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Abstract

This chapter presents some recent data processing developments associated with radia-
tion monitoring systems. Radiation monitors have to continuously provide count rate
estimations with accuracy and precision. A filtering technique based on a Centered
Significance Test coupled with a Brown’s double exponential filter has been developed
and used in compensation measurement and moving sources detection schemes.

Keywords: data processing, nuclear counting, radiation monitor, signal processing,
filtering, frequentist inference

1. Introduction

During the last decades, ionizing ray detectors have grown in performance, thanks to digital

electronics developments (ADC and FPGA), allowing for an advanced processing of nuclear

impulse signals. It is also noteworthy that this field has favored the development of real-time

processing algorithms dealing with count rate data.

The architecture of a typical nuclear measurement system is presented in Figure 1. It can be

divided in four parts:

• Voltage supply,

• Detector part,

• Front-end electronics,

• User interface.

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



The detector part contains the physical sensor (noble gas, scintillation material, and semiconduc-

tor) in which radiation interacts with matter. A conversion unit (preamplifier or photo-converter)

converts the induced charges or photons in amplified voltage pulses. In the case of gas or

semiconductor-based sensors, a high voltage is required to polarize the medium, and a low

voltage is needed to supply active components of the preamplifier. In the case of scintillators, a

high voltage supplies the photomultiplier.

Front-end electronics is composed of an analog filter, an analog-to-digital converter (ADC),

and a digital filter. An analog shaping filter can be used to adapt the signal before digital

conversion (dynamic range and respect to Shannon rules), and/or to maximize signal-to-noise

ratio (SNR). The ADC digitalizes the signal with a given frequency and resolution.1 This digital

signal is processed into a fast electronic component, typically a microcontroller, or a field-

programmable gate array (FPGA). The embedded firmware has to comply with the very

high-frequency of the ADC output with a processing period in the range of 1–10 ns. The

algorithms implemented in the firmware perform the pulse processing, which mainly consists

in triggering, first digital filtering for SNR maximization, stabilizing the baseline, estimating

the dead time, and counting a number of pulse events N over a period of time ∆τ. This general

description is not exhaustive and a variety of architectures is conceivable, depending on the

mix between analog and digital processing. Though modern trends tend to favor digital

filtering, analog filtering can still be retained to comply with cost reduction or embedded

strategies. For instance, the front-end associated with a scintillator can directly digitalize the

output voltage of a photomultiplier using a 500 MS/s ADC and process the pulses using a

FPGA (notably when pulse shape discrimination is needed). On the other hand, the initial

signal can be filtered using analog components (trapezoidal filtering), before digitalization

with a 10 MS/s ADC and count processing with a microcontroller.

An interface is built on a computer connected with the front-end electronic card. The software

reads, at each given time interval ∆t, a new count value Ni according to a defined communica-

tion protocol. This second processing can be divided in two parts: filtering of the count rate

signal and displaying. The period ∆t has to be chosen in compliance with continuous measure-

ment requirement, typically close to retinal persistence of 0.1 s. We can highlight here, the

Figure 1. Schematic architecture of a nuclear measurement apparatus.

1

Current ADCs are available with tradeoffs between resolution and sampling frequency such as: 16 bit / 100MS/s and 8 bit

/ 1 GS/s. CAEN Electronic instrumentation, 724 Digitizer Family, CEAN data sheet, 2015.
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quantitative difference between the digital pulse processing coded in VHDL or Verilog for the

FPGA (very fast), and the count rate processing which can be coded in C/C++ into a microcon-

troller or/and the PC interface (7–8 orders of magnitude slower). In compact systems, the count

rate processing is usually incorporated into the firmware while, in larger systems, the count

rate processing is remotely implemented in the PC.

This chapter will not address pulse processing techniques, for which details can be found in

[1–3], but presents some recently developed techniques to process count rate signal using

frequentist inference. Bayesian inference can also be implemented to process count rate as for

instance for gamma spectrum unfolding or photon-limited imaging filtering [4, 5]. These are very

efficient to accurately processed nuclear counting data, but become unsuited of online applica-

tions. After describing the theoretical model of the counting process, a smoothing technique will

be presented as a fundamental building block, ensuring an online and adaptive filtering of the

signal. The issue of composite measurements will then be addressed with a method allowing

improving metrological reliability for particle discrimination (compensation technique). Finally,

the use of detectors in a network to address moving source detection will be developed.

2. Nuclear counting model

Nuclear disintegration can occur following different processes depending on the A/Z ratio of

the concerned isotope. Major disintegration processes read: β�, β+, ε, α, and spontaneous

fission decay, presented in the following nuclear equations, where X is the mother nucleus

and Y the daughter nucleus
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Subsequently, the daughter nucleus is, most of the time, released in an exited state and usually

reaches its fundamental level by gamma-ray emission:

A
ZY

∗

!
A
ZY þ

0
0γ (5)

According to the detector type, β�, β+, α, n, or γ particles are detected and counted. The required

time τd for an unstable nucleus to decay is undetermined, and takes its value in an exponential

distribution whatever the time lap between its creation and the observation is (memoryless

phenomenon). The probability distribution p(τd = t
0) of the decay instant, where t0 and λ are,

respectively, the observation instant and the decay constant of the nucleus, is given by:
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p τd ¼ t0ð Þ ¼ λ exp �λt0ð Þ (6)

The observation of an unstable nucleus over a time t forms a Bernoulli trial in which two

results can be observed: the nucleus has decayed or the nucleus has not decayed. A probability

of p and 1� p can be, respectively, associated with each branch of the trial for every instant as

illustrated in Figure 2.

The probability pX!Y(t) to observe a disintegration of the mother nucleus X!Y before time t

(t0 = 0 being the start of the observation) is obtained as:

pX!Y tð Þ ¼

ðt

0

p τd ¼ t0ð Þdt0 ¼ 1� e�λt (7)

In a radioactive source containing a population of NX unstable nuclei, the decay of an individ-

ual nucleus does not impact the decay of the others. The Bernoulli trial is therefore repeated NX

times (Figure 3) during the observation time t, and the number of observed decays n is

described by a Binomial law such as:

p NX!Y tð Þ ¼ nð Þ ¼
NX!

NX � nð Þ!n!
pX!Y tð Þn 1� pX!Y tð Þ

� �NX�n
(8)

In practice, NX is very large and pX!Y(t) is usually very small (1/λ≫ t). In these conditions, the

Binomial law converges toward a Poisson lawP such as:

p NX!Y tð Þ ¼ nð Þ ¼P NXλtð Þ ¼
NXλtð Þn

n!
e�NXλt (9)

Expectation and variance of the number of decays are equal to NXλt. The number of counts N

measured before observation time t is obtained by weighting Eq. (9) with the detection effi-

ciency ε and the probability η of the detected particle to be emitted during decay. The expected

count rate ρ = εηNXλ thus becomes the parameter of the distribution of measured count values

before t:

Figure 2. Illustration of the Bernoulli trail applied to an individual nucleus disintegration.

Figure 3. Illustration of Bernoulli trials applied to a population of unstable nuclei.
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p N tð Þ ¼ nð Þ ¼P ρt
� �

¼ ρt
� �n

n!
e�ρt (10)

At each time ti, sampled such as t0 = 0& ∀ i ≥ 1, ti = ti� 1 +∆t, the raw estimation of the count rate

ρ(ti) =ρi is provided by measuring Ni, which is a time-dependent random variable taking its

values in a Poisson distribution such as:

Ni �P ρi∆t
� �

(11)

A challenge in radiation monitoring is to provide count rate estimation ρi at each time ti
maximizing both precision σ(ρi)! 0 and accuracy σ(ti)! 0. Algorithmic techniques to meet

this expectation are discussed in the next section.

3. Count rate smoothing

The aim of smoothing algorithms is to improve the estimation of ρi, originally defined as:

bρ i ¼
Ni

∆t. This improvement can be achieved by using past values Ni� 1,Ni� 2,… recorded in a

memory according to the assumption that p(ρi|Ni,Ni� 1,Ni� 2,…) is more precise than p(ρi|Ni).

If we consider, in a first approach, a constant count rate ρ, the estimator which maximizes the

likelihood of a homogenous Poisson process is the average [6]:

bρ i ¼
1

mþ 1ð Þ∆t
Xi

j¼i�m

Nj (12)

where m + 1 is the temporal depth of the filter and ϑ is a kernel function in which each ϑj, 1 ≤ j ≤ i

equal to one. According to the property of equality between variance and expectation, the

associated variance σ2 bρ i

� �
can be estimated as:

σ2 bρ i

� �
¼ 1

mþ 1ð Þ∆t
Xi

j¼i�m

Nj (13)

The relative stochastic uncertainty σ bρ i

� �
=bρi is inversely proportional to the square root of the

historical depth m + 1.

In practice, counting processes are not homogenous (ρ is not constant). In this case, it is

important to provide an estimate of the time bt i effectively corresponding to the current count

rate estimate bρ i. Because the sampling times ti over the temporal depth m + 1 are identically

weighted, the estimate bρ i from Eq. (12) is associated to a time estimate bt i ¼ ti � mþ1
2 ∆t with a

temporal precision σ bt i
� �

¼ mþ1ð Þ∆t
2
ffiffi
3

p . We therefore see that σ bρi

� �
can only be minimized to the

detriment of σ bt i
� �

, leading to a degradation of accuracy when ρ is varying. One way to

address this issue is to actualize the temporal depth mi after every count rate estimation. The
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optimal value for mi is a function of the temporal behavior of the rate ρ at the time ti:
dρ
dt

���
t¼ti

¼ 0

or
dρ
dt

���
t¼ti
> 0.

First approaches consist in the implementation of preset count filter providing a fixed variance

σ2 bρ i

� �
, or finite impulse response (FIR) filters in which a kernel function ϑ is used to assign

more weight to recent than older count values such as Eq. (12) become:

bρi ¼

Pi

j¼i�m

ϑi�jNj

mþ 1ð Þ∆t
Pm

j¼1

ϑj

(14)

Among FIR filters, the exponential moving average (EMA) remains widespread [7, 8], but do

not fully deals with the tread-off issue between accuracy and precision.

The algorithm translation of the actualization of mi is the building of infinite impulse response

(IIR) dedicated to nuclear counting [9]. Such nonlinear filtering requires a hypothesis test to

detect the changes in count rate ρ. The null hypothesis H0 and the detection hypothesis H1 are

formalized as follows:

H0: ∀j∈ i�mi; i½ �½ �,ρj ¼ θ0 (15)

H1: ∃j∈ i�mi; i½ �½ �,ρj ¼ θ1 (16)

In a first approach [10], a sequential probability ratio test (SPRT) has been assessed under the

assumption that θ1 is a known value. Later, generalized tests in which θ1 is an unknown

parameter have been introduced, notably the generalized likelihood ratio test (GLR) [11] and

the centered significance test (CST) [12]. In these change detection algorithms, several estima-

tions of the current count rate are calculated using different temporal depths k such as:

bρk
i ¼

1

kþ 1ð Þ∆t

Xi

j¼i�k

Nj (17)

In the rest of the discussion, we will conventionally use notation bρk
i to designate both the

underlying random variable and its actual values.

In the CST test, the vector bρk,1 ≤ k ≤mi

i is scanned to find a potential change in the true rate ρ. For

every temporal depth k∈ ⟦1;mi⟧, the difference between count rate estimations ∆bρk
i ¼ bρmi

i � bρk
i

is the quantity which will be tested for significance.

The method is based on a comparison between actual and expected distributions of ∆bρk
i under

H0 and H1, respectively [13]. The distribution D of ∆bρk
i is the difference between two weighted

Poisson distributions ℘
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∆bρk
i � D ¼

1

mi þ 1ð Þ∆t
P bρmi

i mi þ 1ð Þ∆t
� �

�
1

kþ 1ð Þ∆t
P bρk

i kþ 1ð Þ∆t
� �	 


(18)

The expectation E ∆bρk
i

� �
¼ E bρmi

i

� �
� E bρk

i

� �
¼ ∆θ between times (i�mi)∆t and i∆t. Moreover,

we will make use of assumption ∆bθ ¼ bρmi

i � bρk
i , as common in nuclear counting experiments

will finite statistics [1]. The variances associated with both uncorrelated random processes are

summed to obtain a cumulative standard deviation for ∆bρk
i . According to the equality between

expectation and variance, we obtain:

σ ∆bρk
i

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 bρmi

i mi þ 1ð Þ∆t
� �

mi þ 1ð Þ∆tð Þ2
þ
σ2 bρk

i kþ 1ð Þ∆t
� �

kþ 1ð Þ∆tð Þ2

vuut
≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bρmi

i

mi þ 1ð Þ∆t

s

þ
bρk
i

kþ 1ð Þ∆t
(19)

We will note D E ∆bρk
i

� �
; σ ∆bρk

i

� �� �
, the distribution of the difference random variable with its

first and second order moments.

Under H0, E ∆bρk
i

� �
¼ 0 (cf. left curve in Figure 4). A decision threshold (DT) is determined

in compliance with a given risk of false detection αk
i ¼ p H1jH0ð Þ. DT is defined in the follow-

ing formula, where Q1�αk
i
is the quantile of the error function (err) with a confidence

level 1� αk
i :

Figure 4. Illustration of distributions DH0
(left curve) and DH1

(right curve) and construction rules of the hypothesis test.
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αk
i ¼

ð∞

DT

DH0
0; σ ∆bρk

i

� �� �
d∆bρk

i ≈ err Q1�αk
i

� �
(20)

In practice, for embedded implementations, it is impossible to sample and interpolate distri-

butions Q1�αk
i
¼ f αk

i

� �
for every value of i and k. Moreover, when E bρmi

i

� �
and E bρk

i

� �
are large

enough, distribution DH0
may be approximated asN 0; σ ∆bρk

i

� �� �
, with N the Normal law.

Under this assumption, for every value of i and k, αk
i ¼ α and Q1�αk

i
¼ Q1�α, where Q1�α is a

quantile ofN and err becomes:

err Q1�αð Þ ¼ 2� 2Φ Q1�αð Þ (21)

where Φ is the cumulative distribution function of the centered Normal law.

As illustrated in Figure 4, DT can be calculated thanks to the weighting of the standard

deviation by Q1�α such as:

DTk
i ¼ Q1�α σ ∆bρk

i

� �
(22)

If ∆bρk
i ≤DTk

i , hypothesis H0 is accepted with a confidence level equal to 1�α.

Under H1, DH1
E ∆bρk

i

� �
; σ ∆bρk

i

� �� �
≈N DLki ; σ ∆bρk

i þDLki

� �� �
(cf. right curve in Figure 4),

where DL is defined as the detection limit. DL is determined in compliance with a given risk

of non-detection β = p(H0|H1). DL is obtained in the following formula:

β ¼

ðDT

�∞

N DLki ; σ ∆bρk
i þDLki

� �� �
dθ ¼ err Q1�β

� �
(23)

As illustrated in Figure 4, DL can be calculated thanks to the weighting of the associated

standard deviation by the quantile Q1� β of the error function erf such as:

DLki ¼ DTk
i þQ1�β σ ∆bρk

i þDLki

� �
(24)

An equivalent confidence level 1�α = 1� β =γ is considered, and Eq. (23) is solved recursively

such as:

∀y∈ 1;∞½ �½ �,

DLki,y ¼ Qγ σ ∆bρk
i

� �
þ σ ∆bρk

i þDLki,y�1

� �h i
(25)

With
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DLki,0 ¼ 2Qγσ ∆bρk
i

� �
(26)

When y!∞,

DLki ¼ Q2
γ þ 2Qγ σ ∆bρk

i

� �
(27)

If ∆bρk
i ≥DLki , hypothesis H1 is accepted with a confidence level 1� β =γ.

The number Li of significant changes recorded into memory ∆bρk
i is used to calculate the next

value of temporal depth mi + 1:

Li ¼ dim arg
k, 1 ≤ k ≤mi

∆bρk
i

���
��� > DLki

h i( )

(28)

If Li = 0, true rate ρ is considered to remain constant and historical depth may be extended

mi + 1 =mi + 1, to the benefit of a reduction of σ bρ
� �

(better precision). On the other hand, if Li > 0,

true rate ρ is considered to change and the historical depth needs to be reduced mi + 1 =mi� Li,

to the benefit of σ bt
� �

(better accuracy).

At every elementary time step ∆t, the retained count rate estimate bρ∗

i is therefore calculated

over an adaptable temporal depth mi, Eq. (17) becoming:

bρ∗

i ¼
1

mi þ 1ð Þ∆t

Xi

j¼i�mi

Nj (29)

With

σ2 bρ∗

i

� �
¼

1

mi þ 1ð Þ∆tð Þ2

Xi

j¼i�mi

Nj (30)

This nonlinear approach performs advantageously in comparison with conventional linear

filters [12, 14], allowing to maintain sufficient precision while rate changes in the signal occur.

Remaining high-frequency fluctuations can now be reduced using a second, recursive

smoother, for instance a Brown’s double exponential filter [14]. A first exponential smoothing

bρ1
i is performed on bρ∗

i with a smoothing parameter δi such as:

bρ1
i ¼ δibρ∗

i þ 1� δið Þbρ∗

i�1 (31)

With

σ2 bρ1
i

� �
¼ δiσ bρ∗

i

� �� �2
þ 1� δið Þσ bρ∗

i�1

� �� �2
(32)
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A last exponential smoothing bρ2
i
is eventually performed on bρ1

i
under the form:

bρ2
i
¼ δibρ1

i
þ 1� δið Þbρ1

i�1 (33)

With

σ2 bρ2
i

� �
¼ δiσ bρ1

i

� �h i2
þ 1� δið Þσ bρ1

i�1

� �h i2
(34)

The parameter δi changes as a function of the parameter mi and its strength is set with the

parameter W:

δi ¼ 1� exp �
1

W mi � 1ð Þ

 �
(35)

Finally, the Brown’s estimation bρ∗∗

i
is calculated such as:

bρ∗∗

i
¼ 2bρ1

i
� bρ2

i
(36)

With

σ2 bρ∗∗

i

� �
¼ 4σ2 bρ1

i

� �
þ σ2 bρ2

i

� �
(37)

Figures 5 and 6 illustrate the advantage of the hereby described nonlinear filters over conven-

tional, moving average filters with a 20% rate variation, respectively, in a low count rate

configuration (5 counts per sample) and in a higher count rate configuration (500 counts per

sample). The nonlinear filter has been set with parameters Qγ = 1.645 (γ = 90%) and W = 0.2 and

Figure 5. Behavior of smoothing filters over a 20% rate variation at 5 counts per sample.
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compared to moving average filters set with m = 50 samples (soft) and m = 500 samples (hard).

Figure 5 shows that nonlinear filtering offers a better compromise between precision and

accuracy, though the detection of small changes within large statistical fluctuation remains

unreachable ∆bρk

i
≤DL

k

i

� �
. At higher count rates (Figure 6), nonlinear filtering permits the

detection of the rate change ∆bρk

i
> DL

k

i

� �
and ensures a significant gain, operating both faster

and more precisely than both moving averages.

Such nonlinear smoothing algorithms, easily embedded into programmable components, have

for instance been implemented into a Geiger-Müller dosimeter fixed on a wireless robot used

for radiological threat detection [15]. This algorithmic building block is plays a key role in the

nuclear counting methods studied in the next sections, namely compensation measurements

and sensor network processing.

4. Compensation measurement

In many cases, radiation monitoring requires the counting of a signal from a first radiation

source within an interference signal induced by a second particle emitter, namely α/β vs. γ; n

vs. γ, γ vs. γ … The most efficient techniques consist in the recognition of the particle origin

associated with each individual pulse event by coincidence/anti-coincidence, pulse height

discrimination (PHD) or pulse shape discrimination (PSD) [16]. However, event-by-event

discrimination techniques may be found unreliable in particular mixed field configurations.

Compensation methods are an alternative solution when addressing such limitations [17, 18]:

their principle lies within measuring count rates ρA from a first detector A, sensitive to all

particles, and comparing the result with count rates ρB from a second detector B, only signif-

icantly sensitive to background contributions (typically gamma rays). The estimation ρC of the

count rate associated with particles of interest is obtained by subtraction of ρA with ρB such as:

Figure 6. Behavior of smoothing filters over a 20% rate variation at 500 counts per sample.
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ρ
C
¼ ρ

A
� ωρ

B
(38)

where ω is a correction factor taking in account the fact that detector B is not strictly equivalent

to detector A in terms of response as a function of the energy and spatial localization of

incident background particles. Three challenges are to be faced in compensation measurement:

• increase in fluctuation level;

• apparition of negative count rates without physical sense;

• loss of reliability (impact of energy and anisotropy of the background signal).

Values of ρA, i∆t and ρB, i∆t at the time ti are described by Poisson processes, as already stated in

the third section of this chapter. Therefore, if ω = 1, values of ρC, i∆t are described by a Skellam

process Sk ρ
A, i∆t;ρB, i∆t

� �
such as:

ρ
C, i∆t � Sk ρ

A, i∆t; ρB, i∆t

� �
(39)

The expectation and the variance of the random variable bρ
C, i∆t are, respectively, E bρ

C, i∆t

� �
¼

bρ
A, i∆t� bρ

B, i∆t ¼ ρ
A, i∆t� ρ

B, i∆t and σ2 bρ
C, i∆t

� �
¼ bρ

A, i∆tþ bρ
B, i∆t ¼ ρ

A, i∆tþ ρ
B, i∆t under the

same assumption as in Section 4. The variance definition highlights an increase of fluctuation

level in comparison with single-channel measurement. It is therefore required to reduce this

variance using a suitable smoothing filter, such as the CST a nonlinear filter described in the

previous section (cf. Eqs. (36) and (37)):

bρ∗∗

A, i; σ bρ∗∗

A, i

� �h i
¼ CST bρ

A, i

� �
(40)

bρ∗∗

B, i; σ bρ∗∗

B, i

� �h i
¼ CST bρ

B, i

� �
(41)

Reduced variances σ2 bρ∗∗

A, i

� �
and σ2 bρ∗∗

B, i

� �
calculated according to Eq. (36) are used to deter-

mine σ2 bρ∗∗

C, i

� �
as:

σ
2 bρ∗∗

C, i

� �
¼ σ

2 b̃ n
∗∗

A, i

� �
þ σ

2 bρ∗∗

B, i

� �
(42)

If the compensation factor ω remains constant but different from 1, Eq. (42) becomes:

σ
2 bρ∗∗

C, i

� �
¼ σ

2 bρ∗∗

A, i

� �
þ ω

2
σ
2 bρ∗∗

A, i

� �
(43)

In practice, the factor ω is not constant, due to the impact of energy and spatial distributions of

incident particles. We then introduce notations ω and σ
2(ω) for the expectation and variance of

the variable ω. A resulting variance is therefore calculated by taking into account both statisti-

cal error and bias such as:
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σ
2 bρ∗∗

C, i

� �
¼ σ

2 bρ∗∗

A, i

� �
þ ω

2
σ
2 bρ∗∗

B, i

� �
þ bρ∗∗

B, i

� �2
σ
2
ωð Þ (44)

The estimation of ω and σ
2(ω) is complicated by the experimental dependence of these param-

eters. An approach is proposed in [19, 20], in which a database is built from measures acquired

in representative areas and in absence of the signal particle of interest: ρC = 0. In these conditions,

compensation factors ωq ¼
bρ∗∗

A,q

bρ∗∗

B,q

are obtained for each measurement point (1 ≤ q ≤nq), allowing for

an empirical mean ω ¼ 1
nq

Pnq

q¼1

ωq and variance σ2 ωð Þ ¼ 1
nq

Pnq

q¼1

ωq � ω
� �2

to be estimated.

Based on the generalized variance expressed in Eq. (43), a hypothesis test is built to select

positive and significant values of bρC, i. Algorithm 1 presents the detection test in which the

presence of particles of interest is detected in compliance with a confidence level γ governing

the test. Most of the time, ωq values can be considered to follow a Normal law, which allows us

to apply an envelope coverage factor Qγ associated with a confident level γ as:

Algorithm 1:

If bρ∗∗

C, i > Qγ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2σ2 bρ∗∗

C, i

� �r
,

Then bρ∗∗∗

C, i ¼ bρ∗∗

C, i (detection hypothesis H1 is accepted)

Else bρ∗∗∗

C, i ¼ 0 (detection hypothesis H1 is rejected)

Figure 7 synthetizes the principle, inputs, and outputs of the compensation technique.

The method improves the reliability of compensation measurement with the use of a recorded

database. Moreover, accuracy and decision threshold Qγ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2σ2 bρ∗∗

C, i

� �r
associated with the par-

ticles of interest are optimized using an adaptive filter, smoothing individual channels while

suppressing all negative or non-significant values. The approach described in the present

section has been successfully implemented in varied applications, such as α/β contamination

meters or gadolinium-based neutron detectors [20, 21].

As a perspective, it has been demonstrated that the multiplication of channels, such as illus-

trated in Figure 8, allows the system to learn a prior distribution for the signal over a set of

pixels as a function of incident energy and spatial origin of background particles. Dispatching

bρ∗∗∗

A,q and bρ∗∗∗

B,q data along (X > 1) dimensions induces a reduction of detection threshold

Figure 7. Principle of the compensation technique.

Recent Developments in Count Rate Processing Associated with Radiation Monitoring Systems
http://dx.doi.org/10.5772/intechopen.71233

165



Qγ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2σ2 bρ∗∗

C, i

� �r
and thus an improvement of measurement reliability. Compensation factors

ωj,k and variances σ2(ωj, k) are determined for every 1 ≤ j ≤X A-type detector, and every 1 ≤ k ≤X

B-type detector. Resulting count rates ρC, i are estimated as:

bρ∗∗

C, i ¼

XX

j¼1

bρ∗∗

A, i, j �

XX

k¼1

ωj,kbρ∗∗

B, i,k

" #

(45)

σ2 bρ∗∗

C, i

� �
¼

XX

j¼1

σ2 bρ∗∗

A, i, j

� �
�

XX

k¼1

ωj,kσ bρ∗∗

B, i,k

� �h i2
þ bρ∗∗

B, i,kσ ωj,k

� �h i2
( )

(46)

5. Moving source detection

Radiation portal monitors (RPM) are implemented to detect radioactive sources, carried by a

vehicle in motion, through the monitoring of a count rate measured by large-volume detectors.

Two main issues arise in RPM development: correcting the shadow shielding effect observed

when the vehicle is dense enough to impact the baseline of the signal, and improving the

detection capability (increasing true detection minus false alarm detection probability).

RPM detection strategy is based on a hypothesis test where the estimated signal bρi at the time ti

is continuously compared to a threshold h, itself determined in comparison with the signal

distribution underH0. Let θ0 be the expected background count rate without any vehicle in the

environment surrounding the RPM. A decision threshold (DT) is set, following the same

philosophy as presented previously (Eqs. (20)–(26)), as a function of variance σ2(θ0) and a

confidence level associated with a false detection risk α

Figure 8. Principle of the compensation technique for pixelated detectors.
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DT ¼ Q1�α σ bθ0 � θ0

� �
¼ Q1�α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2σ2 θ0ð Þ

q
(47)

During the passage of a dense vehicle, θ0 will decrease due to gamma-ray attenuation as

the vehicle acts as a radiation shield. Such baseline alteration is noted ωθ0, where ω e [0; 1] is

the attenuation factor. An added count rate from a source with intrinsic rate θ1, put onboard

the vehicle, will thus lead to a total signal θT =ωθ0 +θ1. If ω = 1 and θ1 >DT, the source is

detected with a non-detection risk:

βω¼1 ¼ err
θ1 �DT

σ θ1 þ θ0ð Þ

� �
¼ err

θ1 �Q1�α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2σ2 θ0ð Þ

p

σ θ1 þ θ0ð Þ

" #

(48)

If ω < 1, Eq. (48) becomes:

βω<1 ¼ err
θ1 �Q1�α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2σ2 ωθ0ð Þ

p

σ θ1 þ ωθ0ð Þ

" #

> βω¼1 (49)

This effect, so-called “shadow effect,” induces a significant loss in detection capability (β↗)

even for ω ≈ 1.

Many works have been done in order to restore the baseline (ω! 1) and all of them use a

database recorded when a representative sample of void vehicle in passing through the RPM

[22, 23]. An alternative method based on time series analysis has been developed to restore the

baseline without using any prior knowledge about the vehicle and the experimental conditions

hoping for gain in flexibility [24]. The latter is described below.

In the first place, the minimization ofDT requires the implementation of an efficient smoothing

filter, minimizing the high-frequency variance σ2(θ0) and subsequently the β risk, while pre-

serving the temporal shape of the signal of interest θ1(ti). Thus, the nonlinear filter CST

(Eqs. (36) and (37)) has proven efficient for this purpose. The single-channel RPM estimates

the random variable ρi∆t�P(θT∆t) at each time ti such as:

bρ∗∗

i ; σ bρ∗∗

i

� �� �
¼ CST bρ i

� �
(50)

Estimations are continuously recorded into an historical memory with a depth m allowing

calculating, at each time step ti, the filtered logarithmic derivative _̂ρ i of the signal:

∀i∈ 1;m½ �½ �,

_̂ρ i ¼ 1� α1ð Þ
bρ∗∗

i � bρ∗∗

i�l

bρ∗∗

i

� α1 _̂ρ i�1 (51)

with α1 and l being, respectively, a smoothing parameter and the derivative depth.

The trend of the signal, which can be constant, decreasing or increasing, is represented by a

slope state Di with values between �1 and 1 such as:
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_̂ρ
i
< �α2 ) Di ¼ �1 (52)

_̂ρ
i

�

�

�

�

�

�
≤α2 ) Di ¼ 0 (53)

_̂ρ
i
> α2 ) Di ¼ 1 (54)

with α2 > 0 being a parameter for variation significant.

The state of the signal Si is labeled by a number between 1 and 8, defined as illustrated in

Figure 9. The first line describes the passage of a vehicle containing a source without shadow

effect; the second line corresponds to the passage of a dense vehicle with no source; and the

third one to the passage of a dense vehicle containing a radioactive source (shadow shielding).

States Si can be determined with knowledge of Di and Si� 1 using a sequential logic algorithm

detailed under the form of a state diagram in Figure 10. To solve the problem, states 3 and 8

automatically pass to state 1 after a preset watchdog time τw.

Figure 9. Schematic view of possible states of the system.

Figure 10. State diagram of the state determination algorithm.
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Knowing the state of the system, the baseline of the signal can be restored. The upper level

(UL) (state 1) and the lower level LL (state 6) are firstly estimated in a recorded time series at

time ti:

zUL ¼ arg
1 ≤ k ≤ ξ

Si�k ¼ 1ð Þ (55)

zLL ¼ arg
1 ≤ k ≤ ξ

Si�k ¼ 6ð Þ (56)

UL ¼
1

dim ZULð Þ

Xdim ZULð Þ

k¼1

bρ∗∗

i�k
(57)

LL ¼
1

dim ZLLð Þ

Xdim ZLLð Þ

k¼1

bρ∗∗

i�k
(58)

The baseline is restored to obtain corrected count rate estimations bρ∗∗∗
such as:

∀k∈ ⟦1; ξ⟧,

Si�k ∈ 1; 2; 3; 4f g, bρ∗∗∗

i�k
¼ bρ∗∗

i�k
(59)

Si�k ∈ 5; 6; 7; 8f g, bρ∗∗∗

i�k
¼ bρ∗∗

i�k
þUL� LL (60)

Figure 11 illustrates the baseline restoration: the correction algorithm enables the detection of a

source originally hidden by shadow effect. A simulation study has shown the significant gain

in detection probability with the maintaining of a stable false detection rate [24].

The conception of a RPM primarily consists in designing detection blocks with a maximized

sensitivity according to the application view and cost-effectiveness strategies. Signal

processing is then to be implemented in the system in order to tune its detection capabilities.

Figure 11. Signal and state evolutions over the simulation of a source passing into a dense vehicle.
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The improvement of RPM performance forms an active topic of research. It has notably been

established that the spectral analysis of the signal, even for unresolved detectors, allows a gain

in detection performance [25]. Another upgrade can be achieved by time series analysis

techniques, especially when RPM are deployed in a network, which allows the implementa-

tion of correlation methods [26]. Figure 12 presents the schematic of a RPM network

implementing n channels and dedicated to moving source detection.

The network configuration enables two complementary types of detection: the first one based

on traditional temporal analysis of individual channel H1∣bρ1,…, bρn, the second one based on

frequency analysis, searching for a phase ϕ maximizing the correlation between channels

H1∣φρ̂
1
,…, ρ̂n

. When the network is linear and the source carrier has a constant velocity, this

phase corresponds to the periodic echo of the signal increase on the first channel as seen on the

other channels. The difference in nature between both methods introduces a quantitative

information gain, and thus a potential improvement in detection capability [27–29].

A correlation vectorRφ is calculated by scanning the product of all channels with phaseφ such as:

∀φ∈ 1; ξ�1
n�1

� �� �� �
,

Rφ ¼ bρ∗∗∗

1, i�1
bρ∗∗∗

2, i� φþ1ð Þ
bρ∗∗∗

3, i� 2φþ1ð Þ…
bρ∗∗∗

j, i� j�1ð Þφþ1½ �…
bρ∗∗∗

n, i� n�1ð Þφþ1½ �

Rφ ¼
Yn

j¼1

bρ∗∗∗

j, i� j�1ð Þφþ1½ �

(61)

For the vehicle passing from detectors 1 to n.

The algorithm firstly determines a phase φ0 maximizing Rφ, then the significance of the

associated temporal correlation is evaluated with a hypothesis test in which H0 is the null

hypothesis (no echo detected) and H1 is the detection hypothesis (echo detected). Values of Rφ

are compared to the mean and variance of their distribution. Mean R and empirical variance

σ2(Rφ) are calculated according to:

R ¼
n� 1

ξ� 1

� � X
ξ�1
n�1b c

φ¼1

Rφ (62)

Figure 12. Schematic of a system based on correlation detection.
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σ2 Rϕ

� �
¼

n� 1

ξ� 1

� � X
ξ�1
n�1b c

φ¼1

Rφ � R
� �2

(63)

The detection test reads:

Algorithm 2:

If Rϕ0
> RþQ1�α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2σ2 Rϕ

� �q

Then H1 is accepted

Else H0 is accepted

The use of the empirical variance σ2(Rϕ) ensures a significant gain in detection capability under

challenging signal-to-noise ratios [27, 28]. However, an algorithmic refinement is achieved

with the introduction of a Normal law a priori on count rate distributions [29]. Thus, a modified

variance σ2(Rϕ) is obtained by the estimation of individual variances σ2(ρj, i) provides by the

nonlinear filter (cf. Eq. (37)) for every detector j and memory slot i. Its calculation is presented

in the following recursive formula:

∀k∈ 2; n½ �½ �& ∀φ∈ 1;
ξ� 1

n� 1

� �� �� �
,

σ2 Rϕ

� �
k ¼ σ2 Rϕ

� ��� ��
k�1

σ2 bρ∗∗

k, i� k�1ð Þϕþ1

� �
þ bρ∗∗

k, i� k�1ð Þϕþ1

� �2
� �

þ σ2 bρ∗∗

k, i� k�1ð Þϕþ1

� �
Rϕ

��
k�1

� �2

(64)

with

Rφ

��
k�1

¼ bρ∗∗

1,1 (65)

σ2 Rφ

� ���
1
¼ σ2 bρ∗∗

1, i�1

� �
(66)

The detection algorithm mixes the detection according to each individual channel with the

detection using the correlation factor. In both cases, a decision threshold (DT) is calculated as a

function of a false detection risk α. Let DTj,ϕ the decision threshold associated with the

channel j and the phase ϕ reads:

∀j∈ 1; n½ �½ �& ∀φ∈ 1;
ξ� 1

n� 1

� �� �� �
,

DTj,φ ¼ Q1�α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2σ2 bρ∗∗

j, i� j�1ð Þφþ1

� �r
(67)

And let DTRϕ
be the decision threshold associated with the correlation factor Rϕ such as
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∀φ∈ 1;
ξ� 1

n� 1

� �� �� �
,

DTRϕ
¼ Q1�α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2σ2 Rφ

� ���
n

q
(68)

Algorithm 2 presents the mechanism of the cumulative detection.

Algorithm 3:

If ∀j∈ 1; n½ �½ �&∀φ∈ 1; ξ�1
n�1

� �� �� �
, DTj,φ � bρ∗∗

j, i� j�1ð Þ€oþ1 ≤ 0,

And if ∀φ∈ 1; ξ�1
n�1

� �� �� �
, DTRφ

�Rφ ≤ 0,

Then, the detection hypothesis H0 is accepted and the hypothesis H1 is rejected,

Else if ∃ϕ∈ 1; ξ�1
n�1

� �� �� �
&∃j0 ∈ 1; n½ �½ �, DTj,φ � bρ∗∗

j, i� j�1ð Þφþ1 > 0,

Then, the detection hypothesis H1 is accepted and the hypothesis H0 is rejected,

Or if ∃φ0
∈ 1; ξ�1

n�1

� �� �� �
, DTRφ0

� Rφ0 > 0,

Then, the detection hypothesis H1 is accepted and the hypothesis H0 is rejected,

And, the velocity of the source is equal to L
φ0∆t where L is the distance between detectors.

It has been proven in [27–29], the largely significant added-value in term of detection capabil-

ity permits by the implementation of the correlation based detection. The true detection rate is

increased while maintaining very low false alarm rate. Figure 13 presents a system realized by

the CEA which implements the correlation method [30].

All of these algorithms will be implemented in a dedicated DSP card [3] and the compliance of

the RPM system will the standard ANSI42-35 will be tested in due course [31].

Figure 13. Photography of the RPM prototype (Katrina) developed by the CEA in the framework of the SECUR-ED

project funded by the European Commission [30].
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6. Conclusion

Different count rate processing methods have been presented in this chapter: an adaptive

smoother, a background discrimination method and two algorithms improving the detection

of moving sources. In these algorithms, frequentist inferences are realized on the basis of

measured data. These types of approaches are well suited for real-time processing, allowing

taking decision with very few iterations, compared to Bayesian inferences which are more

suited for post-processing analyses.

The nonlinear smoother is proved to be a key building block in radiation monitors, delivering a

fine estimation of count rate expectation with a minimized associated variance. Both expectation

and variance estimations are used to apply hypothesis tests addressing many problematics in

radiation monitoring such as for instance those already developed hereby: compensation and

RPM network.
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