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Abstract

In this chapter, the complete mitochondrial genome of Guatemalan potato moth, Tecia 

solanivora (Povolny, 1973) (Lepidoptera: Gelechiidae) is presented as a model to under-
stand how to characterize and study a mitogenome in insects. It was sequenced, analyzed, 
and compared with other lepidopteran insects. T. solanivora mitogenome is a circular 
double-stranded molecule, typically found in insects and containing 37 genes, all them 
well described over the other lepidopteran mitogenomes sequenced. Interestingly, in this 
mitogenome was found a gene arrangement in the tRNA-Met gene different from the 
ancestral arrangement, but commonly present in insect mitogenomes. Other important 
characteristics are the high A + T-biased and negative AT- and GC-skews contents, but 
also unusual canonical start codons in 12 protein-coding genes and an incomplete stop 
codon in the cytochrome oxidase subunit II gene consisting of just a Thymine. Another 
common feature shared with lepidopteran mitogenomes is the A + T-rich region. It is char-
acterized by having 325 bb, the ‘ATAGA’ motif, a 17 bp poly (T) stretch and a (AT)

8
 ele-

ment preceded by the ‘ATTTA’ motif. Likewise, this mitogenome has 21 intergenic spacer 
regions. In addition, an update about other recent mitogenomes research done mainly 
over lepidopteran insects considered crop pests is presented. On the other hand, a novel 
development based on induced mutations by CRISPR-Cas9 in the mitogenomes seeking 
applicable capability for pest control is shown. The utility of this study is to improve sci-
entific databases and support future studies of population genetic in lepidopteran.

Keywords: mitogenomes, mitochondrial genome, crop pests, lepidopteran, insects

1. Introduction

Crop loss is a function of one or more biotic factors, each of which may be contributing to a 

reduction in yield, whereas yield loss is the reduction in yield caused by a single pathogen or a 

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Figure 1. Growing in the number of publications with the words “Mitogenome AND Lepidoptera” at the title, abstract 

or keywords of scientific articles. Records were subtracted from literature databases; Scopus, Web of Science, and 
ScienceDirect.

pest [1]. Even so, there is no doubt that crop losses due to pests and diseases are a major threat 

to incomes of rural families and to food security worldwide [2]. Although there are a large 

number of different living organisms that affect agricultural crops (biotic factors) and there-

fore they are called pests or pathogens, organisms from Lepidoptera order within Insecta class 

are considered one of the most economically important pests due to huge crop losses caused 

by them, crop losses, in terms of quantity and quality that can occur in the field (pre-harvest) 
or in the storage (post-harvest) [3].

Lepidoptera (moths and butterflies) is the second largest order in Insecta, is species-rich con-

taining over 155,000 described species, and occurs in nearly all regions and a wide variety 

of habitats [4]. A combination of features has conspired to render the Lepidoptera one of 

the most studied groups of organisms; on account of this, research on lepidopteran insects 
has been carried out during the past century. Nevertheless, only few years ago, scientists 

are seeking answers on genomes as a key to revalidate previously generated data or redirect 

mechanisms of pest control. In this context, mitochondrial genomes (mtgenomes or mitoge-

nomes) are very important subject for different scientific disciplines including, among others, 
animal health, comparative and evolutionary genomics, molecular evolution, phylogenetic, 

population genetics, and biogeographic studies [5, 6]. Therefore, it is not surprising that 
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approximately 500 mitogenomes of insects have been determined and subsequently depos-

ited in GenBank [6]. Surprisingly, one of the most recent report shows that only 140 com-

plete Lepidoptera mitogenomes (28 families from 12 superfamilies) have been sequenced and 

deposited in genomes databases [7], which contrasts with the number of described species 

in this order, as previously mentioned. In this perspective, it has been the growing research 

efforts of scientist around the world seeking to expand the knowledge barrier of one mito-

chondria of Lepidoptera. Figure 1 shows continuous growth in the number of scientific pub-

lications in this field, showing records subtracted from literature databases: Scopus, Web of 
Science, and ScienceDirect.

In the present chapter, the complete mitogenome of Tecia solanivora is presented as a model 

to understand how to study a mitochondrial genome in insects. Additionally, it presented a 

review about mitogenomes research done mainly over lepidopteran insects considered crop 

pests to provide insight into aspects like genome structure and organization, nucleotide com-

position, codon usage, molecular functions, interactions among genes, and notable noncoding 

sequences included in the A + T-rich region. The utility of this study is to improve databases 

and support the determination of lepidopteran population genetic studies in the future.

2. Mitochondrial genome in insects

In insects, the mitochondrial genome is a circular double-stranded molecule typically between 

14,000 and 20,000 bp. It contains 13 PCGs, 2 rRNAs, 22 tRNAs, and a control region (also 

known as the A + T-rich region), which are organized and oriented in different ways [8]. This 

genome has been widely used for phylogeny studies, phylogeography, population genetics, 

and molecular diagnostics. It has also been used to identify novel genes relevant for future 

studies [9], because of its small size, maternal inheritance, low recombination rate, relatively 

rapid evolutionary frequency, and multiple copies per cell [10]. Consequently, mitogenome 

sequences are rapidly evolving with about 500 insect species currently sequenced [6].

3. Characterization of insect mitogenomes

The complete mitogenome of Tecia solanivora is presented as a model to understand how to 

study and characterize a mitochondrial genome in insects. Additionally, it presented a review 

about mitogenomes research done mainly over lepidopteran insects considered crop pests. 

The argument for presenting T. solanivora as a model is because this lepidopteran insect repre-

sents the most damaging potato (Solanum tuberosum) pest in both Central and South America 

and Spain [11, 12]. T. solanivora was reported first time in Central America in 1956, affecting 
potato crops (S. tuberosum), which resulted in a direct effect on the economy. Even though this 
pest has a reduced mobility, it has invaded several countries in Central and South America as 

well as the Canary Islands in Spain where potato is grown [13]. It is important to mention that 

T. solanivora has been producing damage in both field crops and stored potato tubers, causing 
economic losses ranged from 50 to 100% [14]. The economic impact of the pest in countries of 
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the Andean area is much more serious than in Central America, mainly because potato is an 

important family staple and its production is very intensive. Therefore, T. solanivora is con-

sidered the most damaging crop insect pest in such countries [15]. Nevertheless, as an insect 

belonging to Lepidoptera order, the study carried out on the characterization of T. solanivora 

mitogenome could be applied to other studies on insects considered pest for agriculture.

3.1. Genome sequencing and assembling

T. solanivora larvae were collected from field- or storage-infested potato tubers from Colombia. 
All biological samples were preserved in 70% ethanol and stored at −70°C until DNA extrac-

tion. Whole T. solanivora genomic DNA was extracted using the protocol described by [13]. 

Each sample was analyzed by electrophoresis and the DNA concentration was quantified 
using a NanoDrop 2000 (Thermo Scientific, Wilmington, DE, USA). The whole genome was 
sequenced by Illumina Hiseq 2000 system at Chapel Hill High-Throughput Sequencing 

Facility in the University of North Carolina. The sequencing system generated 100 bp paired-
end reads with a 342 bp insert size, these reads were checked and filtered using a homemade 
quality criterion script and finally the paired-end reads were assembled using de novo assem-

bler VELVET 1.2.10 [16] with an optimized k-mer parameter of 99. The mtDNA was identified 
through a comparison between Tecia solanivora scaffolds and the mtDNA sequences reported 
in the NCBI GenBank, resulting in the identification of a single mtDNA contig with 200× 
coverage. To verify the topology of the mtDNA, the reads that mapped to the borders of the 

contig were located at an expected distance from their respective pairs. Any discrepancies 

that occurred, especially in the homopolymer regions, were manually edited.

3.2. Gene annotation and compositional analysis

To predict the protein-coding genes (PCGs), rRNA genes and tRNA genes from T. solanivora 

mtDNA, their sequence was submitted to the automatic annotator of mitochondrial genes 
online [dual organellar genome annotation (DOGMA), http://dogma.ccbb.utexas.edu] [17]. 

To determinate homology between T. solanivora genes and other previously sequenced 

Lepidoptera species was used NCBI BLAST program and results manually curated. Then, the 

PCGs nucleotide composition, genome, and codon position were determined and the PCGs 

were translated into putative proteins for calculating of the relative synonymous codon usage 

(RSCU) using the invertebrate mitochondrial genetic code in MEGA version 5.2.2 [18]. The 

frequencies of A, T, G, and C were used to calculate the composition skew according to the 

AT- and GC- skew formulas. The intergenic and overlap sequences were pulled out manu-

ally from genome using SeqBuilder from the DNAStar package (DNAStar Inc., Madison, 

Wisconsin, USA).

3.3. Genome structure, organization, and base composition obtained

The T. solanivora mitogenome obtained was a closed circular 15,251-bp molecule (GenBank 

accession number KT326187) (Figure 2). It contains the typical set of 37 genes (13 PCGs, 22 

tRNAs, and two rRNAs) and a large, 325-bp noncoding region (control region). A total of 24 

genes were transcribed on the majority-coding strand (H-strand), while the rest were tran-

scribed on the minority-coding strand (L-strand) (Table 1).
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When we compared with other reported Lepidoptera family mitogenomes, it found an 
identical gene order and orientation of the mitochondrial genes of this species to other 

lepidopteran moths, including Tryporyza incertulas [19], Corcyra cephalonica [20], Adoxophyes 

honmai [21], Apocheima cinerarius [22], Amata emma [23], Attacus atlas [24], Bombyx mori [25], 

Caligula boisduvalii [26], Chilo auricilius [19], Diaphania pyloalis [27], Manduca sexta [9], Ostrinia 

nubilalis, Ostrinia furnacalis [28], Samia Cynthia ricini [29], and Sasakia funebris [30], among 

others.

Figure 2. Map of the mitochondrial genome of T. solanivora. Protein-coding genes (names with underline) coded on 

the majority strand arrows going in clockwise direction, while the rest going counterclockwise. The tRNA genes are 

designated by tRNA-amino acid codes. The rRNAs two and they are located next to tRNA-val and the A + T-rich region 

(control region) is indicated by a square.
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Gene Direction Position (bp) Length (bp) Anticodon Start codon Stop codon

tRNA-Met Forward 1–68 68 CAT

tRNA-Ile Forward 70–134 65 GAT

tRNA-Gln Reverse 136–204 69 TTG

NAD2 Forward 259–1269 1011 ATT TAA

tRNA-Trp Forward 1268–1336 69 TCA

tRNA-Cys Reverse 1329–1394 66 GCA

tRNA-Tyr Reverse 1406–1471 66 GTA

COI Forward 1475–3010 1536 CGA TAA

tRNA-Leu (UUR) Forward 3006–3073 68 TAA

COII Forward 3074–3754 681 ATG T

tRNA-Lys Forward 3756–3826 71 CTT

tRNA-Asp Forward 3837–3904 68 GTC

ATP8 Forward 3905–4072 168 ATT TAA

ATP6 Forward 4066–4743 678 ATG TAA

COIII Forward 4743–5531 789 ATG TAA

tRNA-Gly Forward 5534–5600 67 TCC

NAD3 Forward 5601–5954 354 ATT TAA

tRNA-Ala Forward 5964–6030 67 TGC

tRNA-Arg Forward 6030–6095 66 TCG

tRNA-Asn Forward 6101–6166 66 GTT

tRNA-Ser (AGN) Forward 6181–6246 66 GCT

tRNA-Glu Forward 6247–6315 69 TTC

tRNA-Phe Reverse 6314–6380 67 GAA

NAD5 Reverse 6364–8097 1734 ATT TAA

tRNA-His Reverse 8113–8178 66 GTG

NAD4 Reverse 8183–9523 1341 ATG TAA

NAD4L Reverse 9523–9816 294 ATG TAA

tRNA-Thr Forward 9819–9883 65 TGT

tRNA-Pro Reverse 9884–9949 66 TGG

NAD6 Forward 9952–10,479 525 ATA TAA

Cytb Forward 10,497–11,642 1146 ATA TAA

tRNA-Ser Forward 11,646–11,712 67 TGA

NAD1 Reverse 11,730–12,665 936 ATA TAG

tRNA-Leu Reverse 12,669–12,736 68 TAG
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The typical lepidopteran arrangement of the tRNAs (tRNA-Met, tRNA-Ile, tRNA-Gln) was 

observed in the T. solanivora mitogenome but differs from the order found in ancient insects 
(Figure 3). In that sense, it was determined that T. solanivora presents several differences from 
the ancestral organization of the tRNA-Met region (A + T-rich region, tRNA-Ile, tRNA-Gln, 

tRNA-Met) [20], which is also found in the mitogenomes of Aedes aegypti (Diptera) [31] and 

Acrida cinerea (Orthoptera) [32]. In the case of T. solanivora, the order is: A + T region, tRNA-

Met, tRNA-Ile, tRNA-Gln. Additionally, in the T. solanivora mitogenome, the tRNA-Lys gene 

is found after the COII gene, contrary to A. cinerea, where they are found in the reverse order. 

In addition, the NAD3 gene was located before the tRNA-Ala gene in T. solanivora, whereas in 

A. aegypti, the gene located in this region is tRNA-Arg.

The nucleotide composition determined in the entire T. solanivora mitogenome was A: 38.6, 

T: 39.6, C: 13.3, and G: 8.4% (Table 2). This nucleotide composition shows that highly 

A + T-biased (78.2%) with a similar proportion of adenine (A) and thymine (T) compared with 

the reported ranges found in other Lepidoptera mitogenomes. In the same way, T. solaniv-

ora mitogenome exhibits negative AT-skew (−0.013) and GC-skew (−0.226) values (Table 3). 

However, the most of Lepidoptera family members have shown higher percentages of A than 

T, such as: O. nubilalis (A: 41.3, T: 38.8%), O. furnacalis (A: 41.46, T: 38.92%), B. mori (A: 43.06, 

T: 38.30%) [33], Phthonandria atrilineata (A: 40.78, T: 40.24%) [34], Ochrogaster lunifer (A: 40.09, 

T: 37.75%) [35], Chinese Bombyx mandarina (A: 43.11, T: 38.48%) [36], and A. atlas (A: 39.8, T: 

39.5%), among others. Likewise, the cytosine (C) content in the T. solanivora mitogenome was 

greater than guanine (G), which is similar to the percentages identified in other recently dis-

covered Lepidoptera mitogenomes, except for Antheraea yamamai (G: 10.71, C: 10.35%) [37], 

Eriogyna pyretorum (G: 10.61, C: 7.45), and Artogeia melete (G: 11.33, C: 8.65%) [38].

3.4. Protein-coding genes (PCGs)

The protein-coding genes (PCGs) encompassed 11,191 bp of the entire assembled sequence 

(73.38%) and exhibited an A + T content of 76.4%. Nine of the 13 PCGs are coded on the 

majority strand (ATP6, ATP8, COI, COII, COIII, Cytb, NAD2, NAD3, and NAD6), while the 

rest (NAD1, NAD4, NAD4L, and NAD5) are coded on the minority strand. For the protein-

coding genes, the A + T content was calculated for the three-codon positions, and they showed 

few differences from other Lepidoptera mitogenomes. T. solanivora showed negative AT- and 

GC-skew values in the second and third positions of each codon, indicating a greater inclina-

tion for the nitrogen bases, T and C, while the first position showed a slightly positive value 

Gene Direction Position (bp) Length (bp) Anticodon Start codon Stop codon

rRNA-Large Reverse 12,737–14,065 1329

tRNA-Val Reverse 14,089–14,155 67 TAC

rRNA-Small Reverse 14,157–14,926 770

A + T region 14,927–15,251 325

Table 1. Summary of T. solanivora mitogenome.
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Figure 3. Gene arrangement of the T. solanivora mitogenome. Protein-coding genes are marked by light gray, ribosomal 

RNA genes by light green, control region by red and tRNA genes are designated by the single letter amino acid code 
(white). Brown box and horizontal line represent gene clusters that changed positions.

nt % Whole 

mtDNA

Protein-coding sequence Concatenated 

PCGs

rRNAs tRNAs IGs A + T-rich 

region
1st# 2nd# 3rd#

A% 38.6 35.3 21.3 38.3 31.7 43.8 40.5 44.4 42.8

T% 39.6 36.6 48.2 49.2 44.7 39.9 40.2 44.4 48.3

C% 13.3 11.0 17.0 7.3 11.7 5.2 8.1 7.6 6.2

G% 8.4 17.7 13.5 5.2 11.9 11.1 11.2 3.5 2.8

A + T% 78.2 71.9 69.5 87.5 76.4 83.7 80.7 88.8 91.1

C + G% 21.7 28.7 30.5 12.5 23.7 16.3 19.3 11.1 9.0

AT-Skew% −0.013 −0.018 −0.387 −0.125 −0.170 0.047 0.004 0 −0.060

GC-Skew% −0.226 0.233 −0.115 −0.168 0.008 0.362 0.161 −0.36 −0.378

Table 2. Nucleotide composition of T. solanivora mitogenome.

Species Length (bp) A% G% T% C% A + T% G + C% AT-skew GC-skew

T. solanivora 15,251 38.6 8.4 39.6 13.3 78.2 21.7 −0.013 −0.226

A. selene 15,236 38.54 8.05 40.37 13.03 78.91 21.08 −0.023 −0.236

C. raphaelis 15,314 39.37 7.30 43.29 10.04 82.66 17.34 −0.047 −0.158

E. pyretorum 15,327 39.17 7.63 41.65 11.55 80.82 19.18 −0.031 −0.204

A. yamamai 15,338 39.26 7.69 41.04 12.02 80.30 19.71 −0.022 −0.220

C. boisduvalii 15,360 39.34 7.58 41.28 11.79 80.62 19.37 −0.024 −0.217

S. cynthia ricini 15,384 39.65 7.81 40.13 12.41 79.78 20.22 −0.006 −0.227

M. sexta 15,516 40.67 7.46 41.11 10.76 81.78 18.22 −0.005 −0.181

A. pernyi 15,566 39.22 7.77 40.94 12.07 80.16 19.84 −0.021 −0.217

A. honmai 15,680 40.15 7.88 40.24 11.73 80.39 19.61 −0.001 −0.196

Table 3. Comparison of nucleotide composition and skewness between T. solanivora and other lepidopteran mitogenomes.
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for the GC-skew indicating a greater bias for G than C (Table 3). In general, the codons of T. 

solanivora mitogenome present high A + T content for the first position (71.9%). Similar values 
were observed in A. emma (73.1%), Antheraea pernyi (72.9%) [39], C. boisduvalii (73.8%), B. man-

darina (75.0%) [33], and M. sexta (74.8%), but in the second position was found a lower A + T 

percentage (69.5%).

Twelve PCGs were identified in the T. solanivora mitogenome with the typical ATN initia-

tion codons (isoleucine and methionine), except for the COI gene that is initiated by CGA 

initiation codon (arginine). The typical ATN codon represents a putative codon commonly 

observed in the order Lepidoptera [9, 40], and is thus considered a synapomorphy of this 

group of insects [41]. The methionine start codon, ATG, was used by five of the 13 PCGs, and 
ATA was used to initiate protein synthesis in the NAD1, NAD6, and cytb genes. In contrast, 

an atypical isoleucine codon (ATT) was used to initiate protein synthesis in the ATP8, NAD2, 

NAD3, and NAD5 genes. Arginine (CGA) was used for the COI gene for which a nucleotide 

sequence of four or six base pairs has been proposed, much like TTAG in Maruca vitrata [42], 

to serve in a nonstandard initiation process located immediately upstream from the putative 

arginine CGA start codon of COI. In T. solanivora, this tetranucleotide sequence consisted 

of TTGG. The high A + T percentages in insect mitogenomes result in high probabilities of 

finding a noncoding triplet or a coding triplet within the tRNA-Tyr gene, a result that could 
potentially produce generalized annotation errors for the gene COI [43]. Previous studies 

have discussed the possibility that translation initiation of this gene involves an unusual 

sequence of four to six nucleotides (ATAA, TTAA, GTAA, ATTA, or ATTTAA) located imme-

diately before the coding primer of the COI gene. This sequence apparently functions as the 

translation initiator in the majority of insects from the family Diptera, including Drosophila 

yakuba [44]. However, in T. solanivora, the sequence TTGG was found immediately before 

putative initiation codon CGA.

For the stop codon genes, we found the TAA codon in 11 of the PCGs, coinciding with 

the mitogenomes of other Lepidoptera, including T. incertulas, S. funebris, S. cynthia, and 

A. emma of the family Hesperiidae. In the NAD1 gene, the TAG stop codon was found and 

similar results were obtained in five species of the family Hesperiidae [41], while the COII 

gene used a single T as an incomplete stop codon, which is commonly found in the major-

ity of Lepidoptera species to date [9, 41]. This truncated codon could be a representative 

of a recognition site for an endonuclease that splits the polycistronic pre-mRNA, where 

a post-transcriptional polyadenylation then occurs, resulting in a functional stop codon 

(TAA) [9, 19, 45].

The CDpT or Codons Per Thousand Codons of the T. solanivora mitogenome was calculated, 

and five amino acid families were identified. The most common families were: phenylala-

nine (Phe), asparagine (Asn), isoleucine (Ille), lysine (Lys), and leucine 2 (Leu 2), as shown in 

(Figure 4a), being in T. solanivora, phenylalanine (Phe) the most abundant, instead of Leucine 

2 (Leu2), which dominates in other Lepidoptera mitogenomes [35]. Additionally, when the 

relative synonymous codon use (RSCU) was determined, we identified that T. solanivora pres-

ents all typical codons found in other invertebrates (Figure 4b). The codons were richer in A 

or T at the third position and consequently have less G or C.
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3.5. Transfer RNA and ribosomal RNA genes

It was found that T. solanivora contains a typical set of 22 tRNAs with a high A + T bias, account-

ing for 80.7% of the tRNAs, slightly positive AT-skew (0.004) and a clearly positive GC-skew 

(0.161). These results suggest that tRNAs exhibit a higher inclination for nitrogen bases A and 

G than for T and C. Similar results were reported by [46] in E. pyretorum (AT-skew = 0.039 

and GC-skew = 0.174) and [38] in A. melete (AT-skew = 0.034 and GC-skew = 0.142). Among 

the tRNA genes, 14 are coded on the H-strand and eight on the L-strand with lengths ranged 

Figure 4. Codon distribution and relative synonymous codon usage (RSCU) in T. solanivora mitogenome. (a) Codon 

distribution and (b) RSCU. Codon families are provided on the X axis and the RSCU on the Y axis. This mitogenome 
presents all possible codon families existing in Lepidoptera.
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between 65 and 71 bp, and these genes exhibited positive AT-skew (0.047) as well as in almost 

all lepidopteran mitogenomes. However, the rearrangement of certain tRNAs were found 

translocated in the T. solanivora mitogenome compared with out-groups, which are described 

in (Figure 3).

Similar to other mitochondrial sequences from insect species, there were two rRNAs in T. 

solanivora with a total length of 2099 bp and an AT content of 83.7% (Table 2). The large 

ribosomal gene (rRNA-Large), located between tRNA-Leu1 and tRNA-Val, has a length of 

1329 bp, whereas the small gene (rRNA-Small), located between tRNA-Val and the A + T-rich 

region, has a length of 770 bp (Table 1). These rRNA lengths were within the range of values 

reported for other Lepidoptera, as their values range between 1314 bp in Euploea mulciber 

(Nymphalidae) [47] and 1330 bp in Coreana raphaelis (Lycaenidae) [48]. For the rRNA-Large 

and rRNA-Small, the length ranges from 739 bp for Protantigius superans (Lycaenidae) to 

788 bp in (Nymphalidae) [49]. The rRNAs in T. solanivora have an A + T content of 83.7%, 

and similar values were reported for other Lepidoptera, including C. cephalonica (80.43%), T. 

incertulas (82.8%), and Dichocrocis punctiferalis (85.1%) [50].

3.6. Noncoding and overlapping regions

Most of the intergenic regions in this mitogenome were short (≤15 bp) and the total length 
of the noncoding regions in the mtDNA of T. solanivora was 199 bp. This region is composed 

by 21 intergenic spacer sequences, ranging from 1 to 54 bp and showed highly A + T-biased 

(88.8%) (Table 2). The intergenic spacers longer were denominated S1, S2, S3, and S4. 

Intergenic sequence S1 is commonly found in Lepidoptera mitogenome order between the 

tRNA-Gln and NAD2 genes and length ranges between 38 pb in T. incertulas and 88 bp in 

Sasakia charonda [50]. However, this region has not been identified in insects that belong to 
other orders [9].

This sequence (S1) could be considered as a mitogenome marker for Lepidoptera order, and 

it most likely originated from a partial NAD2 gene duplication [19]. Intergenic sequence 

S2 (23 bp) was found between rRNA-Large and tRNA-Val. Intergenic sequences S3 and S4 

(17 bp) separate genes NAD6 and Cytb, and the tRNA-Ser2 and NAD1 genes, respectively. 

The latter sequence contains the “ATACTAA” motif, typically found in other lepidopterans 
[9, 23, 51]. This motif plays an apparent role as a recognition site for the protein implicated 

in mitochondrial transcription termination (mtTERM) [52]. Furthermore, this sequence has 

been recognized for being highly conserved, with a length ranging between 17 and 20 bp [23].

Furthermore, in the T. solanivora mitogenome, three principal overlap sequences were identi-

fied and were designated as OLS1, OLS2, and OLS3. OLS1 was found overlapping the tRNA-
Phe and NAD5 genes. This sequence presents the greatest length, with a total of 17 bp. OLS2 

was found between the tRNA-Trp and tRNA-Cys genes, with a total length of 8 bp and the 

7-bp OLS3-overlapped genes ATP8 and ATP6, which are consistent with the same genes 

found in other lepidopterans, although they differ in length [37, 52]. In addition, an unusual 

overlap region (OLS1) was found between the tRNA-Phe and NAD5 genes; it is important to 
mention that this 17-bp region has not been reported before.
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3.7. The A + T-rich region

The A + T-rich region is a noncoding region with 325 bp length located between rRNA-Small 

and tRNA-Met. The region contains 91.1% AT nucleotides, with negative AT- and GC-skew val-

ues (Table 2), meaning that it is biased for the nitrogen base thymine, as reported for the mitoge-

nomes of other lepidopterans. One exception to this trend is A. honmai, which has a positive AT 

skew (0.028), indicating a bias for adenines [21]. The length of this region is variable in the other 

Lepidoptera, and it can be as long as 1270 bp, as reported in Papilio bianor (Papilionidae) [53].

This A + T region is a conserved structure commonly found in other Lepidoptera, which includes 

the “ATAGA” motif followed by a 17-bp poly-T stretch, just like in T. solanivora mitogenome. This 

motif is immediately followed by the tRNA-Met gene [35, 41, 54] and it seems it has an impor-

tant role in the replication initiation in minor strand of mtDNA in addition to gene regulation 

[19, 30, 41]. Furthermore, eight microsatellite regions were identified within the mitogenome of 
T. solanivora, referred to as (TAA)

4
, (AT)

8
, and (TAT)

7
. These were the most representative mic-

rosatellites found in the species, although the mononucleotide sequences, (T)
6
 and (A)

10
, were 

also identified [55]. These represent the relevant regions of this genome for future studies. Also, 

in most lepidopteran mitogenomes, the (AT)
8
 microsatellite has been previously reported. This 

microsatellite is preceded by the “ATTTA” motif that is commonly found in other mitogenomes 

[9, 41]. In S. funebris, the same (AT)
8
 microsatellite was identified as that found in T. solanivora. 

Nevertheless, most lepidopteran mitogenomes report (AT)
n
, where n ranges from 7 to 12 [19, 23].

3.8. Phylogenetic relationships

To illustrate the phylogenetic relationship of T. solanivora (Lepidoptera: Gelechiidae) with 

other 16 Lepidoptera families, we used a concatenated set of PCGs of 72 other complete 

Lepidoptera mitogenomes obtained from GenBank with previous elimination of start and 

stop codons. The phylogenetic relationship among the eight Lepidoptera superfamilies was 

inferred using both Bayesian Inference and maximum likelihood methods, which produced 

similar topologies to previously analyzed phylogenies obtained for other lepidopterans. The 

results obtained with both methods produced similar and consistent topologies. Our results 

showed high support values for the majority of the nodes and thus the interrelationships 

are well-resolved within order Lepidoptera. We used Aedes aegypti (Diptera) and Acrida cine-

rea (Orthoptera) as out-groups, the phylogenetic trees revealed nine Lepidoptera clades. 

Species of the Papilionoidea, Noctuidae, Bombycidae, Geometridae, Pyralidae, Gelechiidae, 

Tortricidae, Yponomeutidae, and Hepialidae superfamilies cluster monophyletic groups, 
with strongly supported bootstrapped and posterior probabilities (100). All those results and 

analysis were published by authors of the present chapter in 2016 [7].

4. Other recent studies with mitogenomes of Lepidopteran considered 

crop pests

A search carried out on August 04, 2017 in Scopus database showed that after publishing 

the scientific paper made by authors from this chapter [7], scientists have published 62 other 
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studies on mitochondrial genomes of lepidopteran insects. Most of them were focused on 

understanding their composition, organization, motifs, and the inference of phylogenetic 

relationships between these organisms [41, 56–58]. However, recently, [59] reported besides 

of typifying the mitogenomes of Mesophleps albilinella and Dichomeris ustalella (Lepidoptera: 

Gelechiidae), the prediction of the secondary structures of the tRNAs [44, 60]. In this model, 

single polynucleotide chain form four or five arms to fold itself with each other, like a 
clover leaf, call them an acceptor arm, DHU or D arm, anti-codon arm, TψC arm, and vari-
able arm [61], which play a role in proper folding of the tRNA into the L-shaped tertiary 

structure while modifications in or around the anti-codon loop contribute to the function 
of tRNAs in decoding [62]. Prediction of secondary structures of tRNAs has been using 

tRNAscan-SE 1.21, Mito/Chloroplast, invertebrate genetic code for the prediction of tRNA 
isotypes, and a cutoff of 1 score [63]. This method allowed to find and predict the secondary 
structure of 21 tRNAs in both species, except for the tRNASer (AGN), which has a trun-

cated DHU arm, with consideration given to the anti-codons [59]. Frequently, have been 

reported tRNA-like structures into the A + T-rich region in Lepidoptera [37, 49, 64], but it 

seems to be fake tRNAs of random secondary structures, owing to the reduced sequence 

complexity (>90% A + T) in this noncoding region [59], suggesting that are fake tRNAs of 

random secondary structures, owing to the reduced sequence complexity (>90% A + T) in 

this noncoding region [65].

On the other hand, we must highlight the importance of studying of insect pests mitoge-

nomes, this allows to propose hypotheses related with the evolutionary origin of the dif-

ferent larval stages, which causes significant damage to crops during this state, and could 
predict which is the most adaptable state to each type of environment as for example in 

Parapoynx crisonalis moth (Lepidoptera: Crambidae) [66] in which its larvae are lacking 

tracheal gills because they are pest in aquatic crops [67]. This analysis also can be extrapo-

lated to the study of moths that are also plagues only in larval state but in terrestrial crops 

such as T. solanivora, and in this way to be able to find the most viable way to control this 
type of pests.

5. Novel techniques for pest control using mtDNA

Pest species represent a major ongoing threat to global biodiversity, demanding effective 
management approaches are required that regulate pest numbers, while minimizing collat-

eral damage to nontarget species. Species-specific pest controls have been developed in order 
to be long-lasting measures and effectives [68]. One of these methods is called the sterile 

insect technique (SIT), whereby sterile males are introduced into target populations, so that 

they could be produced continuously within the targeted populations for control, and thus 

reducing production of females when mating with them. However, the SIT generally requires 

continuous large-scale production and introduction of sterile evils to sustain population sup-

pression [69].

At the level of maternally inherited mitochondrial DNA (mtDNA) has been identified natu-

rally occurring mutations that cause male infertility. These mutations have little or no impact 
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on females, and hence are minimally or not selected against (i.e. are self-perpetuating in 

nature). Due to those kinds of mutations, have only been identified in some model systems 
such as mice and fruit flies, they are likely to be widespread in nature threatening small popu-

lations viability of endangered species. Currently, a novel variant of the SIT, is the recently 

proposed Trojan female technique (TFT), based on the use of naturally occurring mutations 

or induced by CRISPR-Cas9 (clustered, regularly interspaced, short palindromic repeats sys-

tem) in the mtDNA [69]. The consortium aims to harness these mutations to develop a widely 

applicable capability for pest control, through the release of Trojan females carrying the muta-

tions [68, 69].

With this technique, males that inherit these mutations will have fewer offspring than wild-
type males, while females will remain normal (fertile). It is well known that mtDNA is gener-

ally maternally inherited, so this sex-bias in effects will reduce selection pressure against the 
TFT mutation. When females carrying the TFT mutation are released into a pest population, 
they could cause multi-generational population suppression. However, while promising well 

and scientific means to control pest populations or disease vectors, the release of genetically 
engineered animals raises into ethical issues and a debate is currently underway discussing 

safety and regulatory concerns [68, 69].

6. Conclusion

In this chapter, the complete mitochondrial genome of T. solanivora was presented as a model 

to understand how to characterize and study a mitogenome in insects. It was sequenced, ana-

lyzed, and compared with other lepidopteran insects. This mitogenome shares many features 

with those reported previously in Lepidoptera but exhibited several subtle differences in the 
codon distribution within the A + T region. The phylogenetic relationships of nine clades of 

the order Lepidoptera were developed using Bayesian and maximum likelihood inference, 

which provided well-supported results compared with other phylogenies based on both 

molecular and morphological traits. In addition, an update about other recent mitogenomes 

research done mainly over lepidopteran insects considered crop pests was made. On the other 

hand, it was shown a novel development based on induced mutations by CRISPR-Cas9 in 

the mitogenomes seeking applicable capability for pest control. The utility of all information 

presented in this chapter is to improve scientific databases and support the determination of 
lepidopteran population genetic studies in the future.
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