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Abstract

This chapter discusses the propagation of TM and TE waves in the one-dimensional
gyrotropic magnetophotonic crystals with ferrite and plasma-like layers. Elements of the
transfer matrix are calculated in closed analytical form on the base of electrodynamic
problem rigorous solution for arbitrary location of the gyrotropic elements on the struc-
ture period. Dispersion equation of the layered periodic structure with gyrotropic ele-
ments is obtained. Dispersion properties of the structure for TE and TM modes are
analyzed for different configurations of magnetophotonic crystals (ferrite and plasma-
like layers). Existence areas of transmission bands for surface and bulk waves are
obtained. The effect of problem parameters on the dispersion properties of magne-
tophotonic crystals for TM and TE modes is investigated. Regimes of complete trans-
mission of wave through limited magnetophotonic crystal are analyzed for bulk and
surface waves.

Keywords: magnetophotonic crystal, gyrotropic media, dispersion diagrams,
TE and TM modes, bulk and surface waves

1. Introduction

Photonic crystals (PCs) are artificial periodic structures with spatially modulated refractive

index in one or more coordinates [1, 2]. Their outstanding optical properties are due to the

existence of frequency band gaps where the propagation of electromagnetic waves is impossi-

ble. Application of these structures became very attractive for modern optoelectronics which

uses the various waveguides, resonators, sensors, and other devices on the basis of PC [3, 4].

Moreover, the control of the PC structure characteristics is the important problem that is

usually solved using external electric or magnetic fields. These methods of providing control-

lability are based on the variation of refractive index of special materials such as liquid crystals
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and magnetic materials [5, 6]. Since these sensitive materials are anisotropic, then theoretical

analysis of their properties is more complicated.

When at least one of the PCs’ unit cell components is a magnetically sensitive (gyrotropic)

material, they exhibit unique magneto-optical properties and identified as magnetophotonic

crystals (MPCs). Investigations of the MPCs are begun for simplest one-dimensional structures

[7, 8]. However, one-dimensional MPCs are the basis elements for various active field-

controlling applications so far [9, 10]. Changing of the permeability by external magnetic field

is one of the main phenomena that allow developing electronically tuned devices in different

frequency bands: filters, circulators and so on [11–13].

Along with the properties inherent in conventional PCs, these structures have additional

optical and magneto-optical properties which considerably expand their functionality. Kerr

effect, Faraday rotation and optical nonlinearity can be enhanced in MPC due to light localiza-

tion within magnetic multilayer. Magneto-optical system with large Faraday or Kerr rotation

can be used for effective optical isolators [14, 15], spatial light-phase modulators [16] and

magnetic field and current sensor [17] development. Furthermore, one can obtain stronger

enhancement of the magneto-optical phenomena due to resonant effects in the MPCs [18],

which characterized by specific polarization properties. Using PCs with magneto-optical layers

provides possibility of control of optical bistability threshold in structure based on graphene

layer [19]. It should be noted that not only magnetic materials are suitable for MPC. Namely,

one-dimensional PC with plasma layers can be tunable by external magnetic field [20].

A number of applications of the MPCs are inspired by their nonreciprocal properties. For

example, special spatial structure of the MPC layers provides the asymmetry of dispersion

characteristics and, as a result, the effect of unidirectional wave propagation [21]. This phe-

nomenon allows enhancing field amplitude in the MPC without any periodicity defects. In this

case, the so-called frozen mode regime occurs instead the defect mode one.

One of the unique properties of gyrotropic materials is the possibility of negative values of

material parameters under the certain conditions. Usually, these are so-called single-negative

media that are divided into epsilon-negative media (plasma) and mu-negative ones

(gyrotropic magnetic materials). The term “double-negative media” or “left-handed materials”

is used for media with negative values of both permittivity and permeability and often

replaced by term “metamaterials.” Application of metamaterials in one-dimensional PC sys-

tems results in unusual regularities of bulk and surface wave propagation and is the subject of

experimental and theoretical research [22, 23].

Theoretical description of the various types of one-dimensional PCs is usually based on the

transfer-matrix method of Abelès [24] that was applied by Yeh et al. to periodic layered media

[25]. This method cannot be applied in general case for anisotropic multilayer structures

because of mode coupling. However, this is possible in special cases, namely, in two-

dimensional model of wave propagation in periodic layered media [26]. This case is consid-

ered in this chapter. Such an approach makes it possible to simplify significantly the analysis of

physical phenomena in complex layered media with various combinations of gyrotropic and

isotropic elements. Moreover using well-known permutation duality principle of Maxwell’s
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equations results in a reduction of unique combinations number. In turn, this allows better

understanding of regularities of bulk and surface wave propagation in one-dimensional MPC

and finding new modes for applications in modern microwave, terahertz and optical devices.

2. Formulation and solution of the problem for modes of gyrotropic

periodic structures

2.1. Basic relationships

We study electromagnetic wave propagation in periodic structure in general case with

bigyrotropic layers (one-dimensional MPC) (Figure 1). Each of two layers on the structure

period L = a + b is an anisotropic medium (plasma or ferrite or their combinations). Their

permittivity and permeability are characterized by tensor values of standard form [26]:

εj
$

¼

εj �iεaj 0

iεaj εj 0

0 0 ε∥j

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

, μj

$

¼

μj �iμaj 0

iμaj μj 0

0 0 μ
∥j

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

: (1)

For plasma media, the value of the permittivity is tensor, whereas the value of the permeability

is scalar. Such media are called electrically gyrotropic. It is opposite for the ferrite media; the

permeability is tensor, whereas permittivity is scalar. Such media are usually called magneti-

cally gyrotropic. If the permittivity and permeability are simultaneously described by the

tensors (Eq. (1)), such media are called gyrotropic or bigyrotropic. The material parameters

included in tensors ε
$

j and μ
$

j are defined by the value of the external bias magnetic field

H
!

0 ¼ z
!

0H0, which is directed along Oz axis.

The study of the general case of gyrotropic media with material parameters of form (Eq. (1))

is reasonable, primarily because it allows using the permutation duality principle when

obtaining main equations for fields and characteristic Eqs. [26]. According to this principle

generalized for gyrotropic media, namely, when simultaneously the substitution of fields

Figure 1: Schematic of the periodic structure.
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E
!

$H
!

and material parameters ε
$
$ � μ

$
is done, the receiving of general equations, from

which the equations for magneto-gyrotropic media (ferrite), electro-gyrotropic media

(plasma), and gyrotropic media (bianisotropic media) can be obtained easily, turns to be more

simple than in each of the mentioned particular cases separately.

Indeed, it follows from Maxwell equations:

rot E
!

¼ �
1

c

∂B
!

∂t
, rot H

!

¼
1

c

∂D
!

∂t
, (2)

where D
!

¼ε
$
E
!

is inductance vector of electric field and B
!

¼μ
$
H
!

is inductance vector of magnetic

field. Components of these vectors can be written as:

Dx ¼ ε
$
E
!

� �

x
¼ εEx � iεaEy, Dy ¼ ε

$
E
!

� �

y
¼ iεaEx þ εEy, Dz ¼ ε

$
E
!

� �

z
¼ ε∥Ez,

Bx ¼ μ
$
H
!

� �

x
¼ μHx � iμaHy, By ¼ μ

$
H
!

� �

y
¼ iμaHx þ μHy, Bz ¼ μ

$
H
!

� �

z
¼ μ

∥
Hz:

In general case, one can obtain two connected differential equations for longitudinal compo-

nents of electromagnetic fields Ez andHz (along Oz axis and the direction of bias magnetic field

H
!

0 ¼ z
!

0H0). In two-dimensional case (∂/∂z = 0), these equations can be broken up into two

independent Helmholtz equations with respect to the selected longitudinal field components

Ez and Hz (TM and TE waves) [26]. Indeed, we can show it for two-dimensional case and

harmonic dependence exp(�iωt) of the fields on time t.

Using the relation between field components Ez and Hz via transverse field components, one

can obtain the Helmholtz equation for two polarizations Ez and Hz, respectively:

∂2Ez

∂x2
þ

∂2Ez

∂y2
þ k2μ

⊥
ε∥Ez ¼ 0,

∂2Hz

∂x2
þ

∂2Hz

∂y2
þ k2ε⊥μ∥

Hz ¼ 0: (3)

Here:

μ
⊥j ¼ μj 1�

μ2
aj

μ2
j

 !

, ε⊥j ¼ εj 1�
ε2aj

ε2j

 !

:

Eq. (3) describes TMwaves (Hx,Hy,Ez), Ez-polarization (s-polarization) and TEwaves (Ex,Ey,Hz),

Hz-polarization (p-polarization). Therefore, the vector of the electric field for s-polarization is

directed perpendicular to the xy plane and the vector of the electric field for the p-polarization is

parallel to this plane. It is necessary to use the boundary conditions for the tangential compo-

nents of the electric and magnetic fields at the media interfaces to solve the boundary electrody-

namic problem for the eigenvalues and the eigenfunctions of the Laplace operator. We use the

conditions of continuity of the components Ez andHy for TMwaves andHz and Ey for TE waves.
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This analysis shows the important conclusion that in the general case of a gyrotropic medium,

the fields of TM and TE waves with respect to the direction of the bias magnetic field H
!

0 in the

two-dimensional case are divided into two independent solutions of the Maxwell equations.

Moreover, Eq. (3) and the expressions for the tangential components of fields Ey andHy yield the

permutation duality principle for the TM and TE waves. These equations are transformed each

other after replacing the component of field Ez by Hz, and simultaneously, the effective perme-

ability μ⊥ should be replaced by the effective permittivity (�ε⊥) and ε∥ by (�μ∥). The boundary

conditions for the components Ey andHy also satisfy the permutation duality principle. Hence, it

is possible to simplify this general electrodynamic problem, and we can consider only one type

of TM or TE waves for any kind of media in order to obtain a solution for another type of wave.

Below, we consider the propagation of Ez-polarized (TM) waves in a gyrotropic PC structure.

To determine the eigenvalues and the corresponding eigenfunctions of the two-layer gyromag-

netic MPC, we consider Helmholtz equation for the Ez-polarization with the corresponding

boundary conditions for the tangential components of the fields Ez and Hy at the interfaces of

the periodic structure layers. For the case of Hz-polarization (TE waves), it is necessary to use

the permutation duality principle in the solution for TM waves.

The solution of the Helmholtz equation for TM waves for both tangential components of the

fields Ez and Hy can be written in the following form:

E1
z x; yð Þ ¼ an�1e

iξ1 x� n�1ð ÞLð Þ þ bn�1e
�iξ1 x� n�1ð ÞLð Þ

� �

eiβy, b < x� n� 1ð ÞL < L

H1
y x; yð Þ ¼

ξ1
�kμ

⊥1

an�1g
þ
1 e

iξ1 x� n�1ð ÞLð Þ � bn�1g
�
1 e

�iξ1 x� n�1ð ÞLð Þ
� �

eiβy,
(4)

E2
z x; yð Þ ¼ cne

iξ2 x�nLð Þ þ dne
�iξ2 x�nLð Þ

� �

eiβy, 0 < x� nL < b

H2
y x; yð Þ ¼

ξ2
�kμ

⊥2

cng
þ
2 e

iξ2 x�nLð Þ � dng
�
2 e

�iξ2 x�nLð Þ
� �

eiβy:
(5)

Here, n = 1, 2,… is a number of the period; ξj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2μ
⊥jε∥j � β2

q

are the transverse wave num-

bers in gyrotropic layers in the direction of the Ox axis; β is the longitudinal wave number of

the MPC; an, bn, cn, and dn are the wave amplitudes in the layers; and g�j ¼ 1� i
μaj

μjξj
β.

Let us note one feature in the expressions for the electromagnetic fields (Eqs. (4) and (5)). The

presence of gyrotropy in the layers (μaj 6¼ 0) leads to the fact that the distributions of the

amplitude of the fields in the layers differ by factors g�j for the forward and backward waves,

which propagating in the layers along the direction of periodicity.

To find the dispersion equation that relates the longitudinal wave number β with the structure

parameters for a given frequency ω, it is necessary to use the boundary conditions on the

interfaces of the layers and the Floquet-Bloch theorem [27, 28] for the periodic structure. Using

the conditions of continuity of the Ez and Hy components of the fields at the interfaces x�

(n� 1)L = 0 and x = nL, we get matrix equations:
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an�1

bn�1

� 	

¼
a11 a12

a21 a22

� 	

cn

dn

� 	

,
cn

dn

� 	

¼
b11 b12

b21 b22

� 	

an

bn

� 	

: (6)

where

a11 ¼
1

2
g�1 þ

ξ2
ξ1

μ
⊥1

μ
⊥2

gþ2

� 	

e�iξ2L, a12 ¼
1

2
g�1 �

ξ2
ξ1

μ
⊥1

μ
⊥2

g�2

� 	

eiξ2L, (7)

a21 ¼
1

2
gþ1 �

ξ2
ξ1

μ
⊥1

μ
⊥2

gþ2

� 	

e�iξ2L, a22 ¼
1

2
gþ1 þ

ξ2
ξ1

μ
⊥1

μ
⊥2

g�2

� 	

eiξ2L: (8)

b11 ¼
1

2
g�2 þ

ξ1
ξ2

μ
⊥2

μ
⊥1

gþ1

� 	

eiξ2ae�iξ1a, b12 ¼
1

2
g�2 �

ξ1
ξ2

μ
⊥2

μ
⊥1

g�1

� 	

eiξ2aeiξ1a, (9)

b21 ¼
1

2
gþ2 �

ξ1
ξ2

μ
⊥2

μ
⊥1

gþ1

� 	

e�iξ2ae�iξ1a, b22 ¼
1

2
gþ2 þ

ξ1
ξ2

μ
⊥2

μ
⊥1

g�1

� 	

e�iξ2aeiξ1a: (10)

Eliminating the coefficients cn, dn in the matrix equations (Eq. (6)), we obtain the relation for the

coefficients in identical layers for two neighboring periods of the structure:

an�1

bn�1

� 	

¼
a11 a12

a21 a22

� 	

cn

dn

� 	

¼
a11 a12

a21 a22

� 	

b11 b12

b21 b22

� 	

an

bn

� 	

¼
A B

C D

� 	

an

bn

� 	

: (11)

The elements of the ABCDmatrix are calculated by the rule of multiplying two matrices. Using

the Eqs. (7)–(10), we find the elements of the given transfer matrix, namely:

A ¼ cos ξ2b� i
1

2

ξ1
ξ2

μ
⊥2

μ
⊥1

þ
ξ2
ξ1

μ
⊥1

μ
⊥2

þ
β2

ξ1ξ2

μ
⊥2

μ
⊥1

μa1

μ1

�
μ
⊥1

μ
⊥2

μa2

μ2

� 	2
" #

sin ξ2b

( )

e�iξ1a, (12)

D ¼ cos ξ2bþ i
1

2

ξ1
ξ2

μ
⊥2

μ
⊥1

þ
ξ2
ξ1

μ
⊥1

μ
⊥2

þ
β2

ξ1ξ2

μ
⊥2

μ
⊥1

μa1

μ1

�
μ
⊥1

μ
⊥2

μa2

μ2

� 	2
" #

sin ξ2b

( )

eiξ1a, (13)

B ¼ i
1

2
sin ξ2b �

ξ2
ξ1

μ
⊥1

μ
⊥2

þ
ξ1
ξ2

μ
⊥2

μ
⊥1

1� i
β

ξ1

μa1

μ1

�
μa2

μ2

μ
⊥1

μ
⊥2

� 	
 �2
( )

eiξ1a, (14)

C ¼ �i
1

2
sin ξ2b �

ξ2
ξ1

μ
⊥1

μ
⊥2

þ
ξ1
ξ2

μ
⊥2

μ
⊥1

1þ i
β

ξ1

μa1

μ1

�
μa2

μ2

μ
⊥1

μ
⊥2

� 	
 �2
( )

e�iξ1a
: (15)

An important property of the ABCD matrix is the unimodularity property, when the ratio

between the elements of the matrix is fulfilled: AD�BC = 1. Using the expressions for the

elements of the matrix ABCD, one can show that this condition is satisfied. We note that when

ξ1 is a real number, then the elements of the matrix A =D∗
и B =C∗ are pairwise conjugate.

The resulting matrix equation (Eq. (11)), which determines the relationship of the unknown

coefficients in two identical layers of different periods of the periodic structure and the
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Floquet-Bloch theorem, allows us to find the characteristic (dispersion) equation for determin-

ing the previously introduced unknown longitudinal wave number β for a wave propagating

along gyrotropic layers (along the Oy axis) and the Floquet-Bloch wave number K. According

to the Floquet-Bloch theorem in its matrix formulation, one can obtain

A B

C D

� 	

an

bn

� 	

¼ e�iKL an

bn

� 	

: (16)

The phase factor e�iKL is the eigenvalue of the transfer-matrix ABCD, which is determined

from the characteristic equation:

e�iKL ¼
1

2
AþDð Þ � i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�
1

2
AþDð Þ


 �2
s

: (17)

The unknown real values of the roots of the characteristic equation have the form:

KTM β
� �

¼
1

L
arccos cos ξ2b cos ξ1a�

1

2

ξ1
ξ2

μ
⊥2

μ
⊥1

þ
ξ2
ξ1

μ
⊥1

μ
⊥2

þ

þ
β2

ξ1ξ2

μ
⊥2

μ
⊥1

μa1

μ1

�
μ
⊥1

μ
⊥2

μa2

μ2

� 	2

2

6

6

6

6

4

3

7

7

7

7

5

sin ξ2b sin ξ1a

8

>

>

>

>

<

>

>

>

>

:

9

>

>

>

>

=

>

>

>

>

;

: (18)

It is easy to show that this expression is transformed to the well-known solution of the

dispersion equation for the case of two magnetodielectric layers (μa1 =μa2 = 0) [25].

Note that the longitudinal wave number enters into equation as β squared. This indicates that

its absolute value is the same for opposite directions of wave propagation along the Oy axis.

That is, the dispersion is the same for forward and backward waves propagating along the

layers. However, the field distributions for the case of gyrotropic media in the direction of

periodicity for forward and backward waves are different.

Using the permutation duality principle, we found the solutions of the electrodynamic prob-

lem for TE wave propagation in the gyrotropic MPC. For this case, we change the material

parameters according to the rule μ
$
$ � ε

$
in the transfer-matrix elements (Eqs. (12)–(15)), in

the dispersion relation, and in the solution (Eq. (18)). Then, we obtain

ATE ¼ cos ξ2b� i
1

2

ξ1
ξ2

ε⊥2
ε⊥1

þ
ξ2
ξ1

ε⊥1
ε⊥2

þ
β2

ξ1ξ2

ε⊥2
ε⊥1

εa1
ε1

�
ε⊥1
ε⊥2

εa2
ε2

� 	2
" #

sin ξ2b

( )

e�iξ1a, (19)

DTE ¼ cos ξ2bþ i
1

2

ξ1
ξ2

ε⊥2
ε⊥1

þ
ξ2
ξ1

ε⊥1
ε⊥2

þ
β2

ξ1ξ2

ε⊥2
ε⊥1

εa1
ε1

�
ε⊥1
ε⊥2

εa2
ε2

� 	2
" #

sin ξ2b

( )

eiξ1a, (20)

BTE ¼ i
1

2
sin ξ2b �

ξ2
ξ1

ε⊥1
ε⊥2

þ
ξ1
ξ2

ε⊥2
ε⊥1

1� i
β

ξ1

εa1
ε1

�
εa2
ε2

ε⊥1
ε⊥2

� 	
 �2
( )

eiξ1a, (21)
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CTE ¼ �i
1

2
sin ξ2b �

ξ2
ξ1

ε⊥1
ε⊥2

þ
ξ1
ξ2

ε⊥2
ε⊥1

1þ i
β

ξ1

εa1
ε1

�
εa2
ε2

ε⊥1
ε⊥2

� 	
 �2
( )

e�iξ1a
: (22)

Here ξ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2ε⊥1μ∥1 � β2
q

and ξ2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2ε⊥2μ∥2 � β2
q

.

It is apparent that in this case, one can write

KTE β
� �

¼
1

L
arccos cos ξ2b cos ξ1a�

1

2

ξ1
ξ2

ε⊥2
ε⊥1

þ
ξ2
ξ1

ε⊥1
ε⊥2

þ

þ
β2

ξ1ξ2

ε⊥2
ε⊥1

εa1
ε1

�
ε⊥1
ε⊥2

εa2
ε2

� 	2

2

6

6

6

6

4

3

7

7

7

7

5

sin ξ2b sin ξ1a

8

>

>

>

>

<

>

>

>

>

:

9

>

>

>

>

=

>

>

>

>

;

: (23)

In the absence of gyrotropy (εaj = 0), this solution is transformed into the well-known expres-

sion for the Bloch wave number for TE waves for the magnetodielectric PC [25].

The given elements of the transfer-matrix ABCD and the solutions of the dispersion equations

(Eqs. (18) and (23)) for both s- and p-polarizations (TM and TE waves) are suitable for analysis

of wide variety of MPCs with different material parameters: two isotropic layers on the crystal

period (dielectric, magnetic, magnetodielectric), one isotropic layer with another anisotropic

layer, two gyroelectric layers or gyromagnetic ones or a combination of them, and two

gyrotropic layers. Such an abundance of variants makes Eq. (17) universal in terms of analyz-

ing the dispersion characteristics of TE and TM waves and establishing the features of their

propagation in various one-dimensional MPCs.

2.2. Eigen regimes of MPCs

We perform the analysis of the features for the propagation of the electromagnetic waves in

different MPCs for various eigenmodes. We identified 10 variants of such regimes.

1. The crystal contains two layers of magnetodielectric: εa1 = εa2 =μa1 =μa2 = 0.

2. The crystal contains magnetodielectric layer, εa1 =μa1 = 0, and the layer of a semiconductor plasma:

εa2 6¼ 0 and μa2 = 0.

3. The crystal contains magnetodielectric layer, εa1 =μa1 = 0, and the ferrite layer: μa2 6¼ 0 and εa2 = 0.

Taking into account the permutation duality principle, we obtain equations analogous to variant 2.

4. The crystal contains magnetodielectric layer and gyrotropic one: εa1 =μa1 = 0, εa2 6¼ 0, and μa2 6¼ 0.

5. The crystal contains layer of semiconductor plasma: εa1 6¼ 0 and μa1 = 0 and the ferrite layer: εa2 = 0

and μa2 6¼ 0.

6. The crystal contains two layers of semiconductor plasma: εa1 6¼ 0, εa2 6¼ 0 and μa1 = 0,μa2 = 0.

7. The crystal contains two ferrite layers: μa1 6¼ 0,μa2 6¼ 0 and εa1 = 0, εa2 = 0.

Taking into account the permutation duality principle, we obtain equations analogous to variant 6.
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8. The crystal contains the plasma layer and gyrotropic layer: εa1 6¼ 0, εa2 6¼ 0 and μa1 = 0,μa2 6¼ 0.

9. The crystal contains the ferrite layer and gyrotropic layer: εa1 = 0, εa2 6¼ 0 and μa1 6¼ 0,μa2 6¼ 0.

Taking into account the permutation duality principle, we obtain equations analogous to

variant 8.

10. The crystal contains two gyrotropic layers μa1 6¼ 0,μa2 6¼ 0 and εa1 6¼ 0, εa2 6¼ 0

In this case, one can use solutions Eqs. (18) and (23) for TM and TE waves, respectively.

3. Analysis of the propagation of TE and TM waves in MPCs

3.1. General aspects of wave propagation in MPCs

Let us do a physical analysis of the obtained results and determine general rules of electro-

magnetic wave propagation in MPC. If the wave number K(β) is real, then the electromagnetic

wave propagates in a MPC without attenuation. These particular Floquet-Bloch wave num-

bers K(β) correspond to the transmission bands and satisfy the condition |cosK(β)L| ≤ 1. On

the other hand, a different behavior is observed when the wave number is complex: K(β)

=K
0

(β) + iK
00

(β). Such waves cannot propagate in a MPC and thus decay along the direction of

periodicity. As a result, the forbidden zones are formed that satisfied the condition |cosK(β)

L| > 1. This condition allows easy determination of the imaginary part K
00

(β) of the wave

number. When K
00

(β) 6¼ 0, then sinK
0

(β)L = 0 and K
0

(β)L =πm (where m = 0, 1, 2… are forbidden

zone numbers). As a result, we can obtain the equation for K
00

(β): chK00 β
� �

L ¼ �1ð Þm 1
2 AþDð Þ.

The value m = 0 corresponds to the zeroth forbidden zone where the wave number is purely

imaginary. It is important to distinguish two cases: the absence (εaj = 0, μaj = 0) and presence

(εaj 6¼ 0, μaj 6¼ 0) of gyrotropy in a MPC. Besides of that, if in jth layer the conditions

k2ε⊥jμ∥j� β2 < 0 or k2μ⊥jε∥j� β2 < 0 are satisfied, and in one layer ε⊥1 < 0 (orμ⊥1 < 0) and in

another layer ε⊥2 > 0(μ⊥2 > 0), then the wave in such layer would decay in amplitude along the

x-axis. This wave is a surface wave and delayed in respect to the speed of light.

3.2. Analysis of dispersion characteristics

Let us consider first the case of a MPC in the absence of gyrotropy (εaj = 0 and μaj = 0). This

structure is a periodic sequence of magnetodielectric layers. Dispersion equations for these

structures were previously considered in a simplified version by many authors. However,

the first investigation of such characteristic (dispersion) equations was carried out as early as

the nineteenth century by Rayleigh [29] in the solution of the one-dimensional Hill equation.

If the medium is periodic, then the latter equation becomes the traditional one-dimensional

Helmholtz equation. Further investigations were performed by various researchers, for

example, Brillouin [30], Yeh et al. [25], and Bass [31].

The solutions of the dispersion equations for the magnetodielectric periodic structures written

out in this section include all possible combinations of the signs andmagnitudes of the material

Dispersion Properties of TM and TE Modes of Gyrotropic Magnetophotonic Crystals
http://dx.doi.org/10.5772/intechopen.71273

55



parameters. As an example, let us consider dispersion characteristics of one-dimensional

magnetodielectric PCs for several combinations of the parameters.

Figure 2 shows dispersion curves for the value of the longitudinal wave number β = 0.9. In this

case, the periodic structure consists of two dielectrics (μ1 =μ2 =μ∥ = 1) with positive values of

permittivity ε1 = ε∥1 = 2 and ε2 = ε∥2 = 9. The normalized width of the layers is a/L = 0.8 and b/

L = 0.2. Solid and dotted curves denote the real and imaginary parts of the Floquet-Bloch wave

number, respectively. The imaginary parts of the Floquet-Bloch wave number characterize the

degree of wave decay in the forbidden bands. The wave decay is different in forbidden zones.

Moreover, the maximum attenuation is observed for the zeroth zone.

If we consider a MPC consisting of two different magnetodielectrics, then there are no funda-

mental differences.

Figure 3 shows the dispersion diagrams for PC with two dielectric layers (μ1 =μ2 = 1) on the

structure period and with different signs of the permittivities (ε1 > 0 and ε2 < 0), namely,

ε1 = ε∥1 = 2 and ε2 = ε∥2 = � 6. First the problem of wave propagation at the boundary of two

half-spaces from dielectrics with opposite signs of permittivity values was considered by

Sommerfeld [32].

The existence of surface waves at the boundaries of PC layers is illustrated in the dispersion

diagram (Figure 3) for TE waves (p-polarization). The region of these waves existence is

located below the light line k = β(ε1)
�1/2 (the solid line on the diagram). Taking into account

the identical physical nature of the surface wave existence in PC and Zenneck-Sommerfeld

wave for two media [33], this regime can be classified as a modified surface Zenneck-

Sommerfeld wave. For this wave, the condition β ¼ k
ffiffiffiffiffiffiffiffiffi

ε1ε2
ε1þε2

q

is satisfied approximately, as

follows from the dispersion equation. It should be noted that if we consider PC with magnetic

layers, then a surface wave will exist for s-polarization.

Figure 2: Dispersion characteristics of the one-dimensional photonic crystal.
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With the advent of new artificial media (metamaterials) for which the permittivity and perme-

ability are simultaneously negative, optoelectronics devices with new functionalities are devel-

oped. In this connection, it is expedient to consider a MPC, one of whose layers on the

structure period is a metamaterial (e.g., ε2 < 0,μ2 < 0).

In Figure 4, dispersion diagrams are calculated for the one-dimensional PC with alternative

layers of magnetodielectric and metamaterial (ε2 < 0,μ2 < 0). The following parameters were

Figure 3. Dispersion diagrams for both polarizations.

Figure 4. Dispersion diagram of the photonic crystal with metamaterial layer.
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selected: ε1 = 4,μ1 = 3, ε2 = � 2,μ2 = � 6, and a/L = 0.5. Figure 5a and b shows the dispersion

characteristics for such MPC at the values β = 0 and β = 2π/L, respectively. On the presented

graphs, identical dispersion diagrams for both polarizations are seen. Therefore, it is a case of

polarization indifference for the forbidden zones and transmission ones. For the presented

case, the refractive indices of the layers are the same in absolute value and have phase

difference of π, namely, n1 ¼ ffiffiffiffiffiffiffiffiffiffi

ε1μ1

p ¼
ffiffiffiffiffi

12
p

and n2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ε2j je�iπ μ2

�

�

�

�e�iπ
q

¼ e�iπ
ffiffiffiffiffi

12
p

. For this case,

the complete Floquet-Bloch wave transmission in PC for two polarizations is possible.

It is clear that there are transmission bands only for surface slow waves (modified Zenneck-

Sommerfeld waves) that are located below the light line ω
ffiffiffiffiffi

12
p

¼ βc. For bulk waves (k2εjμj > β
2),

the transmission bands degenerate into curves. These curves are described by equation (2πm)2 =

(k2|εjμj|� β2)L2 (m =1, 2,…) for both polarizations.

Dispersion curves for real K
0
and imaginary K

00
values (Figure 5a and b) show that the wave

decay for both polarizations is the same. The propagation of waves is observed at discrete

points on which the conditions K
00
= 0 and |cosK(β)L| = 1 are satisfied. These points are located

outside the transmission bands of surface waves. The phenomenon of polarization indifference

makes it possible to develop devices with a finite number of periods of a MPC in which a

complete narrow-band propagation of the wave is possible simultaneously for a whole spec-

trum of discrete frequencies and both polarizations [34].

We now turn to an analysis of the propagation of waves in MPC consisting of a magnetodi-

electric and a semiconductor plasma layer [35]. It is advisable to consider two cases in the

presence of gyrotropy of the medium (εa2 6¼ 0), when ε⊥2 > 0 and ε⊥2 < 0 for TE waves. We note

that the dispersion characteristics for TM waves are the same as for a conventional magnetodi-

electric. Let us first consider the features of TE wave propagation inMPCwhen the plasma layer

gyrotropy is such that condition ε⊥2 > 0 (εa2 < ε2) is fulfilled. From an analysis of the solutions of

the dispersion equation, it follows that in the periodic structure at such a value of the effective

permittivity of a plasma medium, there can exist two modes of TE wave propagation. The first

Figure 5. Dispersion characteristics for different values of longitudinal wavenumber: (a) β = 0; (b) β = 2π/L.
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mode is bulk waves whose domain of existence is determined by the simultaneous fulfillment of

two conditions: k2ε⊥1μ∥1� β2 > 0 and k
2ε⊥2μ∥2� β2 > 0. The second mode is the propagation

mode of gyrotropic surface waves. This mode is observed when three conditions are fulfilled

simultaneously: k2ε⊥1μ∥1� β2 < 0, k2ε⊥2μ∥2� β2 < 0, and ξ1
ξ2

ε⊥2
ε1

þ ξ2
ξ1

ε1
ε⊥2

þ
β2

ξ1ξ2

ε1
ε⊥2

εa2
ε2

� �2
< 0.

If the above conditions are satisfied, then the existence of real values of the Floquet-Bloch wave

number other than zero is possible when the condition |cosK(β)L| ≤ 1 is fulfilled for pure

imaginary values of transverse wave numbers ξ1 and ξ2.

The results of calculations of the dispersion diagram are shown in Figure 6. The calculation

was carried out with the following parameters: a/L = 0.8, μ1 =μ2 =μ∥1 =μ∥2 = 1, ε1 = 2, ε2 = 4,

εa2 = 3.2, and ε⊥2 = 1.44. The solid line shows the light line for the first layer on the period

of the structure. It can be seen from the figure that when the conditionsk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ε⊥2μ∥2

p

< β,

k
ffiffiffiffiffiffiffiffiffiffiffi

ε1μ∥1

p

< β, and ε⊥2
ε⊥2j j

β2

ξ1j j ξ2j j
ε1
ε⊥2j j

εa2
ε2

� �2
� ξ1

ξ2

�

�

�

�

�

�

ε⊥2j j
ε1

þ ξ2
ξ1

�

�

�

�

�

�

ε1
ε⊥2j j

� �


 �

> 0 are satisfied, there exists a

region of real values of the Floquet-Bloch wave number for which the gyrotropic surface wave

regime is observed (more shaded area of the transmission zone).

In the case ε⊥2 < 0, as for PC with dielectric layers, the regime of a modified Zenneck-

Sommerfeld surface wave can exist in MPC. However, in addition to that wave, there is also a

gyrotropic surface wave for other parameters of the problem. Indeed, such a wave exists when

both transverse wave numbers in two layers are pure imaginary ξ21 < 0; ξ22 < 0
� �

. Also under

these conditions and ε⊥2 < 0, the condition
β2

ξ1j j ξ2j j
ε1
ε⊥2j j

εa2
ε2

� �2
<

ξ1
ξ2

�

�

�

�

�

�

ε⊥2j j
ε1

þ ξ2
ξ1

�

�

�

�

�

�

ε1
ε⊥2j j must be fulfilled,

that is, opposite to the condition for positive values of the second-layer effective permittivity.

Figure 6. Band structure for TE polarization.
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Figure 7 shows the dispersion diagrams for both polarizations in the case ε⊥2 < 0. Parameters of

the problem were chosen as follows: a/L = 0.8, μ1 =μ2 =μ∥1 =μ∥2 = 1, ε1 = 2, ε2 = 4, εa2 = 6.7, and

ε⊥2 = � 7.2. The solid line k = β(ε⊥1μ∥1)
�1/2 separates the areas of the existence of bulk waves

and surface waves for p-polarization. One area relates to the modified Zenneck-Sommerfeld

waves, and the other one relates to the gyrotropic surface wave which also exists for positive

values of the effective permittivity, as shown above. We note that in the transmission bands of

TE waves in dispersion diagrams, there are two regions in which surface waves propagate.

The case of MPC with a magnetodielectric and ferrite layer is analogous to that considered

earlier by virtue of the permutation duality principle. Let us now consider the following case,

when both layers on the structure period are ferrite with different material parameters. In this

case, modes of bulk wave’s existence in the transmission bands can be observed when two

conditions ξ21 ¼ k2μ
⊥1ε∥1 � β2 > 0 and ξ22 ¼ k2μ2⊥ε∥2 � β2 > 0 are fulfilled. Regime of surface

waves is realized when opposite conditions (ξ21 < 0, ξ22 < 0) and also the additional condition

are fulfilled:

μ
⊥1

μ
⊥1

�

�

�

�

μ
⊥2

μ
⊥2

�

�

�

�

ξ1
ξ2

�

�

�

�

�

�

�

�

μ
⊥2

μ
⊥1

�

�

�

�

�

�

�

�

þ
ξ2
ξ1

�

�

�

�

�

�

�

�

μ
⊥1

μ
⊥2

�

�

�

�

�

�

�

�

�
β2

ξ1ξ2j j

μ
⊥2

μ
⊥1

�

�

�

�

�

�

�

�

μa1

μ1

�
μ
⊥1

μ
⊥2

μa2

μ2

� 	2
" #

< 0 (24)

Note that this condition is equally suitable for both positive and negative values of the effective

magnetic permeability of ferrite μ⊥j. Here, as in the case of the plasma semiconductor layer, the

existence of gyrotropic surface waves is possible [36].

In Figure 8, we represent the dispersion diagrams of TM waves for the considered above MPC

with two ferrite layers at the period of the structure. In the calculation, the following task

parameters were chosen: a/L = 0.5, μ1 =μ∥1 = 2, μ2 =μ∥2 = 3, ε1 = 2, ε2 = 4, μa2 = 2.9,μ⊥2 = 0.197μa1 = 0.1,

and μ⊥1 = 1.995.

Figure 7. Dispersion diagrams of the magnetophotonic crystal containing plasma layers.
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The solid line in the figure, below which the solutions of the dispersion equation are in the

regime of surface waves, is determined by the equation k = β(μ⊥1ε∥1)
�1/2. Analysis of the

dispersion equation solutions and the conditions for the existence of surface waves show that

for the chosen values of the material parameters in the ferrite MPC, there exists a range of

parameters on the dispersion diagram that corresponds to the regime of propagation of the

surface wave at the boundaries of the layers (in this figure it is marked as more shaded area in

transmission zone). We emphasize that the regime of the surface wave is realized with positive

values of the both magnetic permeabilities of the ferrite layers.

Figure 9 illustrates the case of the existence of a modified Zenneck-Sommerfeld wave for the

case when the effective magnetic permeability of one of the layers is negative. Here, the

dispersion diagrams are calculated with the following parameters of the problem: a/L = 0.85,

μ1 =μ∥1 = 2, μ2 =μ∥2 = 3, ε1 = 1.5, ε2 = 1.8, μa2 = 7.9, μ⊥2 = � 17.8, μa1 = 0.7, and μ⊥1 = 1.755.

Figure 10 illustrates the evolution of dispersion diagrams at change of ferrite effective mag-

netic permeability μ⊥2(μa2 = 5.6; 5.8; 6.1) for a/L = 0.83, μ1 =μ∥1 = 2, μ2 =μ∥2 = 3, ε1 = 4, ε2 = 2, and

μa1 = 0.4. A darker shade shows the transmission bands in which the conditions of existence of

surface waves are fulfilled. The change of the bias magnetic field value leads to a significant

change of the parameters of these areas. An increase in the value of the effective magnetic

permeability μ⊥2 owing to the magnitude μa2 results in a change in the width and location of

the transmission band of the modified Zenneck-Sommerfeld surface wave.

Figure 11 shows dispersion diagrams for the modified Zenneck-Sommerfeld surface wave of

MPC with two ferrite layers on the structure period at change of width of the layer b (b/

L = 0.3; 0.5; 0.7; 0.8) with μ⊥2 < 0 and for the following parameters of the problem: μ1 =μ∥1 = 2,

μ2 =μ∥2 = 3, ε1 = 4, ε2 = 2, μa1 = 0.4, μ⊥1 = 1.92, μa1 = 5.6, and μ⊥2 = � 7.45.

Increase of the second-layer width b leads to an expansion of existence area of surface waves

with a simultaneous shift of the bandwidth toward the value β = 0 (Figure 11a and b). The

Figure 8. Band structure of the ferrite magnetophotonic crystal.
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largest existence area of surface waves is realized in dispersion diagram for approximately

equal values of the layer thicknesses. Further increase of the parameter b is accompanied by a

displacement of this area to the opposite direction (Figure 11c and d). Thus the surface wave

modes in a ferrite MPC are determined both by the material parameters of the system and by

the width of the layers on the period of the structure.

Let us move on the dispersion diagrams for two bigyrotropic layers on the structure period.

Taking into account the complete symmetry of the dispersion for TE and TMwaves, the case of

polarization indifference can be realized in this case. We will show this by example.

Figure 12 shows the dispersion diagrams for TE and TM waves for MPC consisting of two

bigyrotropic layers on the period of the structure. Figure 12a corresponds to the following

Figure 9. Dispersion diagrams of the ferrite magnetophotonic crystal for both polarizations.

Figure 10. Dispersion diagrams for different values of bias magnetic field: (a) μa2 = 5.6; (b) μa2 = 5.8; (c) μa2 = 6.1.
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values of the parameters: a/L = 0.85, μj =μ∥j = 2, εj = ε∥j = 2, εa1 =μa1 = 0.5, εa2 =μa2 = 5.2, μ⊥1 = 1.875,

and μ⊥2 = � 11.52. In Figure 12b, only the values of the effective permittivity and permeability

of the second layer differ: εa2 =μa2 = 6.8.

The solid lines in the figures distinguish the area of fast (upper part of figures) and slow wave

(the lower part of figures). The complete identity of the dispersion diagrams for the transmis-

sion bands of both surface and bulk waves follows from the figures and formulas (18) and (23).

By changing the bias magnetic field, it is possible to control the width and location of trans-

mission bands for both polarizations.

Dispersion diagrams in Figure 13 correspond to the case when only the surface wave trans-

mission bands for both polarizations are realized. The parameters of the problem were chosen

as follows: a/L = 0.28, μ1 =μ∥1 = 1.5, μ2 =μ∥2 = 2, ε1 = ε∥1 = 1.2, ε2 = ε∥2 = 1.8, εa1 = 4.95, εa2 = 1.7,

μa1 = 0.7, and μa2 = 5. The polarization sensitivity of the MPC is realized in this case. Only the

surface waves with certain polarization can propagate through the periodic structure for

defined values of parameters k and β.

Figure 11. Dispersion diagrams for different values of second layer thickness: (a) b/L = 0.3; (b) b/L = 0.5; (c) b/L = 0.7; (d) b/L = 0.8.
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Therefore, we have considered the main features of the propagation of TE and TM waves in

various magnetophotonic gyrotropic crystals. Important application of this one-dimensional

PC theory is the problem of the electromagnetic waves scattering by a structures with limited

number of periods.

4. Scattering of a plane wave by a MPC

In this section, the scattering of the plane wave on gyromagnetic MPC with N periods is

considered. When a p-polarized plane wave is scattered on MPC with a limited number of

periods, the problem is divided into three stages. At the first stage, the problem of scattering

of a plane wave on the first gyromagnetic layer of MPC is solved. In the second stage, the

coupling between the field coefficients of the first and last layers of the MPC is used in the

problem for the MPC modes. And, finally, in the third stage, the problem of wave transmis-

sion from the last layer of the structure to the surrounding area is considered. Following

Figure 12. Dispersion diagrams of the bigyrotropic magnetophotonic crystal: (a) εa2 =μa2 = 5.2; (b) εa2 =μa2 = 6.8.

Figure 13. Transmission bands for surface waves in the bigyrotropic magnetophotonic crystal.
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[37], we write out the final expression for the reflection and transmission coefficients for

gyrotropic MPC:

R ¼
n21M11 þ n22M21ð Þk11 þ n21M12 þ n22M22ð Þk21½ �

n11M11 þ n12M21ð Þk11 þ n11M12 þ n12M22ð Þk21½ �
(25)

T ¼
1

n11M11 þ n12M21ð Þk11 þ n11M12 þ n12M22ð Þk21½ �
(26)

Here, matrix M is the Nth power of an ABCD matrix. Other notations correspond to Ref. [37].

Figure 14a shows the dependences of the transmission coefficient modulus on the normalized

frequency in the case of normal wave incidence (β = 0) on MPC with 20 periods in the regime of

bulk waves. Calculation parameters are the same as in Figure 7.

There are three transmission bands in the frequency range under consideration. Each of these

bands contains resonances which observed with respect to the frequency of the complete

transmission of the wave (Figure 14b and c). Frequency resonances correspond to different

modes of the periodic structure. The number of modes is determined by the number of periods

of the structure (N� 1).

Figure 15 depicts the frequency dependences of the transmission coefficient modulus in the

regime of the surface waves. In this case the incident angle of wave is greater than the angle of

total internal reflection. We can see one transmission band in this case. Inset in Figure 15 shows

enlarged frequency dependence within this band. Complete propagation is observed for each

resonant frequency of modes of the limited periodic structure.

Figure 14. The transmittance vs frequencies for the case of normal incidence ofwave: (a) spectral characteristic; (b) fine structure

of spectral characteristic in second transmission band; (c) fine structure of spectral characteristic in third transmission band.
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5. Conclusions

The electrodynamic problem is solved for the proper TE and TM waves of a MPC with two

gyrotropic layers. The elements of the transmission matrix, the dispersion equation, and its

solution are obtained analytically. An analysis of the dispersion properties of TE and TM

waves for MPC is carried out, and features of the existence of fast and slow waves are revealed.

Different regimes of gyrotropic surface waves are found. The conditions for the existence of

surface waves are established for positive and negative values of the permittivity and perme-

ability. Analytic expressions for the reflection and transmission coefficients for a limited MPC

are obtained, and their analysis is performed for the regime of bulk and surface waves.

Complete transmission of the wave through this structure is realized at resonant frequencies

that correspond to different spatial distributions of the mode field in limited MPC.
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