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Abstract

Kinematic structure of the DOBOT manipulator is presented in this chapter. Joint coor-
dinates and end-effector coordinates of the manipulator are functions of independent
coordinates, i.e., joint parameters. This chapter explained forward kinematics task and
issue of inverse kinematics task on the structure of the DOBOT manipulator. Lineariza-
tion of forward kinematic equations is made with usage of Taylor Series for multiple
variables. The inversion of Jacobian matrix was used for numerical solution of the
inverse kinematics task. The chapter contains analytical equations, which are solution
of inverse kinematics task. It should be noted that the analytical solution exists only for
simple kinematic structures, for example DOBOT manipulator structure. Subsequently,
simulation of the inverse kinematics of the above-mentioned kinematic structure was
performed in the Matlab Simulink environment using the SimMechanics toolbox.

Keywords: forward kinematics, inverse kinematics, Matlab Simulink simulation,
robotic arm, Jacobian matrix, pseudoinverse method, SimMechanics

1. Introduction

Robots and manipulators are very important and powerful instruments of today’s industry.

They are making lot of different tasks and operations and they do not require comfort, time for

rest, or wage. However, it takes many time and capable workers for right robot function [6].

The movement of robot can be divided into forward and inverse kinematics. Forward kine-

matics described how robot’s move according to entered angles. There is always a solution for

forward kinematics of manipulator. Solution for inverse kinematics is a more difficult problem

than forward kinematics. The relationship between forward kinematics and inverse kinematics

is illustrated in Figure 1. Inverse kinematics must be solving in reverse than forward kinemat-

ics. But we know to always find some solution for inverse kinematics of manipulator. There are
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only few groups of manipulators (manipulators with Euler wrist) with simple solution of

inverse kinematics [8, 9].

Two main techniques for solving the inverse kinematics are analytical and numerical methods.

In the first method, the joint variables are solved analytical, when we use classic sinus and

cosine description. In the second method, the joint variables are described by the numerical

techniques [9].

The whole chapter will be dedicated to the robot arm DOBOT Magician (hereafter DOBOT)

shown in Figure 2. The basic parameters of the robotic manipulator are shown in Figure 3 and

its motion parameters are shown in Table 1.

This chapter is organized in the following manner. In the first section, we made the forward

and inverse kinematics transformations for DOBOT manipulator. Secondly, we made the

Forward kinema�cs

Inverse kinema�cs

Joint 

space

Cartesian 

space

Figure 1. The schematic representation of forward and inverse kinematics.

Figure 2. DOBOT Magician [10].
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DOBOT Magician simulation in Matlab environment. Thirdly, we describe the explanation of

Denavit-Hartenberg parameters. Finally, we made the pseudoinverse and transposition

methods of Jacobian matrix in the inverse kinematics.

2. Kinematics structure RRR in 3D

Kinematic structure of the DOBOT manipulator is shown in Figure 4. It is created from three

rotation joints and three links. Joint A rotates about the axis z and joints B and C rotate about

the axis x1.

Figure 5 shows a view from the direction of axis z and Figure 6 shows a perpendicular view of

the plane defined by z axis and line c.

Kinematic equations of the points B, C, and D, respectively:

xB0 ¼ 0 (1)

yB0 ¼ 0 (2)

Figure 3. Simple specification of DOBOT [10].

Axis Range Max speed (250 g workload)

Joint 1 base �90� to +90� 320�/s

Joint 2 rear arm 0� to +85� 320�/s

Joint 3 fore arm �10� to +95� 320�/s

Joint 4 rotation servo +90� to �90� 480�/s

Table 1. Axis movement of DOBOT Magician [10].
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zB0 ¼ l1 (3)

xC0 ¼ �l2: cosϕ1: sin δ (4)

yC0 ¼ l2: cosϕ1: cos δ (5)

zC0 ¼ l1 þ l2: sinϕ1 (6)

xD0 ¼ � l2: cosϕ1 þ l3: cosϕ2

� �

: sin δ (7)

yD0 ¼ l2: cosϕ1 þ l3: cosϕ2

� �

: cos δ (8)

zD0 ¼ l1 þ l2: sinϕ1 þ l3: sinϕ2 (9)

Where ϕ2 =ϕ +γ.

Figure 5. Representation of DOBOT footprint.

Figure 4. Representation of DOBOTmanipulator in 3D view.
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2.1. Forward kinematics

Forward kinematics task is defined by Eq. (10)

X ¼ f Qð Þ (10)

where

X ¼

xD0

yD0

zD0

2

6

6

4

3

7

7

5

(11)

X is position vector of manipulator endpoint coordinates.

Q ¼

ϕ

γ

δ

2

6

4

3

7

5
(12)

Q is vector of independent coordinates: ϕ =ϕ1,γ, δ.

Because the function X = f(Q) is nonlinear, it is difficult to solve the inverse task Q = f(X) when

looking for a vector of independent coordinates (rotation of individual manipulator joints) as a

function of the desired manipulator endpoint coordinates. An analytical solution to the inverse

Figure 6. View of the plane defined by z axis and line c.
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task is possible only in the case of a relatively simple kinematic structure of the manipulator

(see next chapter).

Therefore, the function X = f(Q) linearized using Taylor series, taking into account only the first

four (linear) members of the development:

xD0 ¼ xD0 ϕ;γ; δð Þ ≈ xD0 ϕ0;γ0; δ0
� �

þ
∂xD0 ϕ;γ; δð Þ

∂ϕ

�

�

�

�

ϕ0,γ0 ,δ0

ϕ� ϕ0

� �

þ
∂xD0 ϕ; γ; δð Þ

∂γ

�

�

�

�

ϕ0,γ0,δ0

γ� γ0

� �

þ
∂xD0 ϕ;γ; δð Þ

∂δ

�

�

�

�

ϕ0 ,γ0,δ0

δ� δ0ð Þ

(13)

yD0 ¼ yD0 ϕ;γ; δð Þ ≈ yD0 ϕ0;γ0; δ0
� �

þ
∂yD0 ϕ;γ; δð Þ

∂ϕ

�

�

�

�

ϕ0,γ0 ,δ0

ϕ� ϕ0

� �

þ
∂yD0 ϕ; γ; δð Þ

∂γ

�

�

�

�

ϕ0,γ0,δ0

γ� γ0

� �

þ
∂yD0 ϕ;γ; δð Þ

∂δ

�

�

�

�

ϕ0 ,γ0,δ0

δ� δ0ð Þ

(14)

zD0 ¼ zD0 ϕ;γ; δð Þ ≈ zD0 ϕ0;γ0; δ0
� �

þ
∂zD0 ϕ;γ; δð Þ

∂ϕ

�

�

�

�

ϕ0,γ0 ,δ0

ϕ� ϕ0

� �

þ
∂zD0 ϕ;γ; δð Þ

∂γ

�

�

�

�

ϕ0,γ0 ,δ0

γ� γ0

� �

þ
∂zD0 ϕ;γ; δð Þ

∂δ

�

�

�

�

ϕ0 ,γ0,δ0

δ� δ0ð Þ

(15)

After editing:

xD0 ϕ;γ; δð Þ � xD0 ϕ0;γ0; δ0
� �

¼
∂xD0 ϕ;γ; δð Þ

∂ϕ

�

�

�

�

ϕ0 ,γ0,δ0

ϕ� ϕ0

� �

þ
∂xD0 ϕ;γ; δð Þ

∂γ

�

�

�

�

ϕ0 ,γ0 ,δ0

γ� γ0

� �

þ
∂xD0 ϕ;γ; δð Þ

∂δ

�

�

�

�

ϕ0,γ0,δ0

δ� δ0ð Þ

(16)

yD0 ϕ;γ; δð Þ � yD0 ϕ0;γ0; δ0
� �

¼
∂yD0 ϕ;γ; δð Þ

∂ϕ

�

�

�

�

ϕ0 ,γ0,δ0

ϕ� ϕ0

� �

þ
∂yD0 ϕ;γ; δð Þ

∂γ

�

�

�

�

ϕ0 ,γ0 ,δ0

γ� γ0

� �

þ
∂yD0 ϕ;γ; δð Þ

∂δ

�

�

�

�

ϕ0,γ0,δ0

δ� δ0ð Þ

(17)

zD0 ϕ;γ; δð Þ � zD0 ϕ0;γ0; δ0
� �

¼
∂zD0 ϕ;γ; δð Þ

∂ϕ

�

�

�

�

ϕ0 ,γ0,δ0

ϕ� ϕ0

� �

þ
∂zD0 ϕ;γ; δð Þ

∂γ

�

�

�

�

ϕ0 ,γ0,δ0

γ� γ0

� �

þ
∂zD0 ϕ; γ; δð Þ

∂δ

�

�

�

�

ϕ0,γ0,δ0

δ� δ0ð Þ

(18)

We denoted:
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ΔxD0 ¼ xD0 ϕ;γ; δð Þ � xD0 ϕ0;γ0; δ0
� �

(19)

ΔyD0 ¼ yD0 ϕ;γ; δð Þ � yD0 ϕ0;γ0; δ0
� �

(20)

ΔzD0 ¼ zD0 ϕ; γ; δð Þ � zD0 ϕ0;γ0; δ0
� �

(21)

Δϕ ¼ ϕ� ϕ0 (22)

Δγ ¼ γ� γ0 (23)

Δδ ¼ δ� δ0 (24)

Then, we obtained:

ΔxD0 ¼
∂xD0 ϕ;γ; δð Þ

∂ϕ

�

�

�

�

ϕ0 ,γ0,δ0

Δϕþ
∂xD0 ϕ; γ; δð Þ

∂γ

�

�

�

�

ϕ0,γ0,δ0

Δγþ
∂xD0 ϕ; γ; δð Þ

∂δ

�

�

�

�

ϕ0,γ0,δ0

Δδ (25)

ΔyD0 ¼
∂yD0 ϕ;γ; δð Þ

∂ϕ

�

�

�

�

ϕ0 ,γ0,δ0

Δϕþ
∂yD0 ϕ; γ; δð Þ

∂γ

�

�

�

�

ϕ0,γ0,δ0

Δγþ
∂yD0 ϕ; γ; δð Þ

∂δ

�

�

�

�

ϕ0,γ0,δ0

Δδ (26)

ΔzD0 ¼
∂zD0 ϕ;γ; δð Þ

∂ϕ

�

�

�

�

ϕ0 ,γ0,δ0

Δϕþ
∂zD0 ϕ;γ; δð Þ

∂γ

�

�

�

�

ϕ0,γ0 ,δ0

Δγþ
∂zD0 ϕ;γ; δð Þ

∂δ

�

�

�

�

ϕ0,γ0 ,δ0

Δδ (27)

In matrix form:

ΔxD0

ΔyD0

ΔzD0

2

6

6

4

3

7

7

5

¼

∂xD0 ϕ;γ; δð Þ

∂ϕ

∂xD0 ϕ;γ; δð Þ

∂γ

∂xD0 ϕ;γ; δð Þ

∂δ

∂yD0 ϕ;γ; δð Þ

∂ϕ

∂yD0 ϕ;γ; δð Þ

∂γ

∂yD0 ϕ;γ; δð Þ

∂δ

∂zD0 ϕ;γ; δð Þ

∂ϕ

∂zD0 ϕ;γ; δð Þ

∂γ

∂zD0 ϕ;γ; δð Þ

∂δ

2

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

5

ϕ0,γ0,δ0

�

Δϕ

Δγ

Δδ

2

6

4

3

7

5
(28)

Where matrix:

J ¼

∂xD0 ϕ;γ; δð Þ

∂ϕ

∂xD0 ϕ;γ; δð Þ

∂γ

∂xD0 ϕ; γ; δð Þ

∂δ

∂yD0 ϕ;γ; δð Þ

∂ϕ

∂yD0 ϕ;γ; δð Þ

∂γ

∂yD0 ϕ; γ; δð Þ

∂δ

∂zD0 ϕ;γ; δð Þ

∂ϕ

∂zD0 ϕ; γ; δð Þ

∂γ

∂zD0 ϕ;γ; δð Þ

∂δ

2

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

5

ϕ0,γ0 ,δ0

(29)

is Jacobian matrix. We denoted:
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ΔXD
0 ¼

ΔxD0

ΔyD0

ΔzD0

2

6

6

6

4

3

7

7

7

5

(30)

and

ΔQ ¼

Δϕ

Δγ

Δδ

2

6

4

3

7

5
(31)

Then, we obtained the matrix equation, which represents linearized forward kinematics in

incremental form:

ΔXD
0 ¼ J:ΔQ (32)

After we multiplied the Eq. (32) with inverse matrix J�1 from the left, we obtained the equation

of inverse kinematics.

J�1
:ΔXD

0 ¼ J�1
:J:ΔQ (33)

J�1
:ΔXD

0 ¼ I:ΔQ (34)

Where I is the identity matrix. After that:

ΔQ ¼ J�1
:ΔXD

0 (35)

Derivative of the kinematic equations with respect to the independent coordinates for kine-

matic structure of DOBOT manipulator:

∂xD0
∂ϕ

¼ l2: sinϕþ l3: sin ϕþ γð Þ½ �: sin δ (36)

∂xD0
∂γ

¼ l3: sin ϕþ γð Þ: sin δ (37)

∂xD0
∂δ

¼ � l2: cosϕþ l3: cos ϕþ γð Þ½ �: cos δ (38)

∂yD0
∂ϕ

¼ � l2: sinϕþ l3: sin ϕþ γð Þ½ �: cos δ (39)

∂yD0
∂γ

¼ �l3: sin ϕþ γð Þ: cos δ (40)

∂yD0
∂δ

¼ � l2: cosϕþ l3: cos ϕþ γð Þ½ �: sin δ (41)
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∂zD0
∂ϕ

¼ l2: cosϕþ l3: cos ϕþ γð Þ (42)

∂zD0
∂γ

¼ l3: cos ϕþ γð Þ (43)

∂zD0
∂δ

¼ 0 (44)

Jacobian matrix:

J ¼

∂xD0
∂ϕ

∂xD0
∂γ

∂xD0
∂δ

∂yD0
∂ϕ

∂yD0
∂γ

∂yD0
∂δ

∂zD0
∂ϕ

∂zD0
∂γ

∂zD0
∂δ

2

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

5

(45)

2.2. Analytical Solution of the Inverse Kinematics of DOBOT manipulator

The following equations are derived from Figure 4.

c2 ¼ x2 þ y2 (46)

d2 ¼ c2 þ z2 ¼ x2 þ y2 þ z2 (47)

e2 ¼ l22 þ l23 � 2l2l3 cos π� γð Þ (48)

γ ¼ �arccos
e2 � l22 � l23

2l2l3

� �

(49)

e2 ¼ c2 þ z� l1ð Þ2 (50)

ϕ ¼ α� β (51)

α ¼ arctg
z� l1
c

¼ arctg
z� l1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p (52)

l23 ¼ l22 þ e2 � 2l2:e: cos β (53)

β ¼ �arccos
l22 þ e2 � l23

2l2e

� �

(54)

ϕ ¼ arctg
z� l1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p ∓ arccos

l22 þ e2 � l23
2l2e

� �

(55)

δ ¼ arctg
�x

y
(56)
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3. Simulation DOBOT Magician in Matlab environment

For simulation movement of the manipulator, Matlab Simulink environment and SimMechanics

toolbox are suitable to use. Some blocks from SimMechanics toolbox are shown in Figure 7,

which represents the model of DOBOTmanipulator.

We used basic block from SimMechanics toolbox in simulation model:

• Joint actuator

• Revolute

• Body

• Body sensor

• Machine environment

The joint actuator block transfers the requested angles to the connected joint. The revolute

block defined the rotation of body in space. The body block describes the parameters of body,

Figure 7. SimMechanics simulation model of DOBOT manipulator.

Figure 8. Simulation of DOBOTmanipulator in Matlab environment.
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like dimension, inertia, etc. The body sensor block transfers the coordinates, velocity, and

others to simulation, and the last block is the machine environment which defines the param-

eters of the environment in which the manipulator is located. You can find all necessary data

about these blocks in [7].
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Figure 9. Endpoint coordinates of DOBOT manipulator.
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Figure 10. Reference angles, calculated angles, and error between these angles.
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The simulation model, shown in Figure 8, was designed for considerate results from

SimMechanics model, model used D-H parameters and analytical model, which was

described in previous chapter. Every result from these models is shown in Figure 9. The

fourth part in Figure 9 is the results from analytical simulation model of inverse kinematics.

Figure 10 represented the reference angles in the first part of the chart, calculated angles

from analytical inverse kinematics model in the second part of chart, and finally the error

between both angles. As we can see in Figure 10, the angles are same. This is proof that

analytical model of DOBOT manipulator is usable for simulation and implementation to

some DSP or microcontroller.

4. Denavit-Hartenberg parameters

The steps to get the position in using D-H convention are finding the Denavid-Hartenberg

(D-H) parameters, building A matrices, and calculating T matrix with the coordinate position

which is desired.

4.1. D-H parameters

D-H notation describes coordinates for different joints of a robotic manipulator in matrix entry.

The method includes four parameters:

1. Twist angle αi

2. Link length ai

3. Link offset di

4. Joint angle θi.

Based on the manipulator geometry, twist angle and link length are constants and link offset

and joint angle are variables depending on the joint, which can be prismatic or revolute. The

method has provided 10 steps to denote the systematic derivation of the D-H parameters, and

you can find them in [5] or [6].

4.2. A matrix

The A matrix is a homogenous 4 � 4 transformation matrix. Matrix describes the position of a

point on an object and the orientation of the object in a three-dimensional space [6]. The

homogenous rotation matrix along an axis is described by the Eq. (57) (Figures 11–13).

Rotzi�1
¼

cosθi � cosαi sinθi sinαi sinθi 0

sinθi cosαi cosθi � sinαi sinθi 0

0 sinαi cosαi 0

0 0 0 1

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

(57)
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The homogeneous translation matrix is described by Eq. (58).

Transzi�1
¼

1 0 0 ai

0 1 0 0

0 0 1 di

0 0 0 1

2

6

6

6

4

3

7

7

7

5

(58)

In rotation matrix and translation matrix, we can find the four parameters θi, di, ai, and αi. These

parameters derive from specific aspects of the geometric relationship between two coordinate

Figure 11. The four parameters of classic DH convention are θi, di, ai,αi [4].

Figure 12. Simulation result of Jacobian matrix pseudoinverse in inverse kinematics model of the DOBOTmanipulator.
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frames. The four parameters are associated with link i and joint i. In Denavit-Hartenberg con-

vention, each homogeneous transformation matrix Ai is represented as a product of four basic

transformations as follows [6]:

T
i�1
i

¼ Transzi�1
dið Þ:Rotzi�1

θið Þ:Transxi rið Þ:Rotxi αið Þ (59)

D-H convention matrix is given in Eq. (60).

T
i�1
i

¼

cosθi � sinθi cosαi sinθi sinαi ri cosθi

sinθi cosθi cosαi � cosθi sinαi ri sinθi

0 sinαi cosαi di

0 0 0 1

2

6

6

6

4

3

7

7

7

5

(60)

The previous matrix can be simplified by following equation Ai matrix. The matrix Ai is

composed from 3 � 3 rotation matrix Ri, 3 � 1 translation vector Pi, 1 � 3 perspective vector

and scaling factor.

Ai ¼
Ri 3x3ð Þ Pi 3x1ð Þ

0 1x3ð Þ 1

" #

(61)

4.3. T matrix

The T matrix can be formulated by Eq. (62). The matrix is a sequence of D-H matrices and is

used for obtaining end-effector coordinates. The T matrix can be built from several A matrices

depending on the number of manipulator joints.
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Figure 13. Simulation results of DOBOT axis and total error of coordinates for Pseudoinverse method.
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T3
0 ¼ T1

0:T
2
1:T

3
2 (62)

Inside the Tmatrix is the translation vector Pi, which includes joint coordinates, where the X, Y,

and Z positions are P1, P2, and P3, respectively [6].

5. The pseudoinverse method

If the number of independent coordinates n (joint parameters) is larger than the number of

reference manipulator endpoint coordinates m (three in Cartesian coordinate system for the

point), it shows that a redundancy problem has occurred. In this case, it can exist in infinite

combinations of independent coordinates for the only endpoint position. Jacobian matrix J has

a size of m rows and n columns (m 6¼ n), i.e., J is a non-square matrix. In general, it cannot be

computed inverse matrix from non-square matrix.

In order to solve inverse kinematics task for this case, pseudoinverse of Jacobian matrix

(denotes J+) is used. This method uses singular value decomposition (SVD) of Jacobian matrix

to determine J+.

Every matrix J can be decomposed with the usage of SVD to three matrices Eq. (63):

J ¼ UΣVT (63)

Where

J is m � n matrix.

U is m � m orthogonal matrix, i.e. U�1 =UT.

V is n � n orthogonal matrix, i.e. V�1 =VT.

Σ is m � n diagonal matrix, which contains singular values of matrix J on its major diagonal.

j11 j12 ⋯ j1n

j21 j22 ⋯ j2n

⋮ ⋮ ⋱ ⋮

jm1 jm2 ⋯ jmn

2

6

6

6

6

6

4

3

7

7

7

7

7

5

¼

u11 u12 ⋯ u1m

u21 u22 ⋯ u2m

⋮ ⋮ ⋱ ⋮

um1 um2 ⋯ umm

2

6

6

6

6

6

4

3

7

7

7

7

7

5

:

σ1 0 ⋯ 0

0 σ2 ⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ σd

2

6

6

6

6

6

4

3

7

7

7

7

7

5

:

v11 v21 ⋯ vn1

v12 v22 ⋯ vn2

⋮ ⋮ ⋱ ⋮

v1n v2n ⋯ vnn

2

6

6

6

6

6

4

3

7

7

7

7

7

5

(64)

Where d = m for m < n and d = n for m > n, because Σ is a non-square matrix.

To determine matrices U and Σ, we multiply matrix J by its transpose matrix JT from the right:

J:JT ¼ UΣVT
� �

: UΣVT
� �T

(65)

J:JT ¼ UΣVT
:VΣTUT (66)
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J:JT ¼ UΣΣ
TUT (67)

We multiply the above Eq. (67) by matrix U from the right:

JJT :U ¼ U:ΣΣ
T
:UTU (68)

JJT :U ¼ U:ΣΣ
T (69)

It leads to eigenvalue problem for JJT matrix. U is m � m square matrix, which contains

eigenvectors of JJT matrix in its columns and ΣΣ
T is diagonal matrix of eigenvalues λ1,…, λm.

To determine matrices V and Σ, we multiply matrix J by its transpose matrix JT from the left:

JT :J ¼ UΣVT
� �T

: UΣVT
� �

(70)

JT :J ¼ VΣTUT
:UΣVT (71)

JT :J ¼ VΣT
ΣVT (72)

We multiply the above Eq. (72) by matrix V from the right:

JTJ:V ¼ V:Σ
T
Σ:VT

:V (73)

JTJ:V ¼ V:Σ
T
Σ (74)

It leads to eigenvalue problem for JTJ matrix. V is n � n square matrix, which contains

eigenvectors of JTJ matrix in its columns and Σ
T
Σ is diagonal matrix of eigenvalues λ1,…, λn.

Matrices JJT and JTJ are symmetric matrices and they have the same nonzero eigenvalues.

Eigenvalues and eigenvectors of the real symmetric matrices are always real numbers and real

vectors.

The eigenvalues are equal to square of the singular values: λi ¼ σ
2
i , where i = 1, …, d. The

number of nonzero eigenvalues is d = m for m < n and d = n for m > n. The number of zero

eigenvalues is |m � n|.

When values of matrices U, Σ, and V were computed, we can determine pseudoinverse of

Jacobian matrix as follows:

Jþ ¼ U:Σ:VT
� ��1

(75)

Jþ ¼ V:Σ
þ

:UT (76)

Where
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Σþ
¼

1

σ1
0 ⋯ 0

0
1
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⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯
1

σd
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7
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7

7

7

7

7

7

5

(77)

Now, we can solve inverse kinematics task for the cases, when Jacobian matrix is non-square:

ΔQ ¼ Jþ:ΔX (78)

Pseudoinverse J+, also called Moore-Penrose inverse of Jacobian matrix, gives the best possible

solution in the sense of least squares [1].

6. The Jacobian matrix transpose method

We designed Jacobian matrix transpose method simulation [1–3]. The basic idea was written

using Eq. (79). We used the transpose of Jacobian matrix, instead of the inverse of Jacobian

matrix, in this method. We set Δθ equal to

Δθ ¼ α JT e
!

(79)

Where α is:

α ¼

e
!

; JJT e
!

D E

JJT e
!

; JJT e
!

D E (80)

Whole simulation is described by block diagram shown in Figure 14. In the first step, we

defined requested error. This error represented difference between reference coordinates and

actual coordinates. Error that we consider as unacceptable, we set to 200 μm. This is position

repeatability of DOBOT. We calculate the increment of requesting angles Δθ in each iteration.

In the first iteration, Δθ is equal to zero.

Figures 15 and 16 represent simulation result of DOBOT movement same as in simulation of

Jacobian matrix pseudoinverse. Simulation was split on three parts. First part (solid line in

chart) is movement from starting position to position (x, y, z) = (100, 150, 160) mm. Second part

(dotted line in chart) is movement from previous position to position (50, 90, 80). And third

part (dashed line in chart) is movement to position (150, 180, 140).
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7. Conclusion

As we can see in simulation results from previous subchapters, every method for inverse

kinematics has some positives and negatives. Comparison of both methods is shown in

Table 2. Pseudoinverse method is faster than transposition method, but is harder to implement

in a DSP or a microcontroller. In Matlab environment, pseudoinverse method is easily made by

the pinv() command. If we want to simplify inverse kinematics and we don't need fast calcu-

lating time, it is more readily to use transposition method. In the case of using DOBOT

manipulator, it is considered to use the analytical model. In the case of more complicated

manipulator, this method is inapplicable.

Figure 14. Block diagram of Jacobian matrix transpose method simulation.

Figure 15. Simulation result of Jacobian matrix transposition in inverse kinematics model of the DOBOT manipulator.
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Comparison of both methods is shown in Table 2. As we can see in Table 2, the main criteria are

number of iterations. Pseudoinversemethod is much better, but only for simulation. If we can use

this method in real-time application, like dSPACE fromMathWorks® or implementation to DSP,

wewill not achieve such results like inTable 2. It is caused by using singular value decomposition

(SVD), which is very demanding for a computation performance. In the other case, transposition

of Jacobian matrix is much easier for implementation and need lower performance.

In the next research, we considerate the use suitable iterative method, like damped least

squares. We also designed several implementation methods of Jacobian matrix transposition

to DSP (TMS430, C2000™). It is very important to try more implementation methods for the

most possible shortening of the calculation time.
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Simulation part Pseudoinverse method (number of iterations) Transposition method (number of iterations)

Part 1 (solid line) 22 55

Part 2 (dotted line) 5 34

Part 3 (dashed line) 6 68

Table 2. Comparison of pseudoinverse and transposition method.

0 500 1000 1500 2000 2500 3000 3500

0

50

100

150

200

X
 a

x
is

 [
m

m
]

Inverse kinematics - Transposition of Jacobian

X axis

0 500 1000 1500 2000 2500 3000 3500

0

100

200

300

Y
 a

x
is

 [
m

m
]

Y axis

0 500 1000 1500 2000 2500 3000 3500

0

100

200

300

400

Z
 a

x
is

 [
m

m
]

Z axis

0 500 1000 1500 2000 2500 3000 3500

Number of steps [1143,701,1416]

0

100

200

300

E
rr

o
r 

[m
m

]

Error

Figure 16. Simulation results of DOBOT axis and total error of coordinates for Transposition method.
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