechopen.71788

149



where α is the intercept; n
t
 is the number of study years in a trend period (35 years); ϵ

t
 is the 

error term, which is assumed independent (I) and normally (N) distributed with a mean of 

0 and a variance of ϕ
p
σ2; ϕ

p
 is the autoregressive error model parameter; p is the  autoregressive 

order; and B is the backshift operator. The right-hand side of Eq. (2) represents the deter-

ministic process imbedded in the residuals of Eq. (1). By removing the deterministic process 
from the residual term, the autoregressive error model generates independent and normally 

distributed errors that are critical for the maximum likelihood estimation of trend (β). The 

β estimates from the GLM are thus the unbiased and minimum variance estimators of trend in 

the temperature series. A parametric t-test was used to test the null hypothesis that the trend 

in the temperature series was zero at 0.05 level of significance. The t-statistic was computed as 

a quotient of estimated trend (β) and its standard error (Sβ).

2.4. Nonparametric trend analysis

The Kendall tau [23], a nonparametric method, was used to determine trends in absolute val-

ues of average summer temperatures. The advantage of Kendall tau method over GLM is that 

the statistical assumption of normality is not strictly necessary and the test statistics are less 

impacted by outliers in the temperature series. This method has been used to compute trends 

in climatic and hydrological series [24, 25]. The method is actually applied on ranks of the abso-

lute values; therefore, Kendall tau estimates are relative measures of strength and direction of 

actual trends. The trend estimates (Kendall tau) were tested at the 0.05 significance level.

3. Results and discussion

3.1. Spatial variation of summer temperatures in the High Plains

The summer norm temperatures of the High Plains in Figure 2 are averages of 111 years 

(1895–2006). There is an expected north to south increasing trend in summer temperatures 

across the region. This spatial variability is driven by the cool air masses from the arctic in the 

northern part of the Plains and the warm air masses from the Gulf of Mexico in the southern 

part of the Plains. In the south of the region, there is another west to east increasing trend, 

which is associated with the elevation gradient across the Plains. Elevation across the Plains 

increases from less than 200 m in the east to more than 2700 m in the west (Figure 1). In the 

southwest of the Plains, another phenomenon caused by the Chinook winds is associated with 

the cooler summer temperatures in that region. These high westerly winds subject the Rocky 
Mountain range to periodic severe turbulence in summer. The winds have a strong cold fron-

tal passage downslope; however, the winds eventually undergo an adiabatic warming pro-

cess as they move eastward [26]. The effect of Chinook winds can be felt over 100 miles from 
the Rock Mountains before dissipating as the winds mix and saturate with the atmosphere.

3.2. Temporal variation of summer temperatures in the High Plains

The High Plains region T
mean

 anomalies (base period, 1935–1965) from 1895 to 2006, along 

with a 6-year moving average of the anomalies, and the Northern Hemisphere Land (NHL) 

Water Challenges of an Urbanizing World150



summer temperature anomalies (base period, 1901–2000) are presented in Figure 3. There is 

higher variability in High Plains summer anomalies compared to the NHL because of increase 

in internal climate variability with decrease in regional size [27]. High Plains anomalies exhibit 

most of the region’s extreme events, including droughts (e.g., 1930s Dust Bowl era), extreme 
warm and cool summers of the study period. The NHL anomalies are smoother, because the 

extreme events in one part of the region are likely smoothed by moderate conditions in other 

paths of the region.

Prior to 1930, Figure 3 shows that the summer temperature anomalies were mostly below 

zero. The coolest summer of the study period was in 1915 at 3.44°C below the base period 
(1935–1965) norm. In the mid-1930s, the Plains experienced the worst drought of the study 

period. The drought was characterized by high temperatures, high winds, and low rainfall 

[28]. Temperatures in the drought years of 1934 and 1936 still hold the record of the top 
two hottest summers in the High Plains. The NHL anomalies do not explicitly feature the 
drought, an indication that the entire northern hemisphere was not in the drought during 

the 1930s. The drought peaked in 1936 and declined in the 1940s; however, summer tem-

peratures never reached to pre-1930 conditions. Even though we did not calculate the trend 

and its significance, from the early 1940s to the 1960s, there appears to be an overall cooling, 
although there are years with positive anomalies (i.e., several consecutive years in the 1950s). 

According to Ref. [29], this cooling was observed across entire North America, lasting from 

1945 to 1976.

Figure 3. Comparison of variability and trends in the summer mean air temperature (T
mean

) anomalies relative to 

1935–1965 base period for the High Plains (solid green line) and the Northern Hemispheric summer land temperature 

anomalies relative to 1901–2000 base period (source: NCDC/NESDIS/NOAA, solid red line), and the 6-year moving 
average (dashed black line) summer T

mean
 anomalies relative to 1935–1965 base period for the High Plains region of the 

USA.
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Since 1970s, the NHL anomalies indicate a warming trend that could be attributed to global 
warming, primarily due to increases in greenhouse gas emissions. In the High Plains anoma-

lies, the warming trend is obscured by high variability in the series; however, the moving 

average elucidates the warming trend. Compared to the summers before 1930, the summer 

temperatures of the High Palins since the 1970s increased, on average, by 0.86°C. In a global 

study, Ref. [4] similarly observed that temperatures in the first decade of the twenty-first 
century were about 0.80°C warmer than the beginning of the twentieth century (1880–1920).

3.3. Trends in T
min

3.3.1. Parametric analysis

The maximum likelihood estimates of T
min

 trends for the two trend periods are presented in 

Figure 4(a and b). During the reference period (Figure 4a), nine grids (25% of the High Plains) 
had significant warming trends. This warming trend occurred mainly in the northern part 
of the Plains. The trends were insignificant in the south part of the region. Across the High 
Plains, there is no statistically significant evidence of a trend in T

min
.

Figure 4b shows the spatial trend patterns in T
min

 during the warming period. More area 

(50%) across the region, still mostly in the north, experienced significant warming in T
min

 dur-

ing the warming period. Unlike the reference period, the overall T
min

 trend of the region in the 

warming period was significant at 0.02°C/year.

3.3.2. Nonparametric analysis

The nonparametric Kendall tau estimates of trend patterns in T
min

 are shown in Figure 5(a 

and b) (the trend estimates in Figures 5, 7, and 9 are tau values, which are relative estimates 

Figure 4. Spatial trend patterns of summer T
min

 for (a) reference period (1895–1930) and (b) warming period (1971–2006) 

computed from generalized linear models. The hatching shows areas where the trend was significant. The red and 
blue indicate warming and cooling trend effects, respectively. The trend estimates are in degrees Celsius per year. RP: 
reference period; WP: warming period.
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of strength and direction of the actual trends. These values describe the spatial variability 

of the trends across the region during the specified trend period). The Kendall tau analysis 
detected similar significant trend patterns as GLM in the northern part of the Plains during the 
reference period. About 22% of the High Plains had significant warming trends before 1930. 
The results from nonparametric and parametric analyses are comparable in identifying trend 

patterns during the reference period. During the warming period, however, Kendall tau test 
was more effective in detecting significant trends across the region (Figure 5b). According to 

Kendall tau, most of the region experienced significant warming during the warming period. 
The nonparametric test is effective in terms of identifying significant trends, because of its 
relative insensitivity to extreme values in the series. Both parametric and nonparametric anal-

yses on T
min

 agreed that during the reference period the overall trend in T
min

 was stationary. 

And, since 1971, T
min

 has significantly increased at the rate of 0.02°C/year. Overall, parametric 
methods lead to the conclusion that 50% of the study area experienced a significant warming 
trend in T

min
. In comparison, nonparametric methods indicated that 94% of the study area 

experienced a warming trend.

3.4. Trends in T
max

3.4.1. Parametric analysis

Figure 6(a and b) shows the maximum likelihood estimates of T
max

 trends for the two trend 

periods. The trends in T
max

 were mostly weaker than trends in the T
min

. In Figure 6a, the trend 

patterns in reference period were only significant in four grids of the northern High Plains 
(11% of the High Plains). The magnitudes of the overall trend of the entire High Plains region 
during the reference period were insignificant at a rate of 0.01°C/year.

Figure 5. Spatial trend patterns of summer T
min

 for (a) reference period (1895–1930) and (b) warming period (1971–2006) 

computed by Kendall tau method. The hatching shows areas where the trend was significant. The red and blue indicate 
warming and cooling trend effects, respectively. The trend estimates are in degrees Celsius per year. RP: reference 
period; WP: warming period.
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Figure 6. Spatial trend patterns of summer T
max

 for (a) reference period (1895–1930) and (b) warming period (1971–2006) 

computed from generalized linear models. The hatching shows areas where the trend was significant. The red and 
blue indicate warming and cooling trend effects, respectively. The trend estimates are in degrees Celsius per year. RP: 
reference period; WP: warming period.

During the warming period (Figure 6b), only one grid in the southwest of the High Plains had 

a significant warming trend in T
max

. The other areas with significant trends had cooling effects. 
For the rest of the region, the trends were insignificant and many had a cooling effect. In fact, 
the overall trend in T

max
 during the warming period was insignificant with a cooling effect of 

−0.004°C/year. Folland et al. [7] also observed that in the last quarter of the twentieth century 
the Central United States cooled by 0.2–0.8°C in summer. While the significance is identified 

Figure 7. Spatial trend patterns of summer T
max

 for (a) reference period (1895–1930) and (b) warming period (1971–2006) 

computed by Kendall tau method. The hatching shows areas where the trend was significant. The red and blue indicate 
warming and cooling trend effects, respectively. The trend estimates are in degrees Celsius per year. RP: reference 
period; WP: warming period.
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statistically in this and other studies, in practice, the error of measurement of Tair with vari-

ous thermometers, including mercury thermometers used in historical datasets, is probably 

in the ±0.5°C range and, thus, a trend of −0.004°C/year might have a “statistical” significance 
but may not be truly a “physical significance,” depending on the measurement resolution of 
the thermometers used.

3.4.2. Nonparametric analysis

The trend patterns in T
max

 determined by Kendall tau method are shown in Figure 7(a and b). 

During the reference period, the Kendall tau trend patterns (Figure 7a) were similar to the 

GLM trend patterns (Figure 6a), with significant warming only observed in the northeast of the 
region. For the warming period (Figure 7b), more significant warming trends were detected 
by Kendall tau method, especially in the western part of the Plains. In the central-eastern 

part, the Plains experienced a significant cooling during the warming period (Figure 7b). As 

with the parametric method, the nonparametric overall trends in T
max

 during the reference 

and warming periods were also insignificant. A possible influence on T
max

 during the warm-

ing period is evaporative cooling from extensive irrigation practice in the High Plains during 

the summer months of June, July, and August. However, we have not conducted analyses to 

explicitly study whether irrigation practice is the cause of the trends. In addition to irrigation 

practices, other practices such as elevations; changes in land use, population, management 

practices, changes in the locations and surroundings, as well as instrumentation used in the 

weather stations from which climate were obtained, etc. can also influence trends and magni-
tudes in air temperatures, which were not considered in this study.

The potential impact(s) of land use (e.g., irrigation) impact on surface air temperature has 

been studied primarily using large-scale climate models with varying results. For example, 

Ref. [30] used a regional climate model, which showed the regional irrigation cooling effect 
(ICE) exists, opposite in sign to urban heat island effects. The magnitude of the ICE has strong 
seasonal variability, causing large dry-season decreases in monthly mean and maximum tem-

peratures, but little change in rainy season temperatures. Their model produced a negligible 
effect on monthly minimum temperature. In California, the modeled regional ICE is of similar 
magnitude, but opposite sign, to predictions for future regional warming from greenhouse 

gases. Given their modeling results for California and the global importance of irrigated agri-

culture, they concluded that past expansion of irrigated land has likely affected observations 
of surface temperature, potentially masking the full warming signal caused by greenhouse 

gas increases.

Lara et al. [31] reported the seasonally varying temperature responses of four regional climate 

models (RCMs)—RSM, RegCM3, MM5-CLM3, and DRCM—to conversion of potential natu-

ral vegetation to modern land cover and land use over a 1-year period. Three of the RCMs 
supplemented soil moisture, producing large decreases in the August mean (−1.4 to −3.1°C) 
and maximum (−2.9 to −6.1°C) 2-m air temperatures where natural vegetation was converted 
to irrigated agriculture. Conversion to irrigated agriculture also resulted in large increases in 

relative humidity (9–36% absolute change). Modeled changes in the August minimum 2-m 
air temperature were not as pronounced or consistent across the models. Converting natural 
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vegetation to urban land cover produced less pronounced temperature effects in all models, 
with the magnitude of the effect dependent upon the preexisting vegetation type and urban 
parameterizations. Their modeling results indicated that, overall, the RCM results indicate 
that the temperature impacts of land-use change are most pronounced during the summer 

months, when surface heating is strongest and differences in surface soil moisture between 
irrigated land and natural vegetation are largest.

Using ensemble simulations, Ref. [32] evaluated the impacts of irrigation changes on air tem-

peratures in the twentieth century. Simulation results indicated that early in the century, irri-

gation was primarily localized over southern and eastern Asia, leading to significant cooling 
in boreal summer (June-August) over these regions. This cooling spread and intensified by 
the century’s end, following the rapid expansion of irrigation over North America, Europe, 
and Asia. Irrigation also led to boreal winter (December-February) warming over parts of 

North America and Asia in the latter part of the century, due to enhanced downward long-

wave fluxes from increased near-surface humidity. They suggested, based on their model-
ing results, these trends reveal the varying importance of irrigation-climate interactions and 

suggest that future climate studies should account for irrigation, especially in regions with 

unsustainable irrigation resources. Lobell et al. [33] observed trends in Tmax were negative 

in irrigated areas of California and Nebraska, which they attributed to increase in latent heat 
flux and associated reduction in sensible heat flux. Irrigation development in the High Plains 
increased substantially over the last five decades. The irrigated area in the High Plains states 
increased from 8 million ha in 1980 to more than 13.4 million ha in 2000. In Nebraska, the total 
irrigated area has more than doubled in the last four decades, increasing from 1.6 million ha 

in 1970 to over 3.6 million ha in 2008 [34]. Other neighboring states also experienced consider-

able increases in irrigated acreage.

3.5. Trends in T
mean

3.5.1. Parametric analysis

In terms of trends in T
mean

 (Figure 8a and b), during the reference period, much of the High 

Plains did not experience significant trends, except the northern region (Figure 8a). For the rest 

of the Plains, the trend patterns are insignificant and many have a cooling effect. The overall 
trend during the reference period was stationary at a rate of 0.01°C/year. During the warming 

period (Figure 8b), with the exception of the western part of the plains, the rest of the region 

experienced insignificant trends. The overall warming period trend in T
mean

 was stationary at 

a rate of 0.01°C/year.

3.5.2. Nonparametric analysis

Trend patterns in T
mean

 obtained from the nonparametric procedure are shown in Figure 9(a 

and b). During the reference period (Figure 9a), the results were similar to GLM findings, and 
the northwestern part of the Plains was the only area experiencing significant warming before 
the 1930s. The trend patterns during warming period that are presented in Figure 9b show 

that Kendall tau detected more significant trends in T
mean

 than GLM. Areas in east-central, 
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which had significant cooling trends in T
max

 (Figure 7b), had insignificant trends in T
mean

, 

regardless of significant warming trends in T
min

 (Figure 5b). This suggests that the trends in 

T
mean

 are interactively influenced by the direction and magnitude of trends in T
min

 and T
max

. 

For instance, some grids in the east of the region had a significant warming trend in T
min

 

(Figure 5b) and significant cooling trend in T
max

 (Figure 7b), which resulted in an insignificant 
trend in T

mean
 (Figure 9b). Likewise, in the northern part of the High Plains, significant warm-

ing trends in T
min

 (Figure 4b), coupled with insignificant and significant cooling trends in T
max

 

(Figure 6b), resulted in insignificant trends in T
mean

 (Figure 8b). Given that a significant trend 

Figure 8. Spatial trend patterns of summer T
mean

 for (a) reference period (1895–1930) and (b) warming period (1971–2006) 

computed from generalized linear models. The hatching shows areas where the trend was significant. The red and 
blue indicate warming and cooling trend effects, respectively. The trend estimates are in degrees Celsius per year. RP: 
reference period; WP: warming period.

Figure 9. Spatial trend patterns of summer T
mean

 for (a) reference period (1895–1930) and (b) warming period (1971–2006) 

computed by Kendall tau method. The hatching shows areas where the trend was significant. The red and blue indicate 
warming and cooling trend effects, respectively. The trend estimates are in degrees Celsius per year. RP: reference 
period; WP: warming period.
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in either T
min

 or T
max

 can be muted by the direction or strengthen of trend in the other, T
mean

 

may be confounding to interpret and may not be an effective or ideal variable to investigate 
in climate change studies. In fact, Ref. [33] suggest that studies that assess impacts of climate 

change using only projections of T
mean

 risk over- or underestimation of uncertainties when 

considering process that respond differently to day and nighttime temperature.

4. Summary and conclusions

Change in climate variables, especially air temperature, can have significant impact(s) on 
water availability, use, management, allocation, and projections for rural and urban applica-

tions as temperature is one of the primary drivers of evaporative losses in urban and rural 

areas. Thus, understanding the climate change impact(s) on air temperature can aid in water 

use projections and other water availability assessments in urban and rural areas on large 

scales. We investigated trends in air temperatures of the US High Plains region in two trend 

periods: reference period (1895–1930) and warming period (1971–2006). Separating the data 
records into reference and nonreference, we think, is a unique aspect of this study that inves-

tigated long-term trends. The trend patterns were examined in T
min

, T
max

, and T
mean

 using para-

metric and nonparametric methods. The parametric method was beneficial in determining 
the absolute measure and direction of the trends and the nonparametric method was more 

effective in testing the significance of the trends. Studies that use two or more methods (para-

metric and nonparametric) to investigate climate parameters, especially on large scales, such 

as US High Plains, are useful as they may provide insight in terms of identifying the strengths 

and/or weakness of each method and, eventually, to rank the appropriate one. In this study, 

the parametric method was beneficial in determining the absolute measure and direction of 
the trends, but the nonparametric method was more statistically powerful in testing the sig-

nificance of the trends.

The warming trends in T
min

 were stronger than in T
max

 and T
mean

. From both trend methods, T
min

 

had the biggest contrast between the reference period and the warming period. The overall 

trend in T
max

 over the High Plains during the warming period had an insignificant cooling 
effect. The trends from T

mean
 were confounded to be able to interpret since they interactively 

depended on the directions of trends in T
min

 and T
max

. Both parametric and nonparametric 

methods showed that T
min

 was stationary during the reference period and significant warming 
during the warming period. In the warming period, the overall trend in T

min
 was significantly 

increasing by 0.02°C/year. One of the uncertainties or shortcomings of this study could be 

that the potential reasons of warming or cooling trends in air temperatures (e.g., changes 

in land use and land management, urbanization, irrigation development, and other factors) 

were not investigated. Further research is needed to investigate the potential interrelation-

ships between temperature trends and change(s) in land surface characteristics on large scales. 

Another shortcoming of the study could be that the study focuses only on summer air temper-

ature trends and magnitudes. However, the changes in spring, fall, and winter temperatures 

can also impact urban and rural water balances, especially in terms of dormant season evapo-

rative losses, and investigating spring, fall, and winter temperature trends can be beneficial in 
several aspects of change in temperature impacts on urban and agricultural practices.
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