
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

Chapter 9

An Evaluation of Open Digital Gaming Platforms for
Developing Computational Thinking Skills

Andoni Eguíluz, Pablo Garaizar and
Mariluz Guenaga

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.71339

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

Andoni Eguíluz, Pablo Garaizar and
Mariluz Guenaga

Additional information is available at the end of the chapter

Abstract

Due to business needs and the growing importance of technology in society, in recent
years, the concept of computational thinking has emerged, especially focused on its
inclusion in compulsory education as a relevant complement, transversal to traditional
subjects. In parallel, various initiatives have developed interactive digital tools for learn-
ers to meet this type of thinking through a series of activities commonly framed as games.
In this chapter, we evaluate many of the existing free access platforms to propose peda-
gogical, design, and content approaches with which they can be compared.

Keywords: computational thinking, learning, resources, school, videogames,
visual languages

1. Introduction

Computational thinking (CT) allows you to solve problems in a way that a computer (human

or machine) can execute. In just a decade, since Wing [1] introduced the concept to the tech-

nological community, the movement has been very intense, both in the scientific community
and the educational world, as well as in the tools and content available [2]. Thanks to all these

efforts, we begin to see signs that the situation is changing, but there are many challenges [3],

starting with the still insufficient definition of the concept of CT and its structuring in the class-

room [4, 5], which involves multiple initiatives by national and international organizations.

Considering the ubiquity of computers in our digital society, CT appears to be a fundamental

skill not only for computer specialists but also for many other professionals. It is still a topic

of debate how important and transversal CT should be in compulsory education [5]; however,

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

for practical reasons, the educational world has been paying it increasingly more attention.
In recent years, many initiatives have been developed to promote CT in primary and second-

ary education due to both the social boom in CT and the lack of computer professionals in

the present and near future. The Hour of Code, Code Week, or Scratch Day are some of the

well-known global events that promote changes in curricular design toward this new digital

formation. Most of these initiatives are based on digital platforms where learner program-

mers can develop and improve their CT skills through games.

It is not this chapter’s goal to discuss the advantages of incorporating CT into education, but

to analyze the tools, their possible uses, and their limitations.

To delimit the study, we see that there are many common features among most of the cur-

rent tools geared to developing CT skills like code.org, Alice, Scratch, or Kodable: they are

open and free for general use; they focus mainly on primary and secondary school students;

and there is an explicit gaming characteristic, which facilitates the use by these learners and

applies the proven benefits of games in education [6].

It is also important that all these tools seek to avoid novice programmers having to confront

the complexity of text-based computer coding and to improve the learnability [7]. There are

several ways to address this problem such as narrative tools, flow-model tools, or specialized
output realizations [8]; in this chapter, we focus on the most common tools, which are those

that use the block-based visual programming. These tools employ user interfaces based on

visual blocks that are moved and placed constructively as an assembly game, usually with

the visual abstraction of a puzzle with its pieces and fitting ways. These blocks work as an
abstraction of programming components: sentences, data, control structures, procedures, and

so on. Consequently, they considerably limit the prior knowledge required to program and

reinforce the program structure, eliminating the possibility of syntax errors and focusing only

on the logic that exists in the activity that is to be undertaken.

In this chapter, we review a number of existing platforms with features mentioned above.

There are articles which discuss some of them [9–11]; our intention is to propose an objective

analysis, reviewing their possibilities from different perspectives. From a pedagogical point of
view, we study different dimensions that can affect the learning process in or out of class (such
as the richness of the proposed interaction, the time that can be invested, and the depth of the

exploration). From the point of view of the game, the fun and engagement generated. From a
CT point of view, we will analyze what concepts involved in CT each platform covers and to

what extent. Finally, we will analyze the degree of adaptation to the personal characteristics of

programming learners, their skills, and knowledge. We will consider, among others, aspects

such as feedback and interaction, registration possibilities, and learning design.

2. Review of platforms

In our study, we include those platforms accessible online in July 2017 that can be used through

the computer, mobile, or tablet without a paid commercial license that do not require additional

hardware or devices, that are at least available in the English language, with international and

Simulation and Gaming144

open distribution, that contain some relevant part of visual programming and that incorporate

some game characteristics. In this section, we describe them in an alphabetical order and then

analyze them according to their features in the comparison.

2.1. Alice (http://www.alice.org/)

Alice is a free creation tool for small games, animations, and interactive resources in 3D. It

is also an interactive animated story development tool that proposes a visual programming

interface strongly linked to the development of object-oriented code, with explicit concepts

such as methods, event listeners, objects like characters, or classes such as scenes. In its ver-

sion 3, it also allows a parallel development in which each block movement displays the

corresponding Java source code. It is one of the few 3D–oriented environments, making it

possible to create games and animations, while adding a degree of complexity to the need to

elaborate the scene with its models, skeletons, terrains, or cameras. Its alliance with Disney,

Pixar, and EA has facilitated the inclusion of elaborated graphics, which enrich the experience

of the project. It was created by the University of Virginia and taken over and maintained by

Carnegie Mellon University since 1997.

2.2. App Inventor (http://appinventor.mit.edu/)

App Inventor is a free creation tool for small games, animations, and interactive resources.

This tool has a closer approach to professional development than most platforms analyzed

and it is probably the least close to a game because its goal is to build apps for an Android

device. Users visually design the graphic user interface (GUI) on the one hand and its logical

operation on the other, simulated in execution on the device itself or in an Android emulator

included. System and development dependency for mobile devices causes event orientation

(sensors, button clicks, etc.) to be very present in App Inventor and determines the control
flow. It is also important to design the user interface, which has a specific section of the tool
(Designer) in addition to code editing (Blocks). It was originally created by Google in 2010

and taken over by MIT in 2012 and oriented to youth and adult audience, not to children.

2.3. Bee-Bot (https://itunes.apple.com/es/app/bee-bot/id500131639?mt=8)

Bee-Bot is a game of successive challenges to learn programming for iPad. Bee-Bot is a bee

robot, a physical toy for children of 4 years and above, which also has a free App for iPad

that can be used without the toy, geared to preliterate children. It allows children to learn

programming concepts about directional motion primitives, while taking their virtual robot

through a series of scenarios. It has 12 levels with labyrinths of progressive difficulty. There is
also a more complex paid app for children of 7 years and above.

2.4. Beetle Blocks (http://beetleblocks.com/)

Beetle Blocks is a free 3D model creation tool. It is a visual programming environment that

allows for modeling three-dimensional shapes. Like a Logo language with its 3D tortoise, you

can program the movement of a virtual beetle to generate geometric shapes of all kinds that

An Evaluation of Open Digital Gaming Platforms for Developing Computational Thinking Skills
http://dx.doi.org/10.5772/intechopen.71339

145

are chained with repetitive and alternative control structures and programmable routines.

The block language is based on Snap!, which is analyzed in Section 2.20.

2.5. Blockly Games (https://blockly-games.appspot.com/)

Blockly Games is a game of successive challenges to learn programming based on a general-

ized visual programming library. Blockly (https://developers.google.com/blockly/), devel-
oped by Google as open source in 2012, is really a library to make Web applications based

on visual programming by blocks (hence its name). Starting from this, other tools have been

made such as App Inventor, Microsoft MakeCode, or OzoBlockly. Here we analyze Blockly

Games, which is a Blockly-based Google development, proposing a series of educational

games to learn how to program in a directed and progressive mode, in a series of levels

that are structured into seven sections: Puzzle, Maze (movement to exit a maze with repeti-

tive and alternate structures), bird (continuous 2d motion with twists and x-y displacement

based on conditions and boolean expressions), turtle (logo style drawing with repetition

over angles and distances), movie (movement of geometric shapes based on a time value that

ranges from 0 to 100), pond tutor (a shooting game with angles and forces that introduces

text programming corresponding to the visual), and pond (a shooting game with players

to be controlled by the computer). It also incorporates two free challenges that can be pub-

lished on Reddit.

Blockly’s development technology is web-oriented (in Javascript), but it also has native sup-

port for Android and IOS.

2.6. Cargo-Bot (https://itunes.apple.com/es/app/cargo-bot/id519690804)

Cargo-Bot is a game of successive challenges to learn programming. It is also a game for iPad

where children can teach a robot to move boxes inside a factory by using visual programming

structures. The game contains 36 puzzles and has the peculiar feature of having been the first
game entirely developed on the iPad itself based on Codea (a Lua code editor for iPad). It uses

encoding with icons with motion primitives for the crane (down, up, and move box) and calls

to repeat procedures as well as box color codes for alternative actions.

2.7. Code.org (https://code.org/) and Code Studio (https://code.org/educate/gamelab)

Code.org is a nonprofit organization created by Harvard computer scientist Hadi Partovi in
2013 having diverse games of successive challenges to learn programming, and tool of cre-

ation free of small game, animation, or interactive resource. He has been able to intensively

energize the need to bring CT to young people through the activities promoted from his web-

site and, in particular, the creation of a movement called “Hour of Code” that proposes simple

digital activities in the form of programming challenges that can be achieved in one hour

(or a few more hours) with Blockly-based visual programming. By attracting personalities
of the technological world to the promotion, like Mark Zuckerberg and Bill Gates, and later

President Barack Obama himself, the movement has been a success not only in the USA but

at the global level, managing to mobilize more than 100 million children and adults who use

Simulation and Gaming146

their resources for free to learn to code. Another of the successes of Code.org has been to use

elements of existing video games or films to contextualize the challenges of code; and negoti-
ating with corporations to use characters from Plants vs. Zombies, Flappy Bird, Frozen, Star
Wars, or Minecraft, which makes the project much more attractive, as well as an important
graphic, design, and logic quality. After 4 years of Hour of Code editions, Code.org and its

partners have more than 170 different activities identified and accessible on the web (https://
code.org/learn).

In addition to the online programming activities, Code.org also deals with the full comput-

ing curriculum content in primary and secondary education, provides training materials

and resources of different types for free use of schools, and promotes training activities
for schoolchildren and teachers (with special attention to women and underrepresented
minorities). It has developed a blocks-based visual language, Code Studio (https://studio.
code.org), that, Scratch-style, makes it possible to create multimedia resources or video

games. This tool distinguishes four types of projects: Draw Something, App Lab (to sim-

ulate mobile apps), Play Lab (games or simple stories), and Game Lab (more elaborate

games).

All the technology developed by Code.org is open source. The web also incorporates a section

for teachers with management features for student groups and a complete dashboard page

with detailed control of the development of each student.

2.8. Daisy the Dinosaur (http://www.daisythedinosaur.com/)

Daisy the Dinosaur is a game of successive challenges to learn programming. It is a small

game for the iPad aimed at the first contact with programming for the youngest children,

who can solve it in a few minutes. Its concept is very simple: the learner moves Daisy the

Dinosaur by using some of the nine motion commands in the appropriate sequence. When

the challenges are over, you can play in free-play mode to freely move the character.

2.9. Kodable (https://www.kodable.com/)

Kodable is a game of successive challenges to learn programming. Kodable is one of tools

with the strongest focus on teachers and classes. It envisages a progression of levels ori-

ented to the whole age of primary education. It has a number of free levels and many more

accessible through pay-by-school licenses. The approach is an icon-based visual program-

ming language that allows you to move a character (Fuzz) through an orthogonal maze by
collecting the stars. To the motion instructions in all four directions, conditionals are added

using colored boxes, loops with counters, and functions to repeat the same code several

times. Another series of worlds provide conceptual training complements in programming

using games, although they do not use visual programming such as a Tetris-style game

for strings and integers, a tower defense for object-orientation, and so on. Teachers have

a dashboard with full access to the progress information of their classes and students. In

addition, there is a creation mode to generate custom levels, which both teachers and stu-

dents have access to.

An Evaluation of Open Digital Gaming Platforms for Developing Computational Thinking Skills
http://dx.doi.org/10.5772/intechopen.71339

147

2.10. Kodetu (http://kodetu.org/)

Kodetu is a game of successive challenges to learn programming. It is a maze-solving game

that allows an astronaut to be guided to the target in a space station by using visual blocks of

motion and rotation, and repetitive and alternative structures. It is based on Blockly Maze and

proposes a sequence of 15 levels of progressive difficulty, being the last maze a challenge even

for people who already know how to program. It is designed to be able to play in an hour or

two. Teachers can generate their own groups and access the information about the learning

path covered by their students.

2.11. Kodu Game Lab (http://www.kodugamelab.com/)

Kodu Game Lab is a free small 3D game creation tool. Kodu, originally called Boku, is a

visual programming environment developed by Microsoft in 2009, for the Xbox console and

Windows OS. Like Alice, the execution environment is in 3D, but the programming orienta-

tion is quite different and is not block- but event-oriented. The concept is quite original with
respect to other tools: the user can modify the world with a visual editing system of ground

and 3D objects and add characters on which rules are created (in when-do form, with what is

called in Microsoft Tile-Based Coding): If an event occurs, an action is executed. The events

and rules are very oriented to an arcade type game (move, shoot, and collide) in a fixed grav-

ity context. It does not incorporate control structures because the event system itself generates

an infinite repetition in a real-time loop, and each rule (when) functions as an alternative.

2.12. Hopscotch (https://www.gethopscotch.com/)

Hopscotch is a free creation tool for small games, animations, or interactive resources.

Hopscotch, available only for iOS, is a visual programming language specifically designed to
be used on Apple touch devices and is oriented to very simple games. Although the payment

license allows you to personalize characters and other improvements, in the free mode you

can develop the entire gameplay. Hopscotch also has an online community to share creations,

and a web player so that anyone can play the games created from a browser. Hopscotch

makes a significant effort to use the resources of the tablet, both to ensure that the entire edit-
ing system can be done in a tactile way and to incorporate all the possibilities of the device in

programming (tilt, vibration, and acoustic sensors).

2.13. Lightbot (https://lightbot.com/)

Lightbot is a game of successive challenges to learn programming. It is a commercial game

for mobile platform (also with a version for Windows and Mac), with a free demo version

(code hour) that allows users to play the first levels. The approach of the game modernizes
the classic movement puzzles like Robozzle (explained later), with successive challenges of

small labyrinths in which you have to illuminate the blue squares with the only instructions

to advance, turn, jump, and ignite. To repeat, you can define several subprograms and make
recursive calls. The game proposes a staggering of several levels of complexity and has two

apps differentiated by difficulty for the age bands of 4–8 and 9 + .

Simulation and Gaming148

2.14. Made with Code (https://www.madewithcode.com/)

Made with Code is a game of successive challenges to learn programming. It is a Google ini-

tiative created in 2014 to encourage school-age girls to develop their first experiences in CT. It
includes a lot of educational materials with textual and audiovisual contents, and proposals

of projects and activities by using various tools. As far as our analysis is concerned, it has

a specific area of visual programming projects (https://www.madewithcode.com/projects/)
proposing a series of short activities with Blockly-based visual programming. Some of these

activities are programming challenges with basic concepts (like the ones based on Inside Out

or Wonder Woman), and there are more open and creative ones that simply seek to provide

tools for girls to propose their own elements based on computational abstractions such as

designing a costume pattern (LED dress), playing a musical rhythm (beats) or creating a visual

message based on its components (code for equality), with a clear intention to show how many

everyday activities and objects have computational components in their design, construction,

or use.

2.15. MakeWorld (https://makeworld.eu/)

MakeWorld is a context and path-free creation tool to define programming challenges
related to other STEM areas. MakeWorld is one of the few platforms created in Europe, in

the framework of a European Union innovation project. It targets primary school children

for a first-learning CT environment. Therefore, it minimizes textual aspects and proposes an
icon-based action interface, with two levels: worlds (a programming challenge) and stories (a

set of challenges linked to a learning sequence). Through these, programming challenges are

sought to work concepts of other subjects (mathematics, languages, science …) where they

include computational elements such as enumeration, sequencing, identification, classifica-

tion, cycles, processes, systems, and so on. The concepts of CT are limited to the most basic

context: movements in a grid, repetitions through recursive subprograms, and scoring events

to manage progress. MakeWorld allows both solving worlds by posing a game with goals and

creating worlds (hence its name) to go a step further in the level of abstraction. These worlds

can be published and shared in the social community.

2.16. Minecraft (https://education.minecraft.net/)

Minecraft is a free construction game. It is a game based on three-dimensional blocks that allow

users to create constructions in a free world, with the intense expression of the creativity of the

user. Although its initial objective was only to be a constructionist game, it has evolved and

allows users to incorporate complex logics within the objects of the game, including from 2017 a

visual programming language and environment, Code Builder (with equivalence in JavaScript).

It can be programmed with the Microsoft Visual programming tool (MakeCode) or with the

existing Scratch and Tynker tools and allows game elements to change and behave according to

the programmed code. After Microsoft bought the original product, it has developed a whole

line of education aimed at raising problems and challenges of computational thinking and allow-

ing them to be shared among users in the community. Although Minecraft is a commercially

licensed product, educational use has been dropping in price and can be used partially free.

An Evaluation of Open Digital Gaming Platforms for Developing Computational Thinking Skills
http://dx.doi.org/10.5772/intechopen.71339

149

2.17. Robozzle (http://www.robozzle.com/)

Robozzle is a game of successive challenges to learn programming. Robozzle, published in

2009, is, according to its creator Igor Ostrovsky, a “social puzzle game.” It poses a very basic

programming environment in a maze in which you have to capture the stars with the only

instructions to move forward and rotate. To repeat, you can define several subprograms and
make recursive calls, and for the concept of alternative you use up to three colors that deter-

mine whether the statement is executed or not. The result is a little game of challenges to
solve the puzzles that each level poses. The game itself does not propose a staggering of levels

of complexity (a priori there are only the basic difficulties of the small tutorial), but it leaves
the creation of new challenges to the users themselves, and their evaluation by difficulty and
taste, in a community that has created about 10,000 puzzles. It allows CT to be introduced

with a simple game, without considering longer control structures or programs, with very

few, primitive elements, close to the low level that is behind the programs.

2.18. Scratch (https://scratch.mit.edu/)

Scratch is a free creation tool for small games, animations, and interactive resources. Scratch

is a visual programming language created by MIT’s Lifelong Kindergarten Lab in 2002, with

an editing and execution system in the cloud. With an important orientation to the user com-

munity and an open approach, it allows to share and derive programs from others. Due to

its significant history and implementation, there are many tutorials for users, teachers, and
parents. The structure of programming components differentiates elements such as control
structures, events, operators, data, or sensors. The elements that are manipulated by Scratch

are configurable images and sounds, allowing you to set up 2D animations and video games
of a certain level of complexity.

Scratch was one of the first tools to be established and has therefore greatly influenced most of
the ones listed in this chapter. It uses the visual puzzle metaphor for the programming pieces,

where each block has a shape that can only be combined with other compatible blocks, and a

color that determines the block type.

2.19. ScratchJr (https://www.scratchjr.org/)

ScratchJr is a free creation tool for small games, animations, and resources. It is a visual pro-

gramming language developed as a derivation of Scratch by the same MIT department, aimed

at younger users without reading skills. The interface concept changes (from vertical blocks to

simplified horizontal blocks, reducing the number of blocks, and using icons instead of texts)
and is aimed at mobile devices, being available for free for Android, IOS, and Chromebook.

There is also a version launched in collaboration with PBS Kids, which uses characters from

the animated series.

2.20. Snap! (http://snap.berkeley.edu/)

Snap! is a free creation tool for small games, animations, and interactive resources. Snap! is

a visual programming language very similar to Scratch, inspired by it in its appearance and

Simulation and Gaming150

type of interaction, but with a series of improvements that make it interesting for a greater

range of users: it runs in HTML and JavaScript so that it does not depend on Flash and does
not limit the platforms that can be used, allows you to define custom blocks, manage mul-
tiuser sessions in real time, nested sprites, generate projects such as executables, undo option,

top-level functions, and so on. However, there is a much smaller community of users and

projects, and the documentation available for teachers is very inferior.

2.21. SpriteBox (http://spritebox.com/)

SpriteBox is a game of successive challenges to learn programming. It is a game developed for

Code Hour by the LightBot company. It has a similar approach, but it raises the level of CT a

little by incorporating loops rather than jumps to routines. It also includes a game element in
proposing a platform game in which users have to overcome programming challenges that

affect the game (create platforms, open gaps, and rebuild the stage). It takes approximately an
hour and raises progressive difficulty levels in three consecutive worlds.

2.22. The Foos (http://thefoos.com)

The Foos is a game of successive challenges to learn programming. It is a tablet-oriented game
for preschool and primary children (no need for reading). It is based on the idea of a platform

game that, in addition to being played as a traditional game, allows the movement to be con-

figured with a block code. Progressive leveling that introduces sequences, repetition, events,

and alternatives and ends with possibilities of free play and creation of personalized levels.

The App, created by the Pasadena CodeSpark company in 2014, is commercial, but educa-

tional use is free and must be managed by a teacher who will set up the class, invitations, and

devices. It has a specific version of code hour that is a subset of the whole game and can be
played in a Web browser without installation.

2.23. Tynker (https://www.tynker.com)

Tynker is a free small game creation tool, which includes several successive challenge games to

learn programming. It is a commercial project that has a series of free levels and also a school

model that can be subscribed to without cost with a set of six phases (each composed of a series

of progressive levels), and you can order additional paid phases. The visual environment has

vertical blocks similar to Scratch or Code.org, with a lot of context variation and games to

choose from. Our analysis deals with the free levels and a specific section defined for code
hour, Tynker Hour of Code (https://www.tynker.com/hour-of-code) with a multitude of differ-

ent levels. Tynker also has a free programming environment, which allows editing games with

a Scratch-style editor, allowing for customizing both scenery and objects, as well as the codes

that these objects use with all the available blocks, making it one of the most complete tools.

2.24. Waterbear (http://waterbearlang.com)

Waterbear is a free creation tool for small games, animations, and resources. Waterbear is a

visual programming language created by Dethe Elza, a Canadian professional (in an open

An Evaluation of Open Digital Gaming Platforms for Developing Computational Thinking Skills
http://dx.doi.org/10.5772/intechopen.71339

151

source development environment), inspired by Scratch but with a language developed to be

able to program in a visual way closer to textual programming languages, incorporating ele-

ments such as arrays, dates, or diversity of mathematical functions. There is no community of

users, and the environment is very self-learning-oriented, practically without didactic mate-

rial available.

2.25. Platforms not covered

There are many other services and products aimed at learning CT or some of its skills, which

we have not considered in this study as they fail to meet the specified conditions. In the first
place, there are a whole series of games that require the acquisition of physical devices. Based

on classic toys, these include robots and similar devices. Through their connection to the

physical world, they enrich the possibilities of previously analyzed tools, limited by a screen

and the need of Internet connection. They are an important niche market for companies in the

educational toys sector. This is the case of LEGO Mindstorms (https://www.lego.com/mind-

storms/), which was already commercialized in 1998 as a result of the collaboration between
MIT and the LEGO construction toys company, to incorporate new robotic parts (different
types of engines and sensors) controllable by children, using a visual programming language

that is installed on the computer or device and that allows the user to write a program that is

transmitted to the construction. The FIRST LEGO League began in 1999: an annual interna-

tional competition with scientific and technological challenges based on this game, with more
than 200,000 schoolchildren participating.

In this same line of products, we also find many others that have been appearing the last
decade, such as Bee-Bot (https://www.bee-bot.us/), BlocklyProp (https://www.parallax.com/
product/program-blocklyprop), Cubelets (http://www.modrobotics.com/cubelets/), Dash
the Robot (https://www.makewonder.com/), Edison (https://meetedison.com/), Lego WeDo
(https://education.lego.com/en-us/elementary/shop/wedo-2), mBot (http://makeblock.com/),
microbit (http://microbit.org/), OzoBlockly (http://ozoblockly.com/), Robbo (https://www.
robbo.world/), Sphero (http://www.sphero.com/), and many others.

There are also some mixed physical/digital toys that include a simple but necessary physical
part (usually pieces to be placed), connected in some way (Bluetooth) with a digital appli-

cation that needs the “program” created in the physical world in order to beat the virtual

challenge: what is called “tangible programming.” This is the case of Puzzlets (http://www.
digitaldreamlabs.com/), with several games aimed at primary education or KIBO (http://
kinderlabrobotics.com/kibo/), commercialized in dozens of countries.

We should also mention an important category represented by GameMaker Studio (https://
www.yoyogames.com/gamemaker), GameSalad (http://gamesalad.com/), Stencyl (http://
www.stencyl.com/), Unity (https://unity3d.com/), or Unreal (https://www.unrealengine.
com/). These are video game authoring tools which include some possibilities of visual pro-

gramming. Some of them have been used to learn programming [12], but they are not aimed

at learning programming as such, nor are they specifically aimed at children or young people,
nor are they commonly used in this type of activity. However, they are not far from this

area, and this is already happening with some initiatives such as the Stencyl Educational

Simulation and Gaming152

Kit (http://www.stencyl.com/education/overview/), GameMaker for Education (https://www.
yoyogames.com/education) or GameSalad for Education (http://edu.gamesalad.com/), in all
cases with paid licenses.

It is also important to note that text-based programming learning environments continue to

exist, as in the 1990s when programming began to be introduced in schools: Basic (such as

http://smallbasic.com/) or Logo (e.g., MSW Logo: http://www.softronix.com/logo.html).

There is a growing set of activities for lower educational levels called “unplugged.” For exam-

ple, Computer Science Unplugged (http://csunplugged.org/), a collection of free activities that
teaches CT through games and puzzles with cards, paper and pen, strings, and school or

household materials, without considering technological tools. Other examples with a more

commercial focus are Hello Ruby (http://www.helloruby.com/), Code Monkey Island (http://
codemonkeyplanet.com/), CodeMaster and other CODE games (http://www.thinkfun.com/),
or Robot Turtles (http://www.robotturtles.com/).

We also find on the market a series of games that do not fit properly with the programming
model that is usually classified as visual programming, but which do use concepts of abstrac-

tion, algorithms, and resolution of problems that promote CT. This is the case, for example,

of SpaceChem (http://www.zachtronics.com/spacechem/), which proposes a series of puzzles
in the form of chemical elements that must be manufactured with a specific combination of
pathways and operators on atoms and molecules.

Finally, there is another large group of tools like Code Combat (https://codecombat.com/),
Code Hunt (https://www.codehunt.com/), CodeHS (https://codehs.com/), CodinGame
(https://www.codingame.com/), Colobot (https://colobot.info/), Minetest (http://www.mine-

test.net/) or Swift Playgrounds (https://www.apple.com/swift/playgrounds/), games for learn-

ing programming with text-based languages like JavaScript, Java, Python or Swift, without

considering visual programming. They are usually a widely used resource for older students

who have spent a few years with visual programming tools.

3. Analysis of platforms

We have analyzed these 24 tools, which we extend to 26, as both Code.org and Tynker really

encompass two different approaches that require independent measure. Here we present the

information considered about these platforms.

3.1. Classification

The vast majority of the tools can be differentiated into two main groups. The first (46.2% of
those analyzed) corresponds to a set of programming challenges (e.g., Code.org), in the form

of predefined closed levels to solve, usually incorporating new programming structures and

increasing the difficulty progressively. The usage sessions can be from a few minutes to a few
weeks, where Code.org is making the most remarkable effort to design complete academic
trajectories with different levels.

An Evaluation of Open Digital Gaming Platforms for Developing Computational Thinking Skills
http://dx.doi.org/10.5772/intechopen.71339

153

The second group (42.3%) proposes a visual programming language in itself (e.g., Scratch),

with varying degrees of amplitude, with which the learner can develop his own programs, in

principle in a much more open way, which can easily be embedded in a dynamic of project-

based learning. Most (27.9%) languages are aimed at programming a 2D game, two are 3D,
one is for 3D modeling, and another for mobile device programming. The game component

in this group is not really given by the language but by the intention: you can make games but

also animations or interactive stories, and really any computer application that the creativity

of the user allows (limited by the language primitives, which are not general purpose).

It seems logical to think that with the languages we could define the tools of the first group:
that is, with Scratch we could define a programming challenge (or thousands). However, the
programming structures themselves are usually not included among the language primitives

(i.e., in Scratch, you cannot program a game that raises a programming challenge except with

a lot of effort and personalization). In addition, platforms that propose challenges can auto-

matically detect the improvement in each level, give feedback in case of error, and offer the
user navigation to the next. In the programming languages, challenges can be proposed, but

evaluation and sequencing are foreign to the system. Therefore, there are two different types
of tools, although it seems logical that the technologies will continue to approach the possibil-

ity of integrating both (as Code.org and Tynker do in a similar way).

At the moment, there are two tools among those analyzed (MakeWorld and Robozzle, 7.7%)
that allow users to do both things: users can solve challenges already posed and can also cre-

ate new coding challenges and publish them for other users to solve. We could then talk about

a third set of tools for creating and solving programming challenges.

A fourth and last category, represented by Minecraft (3.8%), is that of a videogame incorporat-
ing visual programming in its mechanics. The main objective of the game is not visual program-

ming (in fact in Minecraft, this feature has appeared after years in which interaction was only

possible with text-based languages), but it does incorporate it and allows aspects of CT to work.

3.2. General characteristics

In Table 1, we can observe the general characteristics of the 26 analyzed tools. Type refers to

the classification already mentioned. The country of creation, year of release, and number of
languages are indicated. The number of users (in millions) has been indicated, in cases where

a reasonably trustworthy approximation has been found.

The hegemony of the USA in this type of tools is prominent. Almost three-quarters (73.1%) of
the platforms have been developed there, consistent with the US dominance in Internet services

in general, and it may also be a response to an important campaign for interest in basic comput-

ing learning at school levels that the USA has been leading for a decade (we can note that in the

wake Alice and Scratch, other tools have been emerging continuously). Canada follows it with

11.5%, the same as the whole of Europe, and Australia has its own platform with Cargo-Bot.

The oldest tools are Alice and Scratch, which explains their influence and emphasizes the
importance of American universities (MIT and Carnegie Mellon) in the field of visual program-

ming. The implantation data indicate the most widespread: Code.org, Tynker (although it is

only in English), and Scratch, although we have not found data on the number of users of some

Simulation and Gaming154

significant tools like Alice, ScratchJr, or Blockly. On the other hand, we have the widespread use
of Minecraft as a construction game, with no specific data on how many people are using its
visual programming possibilities. Availability on the web is clearly a key to massive use, leaving

systems that only work on tablets to be more focused on commercial paid licenses, with the iPad

holding a predominant place due to its implantation in schools in some countries (like the USA).

Game Type Ctry Year Lang# User# Technology

Web Win Mac Linux Andr iOS ChrOS

Alice LANG USA 1998 23 — X X X — — —

App Inventor LANG USA 2010 11 7 X — — — — — —

Bee-Bot CHAL USA 2012 1 0.3 — — — — — X —

Beetle Blocks LANG USA 2014 39 X — — — — — —

Blockly Games CHAL USA 2012 49 X — — — — — —

Cargo-Bot CHAL AUS 2012 1 1 — — — — — X —

Code.org - Courses CHAL USA 2011 51 430 X — — — — — —

Code.org - Code St LANG USA 2014 51 20 X — — — — — —

Daisy the Dinosaur CHAL USA 2013 1 — — — — — X —

Kodable CHAL USA 2012 1 >1 X — — — — X —

Kodetu CHAL ESP 2014 3 0.01 X — — — — — —

Kodu Game Lab LANG USA 2009 22 2.5 — X — — — — —

Hopscotch LANG USA 2012 3 — — — — — X —

Lightbot CHAL CAN 2008 28 7 X* X X — X X —

Made with Code CHAL USA 2014 1 X — — — — — —

MakeWorld CREA ESP 2016 6 0.002 X — — — — — —

Minecraft GAME SWE 2011 11 130 — X X — X** X** —

Robozzle CREA USA 2009 1 0.13 X* — — — X X —

Scratch LANG USA 2002 72 20 X* X X X — — —

ScratchJr LANG USA 2014 7 2 — — — — X X X

Snap! LANG USA 2011 39 X — — — — — —

SpriteBox CHAL CAN 2016 2 X* — — — X X —

The Foos CHAL USA 2014 17 4 X — — — X X —

Tynker LANG USA 2013 1 50 X — — — X X —

Tynker - Activities CHAL USA 2013 1 50 X — — — X X —

Waterbear LANG CAN 2011 1 X — — — — — —

*Browser needs flash plugin, silverlight in case of Robozzle.
**Minecraft has commercial apps for Android and iOS.

Table 1. General characteristics.

An Evaluation of Open Digital Gaming Platforms for Developing Computational Thinking Skills
http://dx.doi.org/10.5772/intechopen.71339

155

For the social data shown in Table 2, we have organized the platforms by type, because as

you can see, the social options are strongly correlated with the approach of the tool. For those
that pose programming challenges, there are no social options, except for Code.org, Blockly

Games, and the Foos, which allow users to upload the creations made to the Internet at some
levels, which coincide with those that offer a “free mode” (which works in fact as an exception
to the rest of the levels, where the challenge has a solution that is either achieved or not.) On

the contrary, in the visual programming languages, it is habitual to incorporate an additional

community to the language (69% do this), that at least allows users to upload their projects
and share them (“share”) and, in some cases, more social options such as “like” other users’

programs, “report” inappropriate programs, “fav” to bookmark, “follow” another user, or

“comm” to comment with free text on the shared creation. In this sense, the two tools of

creation and solution work in the same way as the visual languages, with the exception of

Robozzle, which is the only one that incorporates “dislike,” and the possibility of evaluating

other users’ puzzles from 1 to 5.

3.3. Learning aspects

Below we consider information relating to the use of these tools in class. First of all, the
target age is fundamental, which is shown in Table 3 where the recommended ages for the

different platforms appear, marked according to the indications of the companies them-

selves, the opinions of the educational community, and the characteristics of the tools. On

the one hand, we see that there are various tools for all ages, which is a good news for the

educational community. On the other hand, if we consider them by type, as might have

been expected, the platforms of challenges are focused on the lowest ages (average age

8.1); the creation and solution of challenges is higher (9.8); and higher still are languages

to define games (12.4). This pattern corresponds to the stages that would be desirable if we
want to design a longitudinal educational process with these tools: starting with a plat-

form of challenges with the objectives and the path marked, continuing with a creation of

challenges based on proposals made by the teacher in a structured and guided way, and

ending with a more general-purpose visual language, in a learning environment based on

projects and with freedom of personal choice on behalf of the learner to define and carry
out the projects.

Table 4 shows aspects of simplicity of installation and use (valued from 0 to 3 according to a

defined rubric), richness of interaction (also from 0 to 3), ranges of estimated time dedicated

(based on available material and complexity and depth permitted for each system), and mate-

rial available for teachers (A-D).

You can see the breadth of the range of time dedicated, which in the case of general program-

ming tools such as Scratch or Tynker can vary from a few days to some years (many schools

use these tools throughout several years, although not usually continuously). It can also be

seen that the challenge systems have a much less ambitious temporal approach, except in the

most highly developed levels such as Tynker or Code.org.

Simulation and Gaming156

Type Game Community Upload

allowed

Social options Remix

Challenges Bee-Bot — — — —

Blockly Games limited X* share* limited

Cargo-Bot — — — —

Code.org

- Courses

— X* share* —

Daisy the

Dinosaur

— — — —

Kodable — — — —

Kodetu — — — —

Lightbot — — — —

Made with Code — — — —

SpriteBox — — — —

The Foos — X* like, share* —

Tynker

- Activities

— — — —

Visual Programming

Languages

Alice — — — exp

App Inventor X — — exp

Beetle Blocks X X fav X

Code.org - Code

Studio

X X share X

Hopscotch X X like / share X

Kodu Game Lab X X like / share / report X

Scratch X X fav / like / report / comm
/ follow

X

ScratchJr — — — —

Snap! — X — X

Tynker X X like / report / share X

Waterbear — — — exp

Creation and playing MakeWorld X X like / follow / share /
comm

X

Robozzle X X like / dislike / evaluate —

Game Minecraft X — — X

*Only in some levels, exp. = remix from file exported.

Table 2. Social characteristics.

An Evaluation of Open Digital Gaming Platforms for Developing Computational Thinking Skills
http://dx.doi.org/10.5772/intechopen.71339

157

3.4. Engagement

There are no unique or universal expressions of the fun or engagement that a digital activity

is capable of producing in a user. Each person has his or her tastes, preferences, and learn-

ing; in addition, in the school environment, the way in which an activity is proposed greatly

influences its reception. It is not the same for a child to freely choose a game that s/he wants to

Type Game Recommended ages for playing

<5 6–7 8–9 10–11 12–13 14–15 16–17 >18

CHAL Bee-Bot X —

Blockly Games X X X X — —

Cargo-Bot — X X X —

Code.org - Courses X X X X — — —

Daisy the Dinosaur X X —

Kodable X X X — — —

Kodetu X X X X — —

Lightbot X X X X —

Made with Code — X X X X X —

SpriteBox X X X X —

The Foos X X — —

Tynker - Activities X X X X — —

CREA MakeWorld — X X X X X —

Robozzle X X X X — — —

LANG Alice — — X X X

App Inventor — X X

Beetle Blocks X X X —

Code.org - Code Studio X X X — —

Hopscotch X X X — —

Kodu Game Lab — X X X X — —

Scratch X X X X — —

ScratchJr X X — —

Snap! X X X X X X

Tynker X X X X — —

Waterbear — X X X —

GAME Minecraft — X X

X = recommended, − = viable, space = not recommended.

Table 3. Recommended ages of platforms.

Simulation and Gaming158

Type Game Inst [1] Personal data
requested

Us [2] Int [3] Apprentice

dedication

time range

Teacher

preparation

time range

Av Mat

[4]

CHAL Bee-Bot 0 No 0 0 1 h–10 h 1 h–5 h B

Blockly Games 0 No 0 0 1 h-15d 5 h–20 h C

Cargo-Bot 0 No 1 1 1 h-5d 1 h–10 h A

Code.org - Courses 0 Email (opt.) 0 1 1 h-2 m 5 h–50 h D

Daisy the Dinosaur 0 No 0 1 1 h–4 h 1 h–5 h B

Kodable 0 No 0 1 1 h-2 m 5 h–50 h D

Kodetu 0 Sex, age,

school,

survey

0 0 1 h–5 h 1 h–5 h A

Lightbot 2 No 0 1 1 h–3 h 1 h–5 h C

Made with Code 0 No 0 1 1 h–20 h 1 h–20 h C

SpriteBox 0 No 0 1 1 h–3 h 1 h–5 h C

The Foos 2 Email 0 1 1 h-30d 5 h–30 h C

Tynker - Activities 0 Email (opt.) 0 1 1 h-1y 2 h–10 h C

CREA MakeWorld 1 Sex, country,

age, email

1 2 1 h-2y 5 h–40 h D

Robozzle 0 Email (opt.) 1 1 1 h-5d 2 h–10 h B

LANG Alice 2 No 3 3 3d-4y 20 h–50 h D

App Inventor 3 Google

account

3 3 3d-4y 20 h–80 h D

Beetle Blocks 0 No 1 2 2d-1y 5 h–40 h B

Code.org - Code St 0 Email, age,

sex (opt.)

0 2 5d-2y 20 h–50 h D

Hopscotch 0 Email (opt.) 2 2 5d-2y 20 h–50 h C

Kodu Game Lab 2 No 2 3 5d-2y 10 h–50 h C

Scratch 1 Birth date,

sex, country,

email

2 2 5d-2y 20 h–50 h D

ScratchJr 2 No 2 1 1d-2 m 5 h–10 h D

Snap! 0 Birth date,

email

2 2 5d-2y 20 h–50 h C

Tynker 0 Email 1 2 5d-2y 5 h–50 h C

Waterbear 0 No 0 2 5d-2y 20 h–50 h A

GAME Minecraft 3 Email 3 3 5d-2y 20 h–80 h D

Inst = Installation simplicity. Us = Usability. Int = Interaction richness. [1–3] evaluated in a range 0–3, where 0 is the

simplest and 3 most complex. Av Mat = Available material for teachers [4] is ranged A-D, from no material available (A)

to very rich content in many languages (D).

Table 4. Other learning aspects. Installation simplicity.

An Evaluation of Open Digital Gaming Platforms for Developing Computational Thinking Skills
http://dx.doi.org/10.5772/intechopen.71339

159

play when s/he wants, as to be asked to do so by the teacher, more or less obligatorily, within
a class. This is a factor that has influenced all educational games from the start. But in any
case, we have done the exercise of trying to objectify the “fun” potentially offered by each of
our 26 tools, differentiating some of the classic dimensions that influence the experience of
the user when it comes to video games and evaluating each of them from 0 (minimum) to 3

(maximum). This gives us an average measure of engagement that is displayed in descending

order in Table 5.

Game Type Sen Fan Nar Cha Fel Dis Exp Sub Sto Engagement

Minecraft GAME 3 3 3 3 3 3 3 3 2 2.89

Code.org - Code Studio LANG 2 3 2 3 2 2 3 3 3 2.56

Tynker LANG 2 3 2 3 2 2 3 3 3 2.56

Scratch LANG 3 3 2 3 0 2 3 3 3 2.44

Hopscotch LANG 2 3 1 3 2 2 3 3 3 2.44

Alice LANG 2 3 1 3 2 2 3 3 3 2.44

Snap! LANG 2 3 1 3 2 2 3 3 3 2.44

MakeWorld CREA 2 3 2 3 2 2 2 2 3 2.33

Kodu Game Lab LANG 2 3 2 3 0 2 3 3 2 2.22

Code.org - Courses CHAL 2 2 2 3 1 2 2 3 2 2.11

ScratchJr LANG 2 3 1 3 0 1 2 3 2 1.89

The Foos CHAL 2 2 2 3 1 2 1 2 1 1.78

Blockly Games CHAL 1 1 1 3 1 2 2 2 2 1.67

Made with Code CHAL 2 1 1 2 1 2 2 2 2 1.67

Tynker - Activities CHAL 2 2 2 3 1 1 1 2 1 1.67

Kodable CHAL 1 1 2 3 0 2 2 2 1 1.56

Beetle Blocks LANG 1 0 0 3 1 2 2 2 1 1.33

Waterbear LANG 1 0 0 3 0 1 2 2 3 1.33

App Inventor LANG 1 0 0 3 0 2 3 2 0 1.22

Cargo-Bot CHAL 1 1 1 2 1 1 1 2 0 1.11

Lightbot CHAL 1 1 1 3 0 1 1 2 0 1.11

Robozzle CREA 0 0 1 3 2 1 1 2 0 1.11

SpriteBox CHAL 1 1 1 3 0 1 1 1 0 1.00

Bee-Bot CHAL 1 1 1 2 0 1 0 2 0 0.89

Kodetu CHAL 0 1 1 2 1 1 1 1 0 0.89

Daisy the Dinosaur CHAL 1 1 1 1 0 1 1 1 0 0.78

Sen = Sensation, Fan = Fantasy, Nar = Narrative, Cha = Challenge, Fel = Fellowship, Dis = Discovery, Exp = Expression,
Sub = Submission, Sto = Storytelling.

Table 5. Engagement expressed depending on different dimensions of fun (from 0-min- to 3-max each).

Simulation and Gaming160

We note that this confirms the logical relationship between the most widespread and the
most attractive games (Minecraft, Code.org, Tynker, Scratch). In addition, in general, the
languages that allow free creative development and longer periods of engagement are more

attractive than those games of challenges whose attraction basically ends when the chal-
lenges end. As expected, we see in the lower part the tools that allow shorter periods of

engagement and others (like App Inventor) whose complexity and low level coding make the

effort invested disproportionate to the attractiveness of the result achieved, from a gaming

point of view.

3.5. Computational thinking

It is a fundamental aspect for our analysis to review which of the specific characteristics that
are employed in CT are included in the tools analyzed. Table 6 shows the aspects that each

tool includes, or not, along with some significant data such as the number of different blocks
that can be used to program (calculated counting all the different blocks that the system
allows to be used) or whether the equivalent textual code can be seen in parallel to the visual

program that is being developed.

We have not included sequences in the table, which all the tools analyzed have (we cannot

imagine a visual programming tool without sequences). We have also seen that flowcharts,

a visual tool widely used in programming and in learning programming at the conceptual

level, are not used in any of these tools. On the other hand, recursion is used in two different
ways: in those tools that do not support loops, (virtually infinite) repeating is performed using
recursive calls (this is the case of Cargo-Bot, LightBot, MakeWorld, and Robozzle).

The languages generally support more features and use many more basic blocks to allow

greater expressiveness of programming (all have more than 100 constructions, except

Hopscotch that limits them due to its orientation to tablets, and ScratchJr that is aimed at the

youngest age groups). Conversely, the systems of challenges have much less expressiveness

except the four most developed ones which support a large number of levels and greatly

diversify the constructions that can be used in each challenge: Code.org, Blockly, Tynker, and

Made with Code.

It is also significant that all the languages support events, which speaks of the importance
of event-oriented programming in current computing and also shows that the concept of an

event that provokes an action has a very natural meaning for learners. Most languages allow

multithreading, albeit in a way that is transparent to the learner, who probably does not need

to understand the concept to use it implicitly. Only some of the languages (but no challenge

tools) allow message passing, object-orientation, 3D, and connection with physical systems.

Only one tool (Alice) incorporates the explicit construction of parallel sequences (to launch

several blocks in parallel in the same temporal space).

3.6. Design aspects

The last dimension analyzed has been some design considerations of the tools, from the point

of view of the approach to the interface, the sequencing of user interaction, and the options

available for professors and researchers (see Table 7).

An Evaluation of Open Digital Gaming Platforms for Developing Computational Thinking Skills
http://dx.doi.org/10.5772/intechopen.71339

161

In addition to the data given in the table, we have also reviewed the adaptability of the tools

but we have not found any. That is, the software always behaves the same regardless of the

characteristics of the user (age, gender, educational level, functional diversity, etc) or their

behavior (whether the program is wrong or right, better or worse, the game does not change

Type Game Loo Alt Deb Mod Var Exp Blo# Evn Thr Rec Mes OO 3D Txt Langs Out

CHAL Bee-Bot 4

Blockly

Games

X X X X X X 136 X Js

Cargo-Bot X X X 6 X

Code.org X X X X X X >200 X X X Js

Daisy X X 9 X

Kodable X X X X 7

Kodetu X 9 X Js

Lightbot X X 7 X

Made w/Code X X X X >200

SpriteBox X X 7 X Js,

Sw

The Foos X X X X 20 X X

Tynker - Act X X X X >200 X X

CREA MakeWorld X X 17 X X X

Robozzle X X X 10 X

LANG Alice X X X X X X >200 X X X X X X X Java

App Inventor X X X X X >200 X X X X X Java X

Beetle Blocks X X X X X X 120 X X X

Code Studio X X X X X X >200 X X X X X X Js

Hopscotch X X X X X 86 X X X

Kodu X >200 X X X

Scratch X X X X X 130 X X X X X

ScratchJr X X 26 X X X

Snap! X X X X X X 150 X X X X X

Tynker X X X X X X >200 X X X X X Js, Py X

Waterbear X X X X >200 X X X

GAME Minecraft X X X X X 150 X X X X Js

Loo = Loops, Alt = Alternatives, Deb = Visual debugging in execution, Mod = Modules (subprograms), Var = Variables,

Exp = Expressions, Blo# = # of code constructs (expressiveness of language), Evn = Events, Thr = Multithreading,

Rec = Recursion, Mes = Message passing, OO = OO, 3D = 3D, Txt = Text language equivalent, Langs = Language, Out = Output

to physical world (possible connection with robots, sensors, arduino, etc.).

Table 6. Some CT aspects.

Simulation and Gaming162

the subsequent levels nor does it provide different information or tutorials.) The only thing
that approaches adaptability is the score, which we discuss in the following table.

Reviewing the type of interface that is proposed for the metaphor of “code” (the panel to

which you can drag the pieces to develop the program), we see that the most common option

is vertical (69.2%), which represents the sequence from top to bottom, and rather less common
is horizontal (23.1%) which represents the sequence from left to right (in a few cases with local

Type Game Prog. Interface Tut Help Free Reg Grp Feed Dash Use Res

CHAL Bee-Bot Icons* X

Blockly Games Ver - blocks X X X

Cargo-Bot Hor - icons X X X

Code.org Ver - blocks X X X X X X 3

Daisy Ver - blocks

Kodable Hor - icons X X X X X 3

Kodetu Ver - blocks X X X 2 X

Lightbot Hor - icons X X

Made w/Code Ver - blocks X X

SpriteBox Ver - icons X X

The Foos Hor - blocks X X opt X X 1

Tynker - Act Ver - blocks X X opt X X 3

CREA MakeWorld Ver - icons X X X

Robozzle Hor - icons X X opt X

LANG Alice Ver - blocks X X X

App Inventor Ver - blocks X X X

Beetle Blocks Ver - blocks X X X opt

Code Studio Ver - blocks X X X X X

Hopscotch Ver - blocks X X X X

Kodu Graph - icons X X

Scratch Ver - blocks X X opt X X

ScratchJr Hor - blocks X X

Snap! Ver - blocks X X opt

Tynker Ver - blocks X X X X X X 2

Waterbear Ver - blocks X

GAME Minecraft Ver - blocks X X X X X X 2

Tut = Integrated tutorial, Help = Integrated help, Free = Free navigation, Reg = User registration needed, Grp = Group
creation possible (for teachers), Feed = Feedback for teacher of user’s behavior, Dash = Teacher’s dashboard (0-no to
3-complete), Use = Public access to users’ data, Res = Public research access to user data.

Table 7. Design considerations.

An Evaluation of Open Digital Gaming Platforms for Developing Computational Thinking Skills
http://dx.doi.org/10.5772/intechopen.71339

163

adaptation to the languages that are written from right to left). There are two special tools that
do not fit into these two schemes: Kodu that proposes a creative graphic interface in a circle
where the options are carried out by levels, and each level shows the available options with

icons, joined in a circle; and Bee-Bot, which has no explicit code space: each learner has to

remember by heart the program sequence that s/he “loads” in the bee (just as happens with
the bee-bot physical device).

The preference in vertical interfaces is for blocks (only MakeWorld and SpriteBox, aimed at

lower age bands, propose vertical icons), and in horizontal interfaces, icons (except for the

Foos and ScratchJr which develop graphically elaborated blocks to represent the repetitive
structures mounted on repeating icons). The tendency is to use horizontal structures with

younger age groups and vertical ones with older age groups. The blocks usually have the

visual form of a puzzle, colored to differentiate the types of construction visually. In some
cases like Alice, App Inventor, or Waterbear, the blocks represent concepts that are very close

to the corresponding low-level text-based code.

In the table, you can also see the tools provided for the teachers. Those that provide information

to the teacher and allow him/her to manage groups of students, often also have an online dash-

board in which the teacher, through the web, can consult information on the actions of his/her
group. This is fairly complete in the case of Code.org and Kodable (progress by topic, lessons

completed), and especially detailed in Tynker (also including the skills worked and the level).

Type Game Pre-levelError Success Progress Progress info accessible

CHAL Bee-Bot X X X Stars, points

Blockly Games X X X Levels passed

Cargo-Bot X X X X Stars, levels passed

Code.org X X X X Levels passed, Code length

Daisy X X

Kodable X X X X Levels passed, points

Kodetu X X

Lightbot X

Made w/Code X X X

SpriteBox X X Levels passed, points

The Foos X X X X Levels passed, stars

Tynker - Act X X X X Levels p., stars, prizes, certifs, concepts

CREA MakeWorld X

Robozzle X X Levels passed, solution length

Pre-level = Feedback before each level, Error = Feedback after levels failed, Success = Feedback after levels passed,
Progress = Explicit info on user’s progress in game.

Table 8. Feedback to user.

Simulation and Gaming164

Public access to data is not common; very few tools show general use data and even less allow

access to information for research.

Finally, in Table 8, we can see information about the feedback that is given to the user as the

system progresses. We only consider challenge games, these being the ones that can guide the

learner through an expected series of actions.

4. Conclusions

Throughout this chapter, we have seen that there are a growing number of options to lead a

learner through CT. An interesting learning path can be to start with some of the challenge

games for a few days and move on from there to a visual programming language that can

involve weeks or months of activity. The fun is assured, and there are multiple options, in

addition to a diversity of motifs that make use of well-known themes of films or video games
to reinforce the experience.

However, there are still some limitations to be considered for the next generation of CT games.

There is excessive use of action primitives that have to do with movement and orthogonal

rotation (influenced perhaps, as we are all, by Logo and its historical importance); instead of
other auditory, rhythmic, or visual options, that also allow for developing algorithmic thought

and exploring abilities other than spatial vision: in this sense, we note some of the most recent

activities incorporated by Code.org and Made w/Code with multimedia elements. We also
find the predominance of blocks; tools like Kodu using flowcharts open possibilities to design
new CT tools combining both and other visual expressions, beyond the only visual abstrac-

tion of nested blocks. Another widespread lack is that in this nascent field, it is especially
important to investigate how users behave and how systems facilitate their learning, so it

would be desirable for original digital tools to facilitate the use of open-access information for

learning analytics, to allow improvement and provide quantum leaps in the design of new

levels and tools. A final important gap is the lack of adaptive learning; practically, all the tools
behave always the same, regardless of age, prior knowledge, or the skill shown by the user.

It is important that tools begin to use passed user activity to adapt and significantly improve
the educational experience, something that should also be especially feasible in this type of

fully digital systems.

A key issue in learning is assessment. In the games (which pose a quantifiable, measurable
and observable challenge), an adequate assessment is more feasible. In fact, it is already being

considered in some platforms: code size—number of blocks—in Code.org, stars for time or

level objectives in the Foos and others, and so on. Assessment should be improved to include
more key indicators in CT skills, such as program efficiency (number of execution steps) and
user behavior in the process, not just the result (number of errors, number of code changes,

type of development to the right result, etc). In programming languages, assessment is much

more complicated. In the same way that a programming teacher working with a text-based

language (e.g., Python or Java) has a complex task to evaluate his students, even more so for a

primary or secondary teacher who is not necessarily a computing expert and is not looking for

An Evaluation of Open Digital Gaming Platforms for Developing Computational Thinking Skills
http://dx.doi.org/10.5772/intechopen.71339

165

the same things. Therefore, though remixing can be used to reinforce the skills included in CT

[13], the tools still lack the automatic possibilities or even of capacities for teachers to carry out

a progressive monitoring of the learner experience in open environments: new mechanisms

of analysis and evaluation are needed so that we can verify that students go beyond solving

a problem, and study how they solve it and how they progress. Probably, subsystems of the

type proposed in Dr. Scratch [14] will be incorporated to facilitate indicators that enrich the

process for both learners and teachers. There is also an important need for common criteria to

know CT skills so as to develop and evaluate them. In this respect, easily digitized tools such

as the CTtest proposed by Román-González [15] can be a great complement for assessment in

medium-term training processes, using both games and languages.

Observing only the category of games based on programming challenges, we review the

importance of generating more engagement after the challenges are over, incorporating

techniques of gamification known as punctuation, classifications, proposals for improve-

ment, and the incorporation of creative levels in which the challenge is not limited by simple

quantifiable objectives; a line in which the entities with more resources, such as Code.org
and Tynker, are already working. Another key issue in these systems is the scaffolding. In
addition to the obvious effort of level design (a need shared by both games and education),
guided by the experience of designers, it is a challenge to systematize the process to ensure

the good development of learning and progression of motivation, seeking the flow that so
many games achieve; it is also necessary to investigate the guidelines for the automatic gen-

eration of levels/challenges, in the line already known in many procedural generation video
games. It will also be important to consider how to set out the introductions and tutorials to

maximize the learning objective and identify the type of thinking that the learner is applying

to solve each progressive challenge, as discussed using Kodu in [16]. Another final gap in
challenge games is that few systems allow the creation of new challenges for learners or their

teachers, limiting the experience and prematurely closing and limiting the learning cycle.

Tools like MakeWorld or Robozzle, which not only allow you to play but also to edit new

worlds, will be in the next generation of games to increase the personalization of challenges

through modification or creative contribution to different challenges, in a characteristic type
of remix.

Regarding the programming languages category, there are intrinsic limitations to block-

based visual environments compared to text-based languages. This is more noticeable in

large programming projects due to limitations on the visibility of the code, code navigation

difficulty, or lack of control in source modifications [7]. Bidirectional conversion between

visual and text programming language is available in an increasing number of platforms

such as Code.org App Lab. This feature allows learners to choose the most useful view

depending on the complexity of the project. We also note that game-oriented platforms are

also including teachers’ dashboards (Code.org, Kodable, Tynker) but are still very limited or

nonexistent in the programming languages category, reflecting the lack of assessment tools
already mentioned.

Finally, we have included, in our analysis, a small category of videogames that allow using
visual programming in their mechanics. In this regard, Minecraft is an interesting example

Simulation and Gaming166

for game designers. Good videogames can also be designed taking into account specific CT
mechanics. We believe this is one of the challenges for the following years in game design,

not only for construction games but also for graphic adventures, RPGs, FPS, and many other
types of videogames.

Author details

Andoni Eguíluz*, Pablo Garaizar and Mariluz Guenaga

*Address all correspondence to: andoni.eguiluz@deusto.es

Faculty of Engineering, Universidad de Deusto, Bilbao, Spain

References

[1] Wing JM. Computational thinking. Communications of the ACM. 2006;49(2):33-35. DOI:

10.1145/1118178.1118215

[2] Buitrago Flórez F, Casallas R, Hernández M, Reyes A, Restrepo S, Danies G. Changing a
generation’s way of thinking: Teaching computational thinking through programming.

Review of Educational Research. 2017. DOI: 10.3102/0034654317710096

[3] Wing JM, Stanzione D. Progress in computational thinking, and expanding the HPC com-

munity. Communications of the ACM. 2016;59(7):10-11. DOI: 10.1145/2933410

[4] Tedre M, Denning PJ. The long quest for computational thinking. In: Proceedings of

the 16th Koli Calling International Conference on Computing Education Research (Koli

Calling '16); New York, NY, USA. ACM; 2016. p. 120-129. DOI: 10.1145/2999541.2999542

[5] Denning PJ. Remaining trouble spots with computational thinking. Communications of

the ACM. 2017;60(6):33-39. DOI: 10.1145/2998438

[6] Kazimogl C, Kiernan M, Bacon L, MacKinnon L. Learning programming at the compu-

tational thinking level via digital game-play. Procedia Computer Science. 2012;9:522-

531. DOI: 10.1016/j.procs.2012.04.056

[7] Bau D, Gray J, Kelleher C, Sheldon J, Turbak F. Learnable programming: Blocks and beyond.
Communications of the ACM. 2017;60(6):72-80. DOI: 10.1145/3015455

[8] Powers K, Gross P, Cooper S, Mcnally M, Goldman K, Proulx V, Carlisle M. Tools for

teaching introductory programming: What works? ACM SIGCSE Bulletin. 2006;38(1):560.

DOI: 10.1145/1124706.1121514

[9] García-Peñalvo FJ, Hughes J, Rees A, Jormanainen I, Toivonen T, Reimann D, Tuul M, Virnes M.
Evaluation of existing resources (study/analysis). Belgium: TACCLE3 Consortium. 2016;
DOI: 10.5281/zenodo.163112

An Evaluation of Open Digital Gaming Platforms for Developing Computational Thinking Skills
http://dx.doi.org/10.5772/intechopen.71339

167

[10] Sandoval-Reyes S, Galicia-Galicia P, Gutierrez-Sanchez I. Visual learning environments for

computer programming. In: Electronics, Robotics and Automotive Mechanics Conference

(CERMA); IEEE; 2011. p. 439-444. DOI: 10.1109/CERMA.2011.76

[11] Daly T. Using introductory programming tools to teach programming concepts: A litera-

ture review. The Journal for Computing Teachers. 2009;Fall:1-6

[12] Panitz M, Sung K, Rosenberg R. Game programming in CS0: A scaffolded approach. Journal
of Computing Sciences in Colleges. 2010;26(1):126-132

[13] Dasgupta S, Hale W, Monroy-Hernández A, Hill BM. Remixing as a pathway to compu-

tational thinking. In: Proceedings of the 19th ACM Conference on Computer-Supported

Cooperative Work & Social Computing (CSCW '16); New York, NY, USA: ACM; 2016.

p. 1438-1449. DOI: 10.1145/2818048.2819984

[14] Moreno-León J, Robles G. Dr. Scratch: A Web Tool to Automatically Evaluate Scratch
Projects. In: Proceedings of the Workshop in Primary and Secondary Computing Education

(WiPSCE '15); New York, NY, USA. ACM; 2015. p. 132-133. DOI: 10.1145/2818314.2818338

[15] Román-González M, Pérez-González JC, JiménezFernandez C. Which cognitive abili-
ties underlie computational thinking? Criterion validity of the Computational Thinking

Test. Computers in Human Behavior. 2016:1-14

[16] Touretzky DS, Gardner-McCune C, Aggarwal A. Semantic reasoning in young program-

mers. In: Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer

Science Education (SIGCSE '17); New York, NY, USA: ACM; 2017. p. 585-590. DOI:

10.1145/3017680.3017787

Simulation and Gaming168

