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Abstract

6-Hydroxydopamine (6-OHDA), a synthetic neurotoxin, has been used to generate 
animal models of Parkinson’s disease (PD). Even though 6-OHDA induced neurode-
generative model in rat, it does not reproduce all the symptoms of the disease, but it 
does replicate most of the cellular processes such as oxidative stress, neurodegenera-
tion, neuroinflammation and apoptotic neuronal death. The knowledge of the mecha-
nisms involved in neurodegeneration is relevant to define possible therapeutic targets 
for PD.

Keywords: neurodegeneration, substantia nigra pars compacta, cellular stress, Parkinson’s 
disease, therapy

1. Introduction

Parkinson’s disease (PD) is a chronic-neurodegenerative disorder that presents motor and 

non-motor symptoms. The bradykinesia, resting tremor, rigidity and postural instability 
are caused by neurobiological defects [1]. PD affects a wide variety of nuclei in the cen-

tral nervous system (CNS), including the dorsal motor nucleus of the vagus, nuclei of the 

Rafe, locus coeruleus, pontine peduncle nucleus, retrorubral nucleus, parabrachial nucleus, 

ventral tegmental area (VTA) and the substantia nigra pars compacta (SNpc) [2]. PD could 

be sporadic or due to genetic alterations (alpha-synuclein, parkin, PINK1, dardarin, and 

oxDJ-1). Despite the fact that PD is multifactorial; an indisputable sign of the disease is the 
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progressive degeneration of the dopaminergic neurons of the nigrostriatal pathway, neuro-

inflammation, the presence of Lewy bodies and generalized damage of the neuronal circuits 
that control the movement [3].

2. Animal models for PD

Cellular processes associated with PD such as oxidative stress, neurodegeneration, neuroin-

flammation and cell death, has been successfully evaluated in rat and mice. Till date, there 
exist two general types of experimental murine models: genetically manipulated and chemi-
cally induced.

2.1. Genetically manipulated

The induction of gene mutations, alterations in protein functionality and sub- or over-
expression of proteins have generated models for PD. These innovative genetic engineer-

ing strategies have been developing for PARK2, alpha-synuclein, PINK1, and oxDJ-1. The 
results are diverse. For example, the genetic deletion of exon 3 of PARK2 in mice increases 

extracellular striatal dopamine contents but the DAT levels are decreased [4, 5]. These 
facts do not alter the nigrostriatal pathway because the number of dopaminergic neu-

rons remains normal. A key factor for Parkinson’s disease progression is the formation of 

Lewy bodies [6], due to which, α-synuclein has been incorporated as a gene or peptide 
to produce amyloid-like composed fibrils. Other strategy involves the incorporation of 

drugs to modify alpha synuclein aggregation in mice and in in vitro models [7, 8]. In 

mice, it causes dopaminergic neuronal death [2]. But the deleterious effect is dependent 

on the site of administration, type of particle (gene, peptides, and oligomers), dose, and 

molecular vector used.

2.2. Chemically induced

The most commonly used neurotoxins are: (a) 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine 
(MPTP) [9], which is converted to 1-methyl-4-phenylpyridinium (MPP+) by monoamine oxi-
dase (MAO-B), (b) 6-hydroxydopamine (6-OHDA) [6, 10], (c) herbicides such as paraquat or 

rotenone [11] and (d) metals (manganese, iron) [12]. MPTP crosses the blood-brain barrier 
(BBB) [13], which in addition to cause damage to the nigrostriatal pathway, causes neuronal 
loss of the GABAergic neurons [14], catecholaminergic neurons (VTA, locus coeruleus, retro-

rubral nuclei) [15], reduction of serotonine receptor in the cortical and subcortical regions 

and reactive gliosis [16]. The toxicity of herbicides and metals is characterized by mito-

chondrial dysfunction due to peripheral and brain cellular stress [6, 17]. The neurotoxin 
6-hydroxydopamine is more selective for the dopaminergic neurons of the SNpc [18, 19] 

because it causes specific degeneration of dopaminergic neurons in the SNpc [19–21] and 

does not cross the BBB. The advantages and limitations of 6-hydroxydopamine model are 
showed in Table 1.
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3. Vulnerability of dopaminergic neurons to 6-OHDA

6-Hydroxydopamine (6-OHDA) is a highly oxidizable dopamine analog, which can be cap-

tured through the dopamine transporter (DAT) [25]. Till date, three mechanisms have been 
proposed to explain the cytotoxic effect of 6-OHDA: (1) intra- or extracellular auto-oxidation, 

Feature Advantages Limitations

Animal(s) used [6, 22] The injection of 6-OHDA can be 
performed in rats (most common), mice, 

cats, guinea pigs, dogs and monkeys 

(uncommon)

None

Usage of the model [1, 20, 23, 24] Unilateral (standardized and most 
common) or bilateral (uncommon) 

injection into the nigrostriatal pathway

None

Mode of administration [20, 25] As the 6-OHDA does not cross BBB, 

intracranial injection by stereotaxis needs 
precise administrations on nigrostriatal 

pathway

Stereotaxis procedure needs special 

equipment

Type of lesion [20, 26] Reproducible; retrograde; relatively 

progressive. Dose and site dependent

Cannot reproduce complete 

pathophysiology

Transporter mediated entry 
[13, 27]

Selective entry into the target using 

Dopamine transporter (DAT), can 
cause selective destruction of brain 

dopaminergic neurons

Noradrenaline transporter (NAT) 
mediated entry causes damage and 

destruction of brain noradrenergic 

neurons

Dopaminergic neuronal loss 

[6, 28]

More in SNpc, nucleus specific to 
dopaminergic neuronal population, than 

in VTA, nucleus containing glutamatergic 
neuronal populations, representing a 

good model for PD

Toxic for other catecholaminergic 
neurons

Progressive and age-dependent 

effects of PD [6, 22]

None Absent due to acute 

neurodegenerative property of 

6-OHDA injection

Circling motor behavior [12, 20] Quantifiable depending on the dosage 
of methamphetamine or apomorphine 

injected and severity of the lesion; 
correlates with the magnitude of 
nigrostriatal lesions

None

Non-motor behavioral 

phenotypes [3, 6]

None Causes cognitive, psychiatric and 

gastrointestinal disorders

Survival rate [27] High survival 5 in 100 die due to lack of proper 

post-surgery recovery

Cellular process associated to 

the cytotoxicity [3, 13, 29–31]

Oxidative/nitrosative stress, apoptosis, 

autophagy, necrosis, neuroinflammation
No Lewy body formation

Table 1. Characteristics of 6-OHDA model.
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which favors the production of hydrogen peroxide, superoxide and hydroxyl radicals [13]; 

(2) formation of hydrogen peroxide by the effect of monoamine oxidase [32]; and (3) direct 

inhibition of the mitochondrial respiratory chain I complex [33].

These mechanisms can act independently or in combination to generate reactive oxygen 
species (ROS) [30]. Injection of 6-OHDA increases iron levels in the SNpc, which further 
induces the generation of ROS and cytochrome c release [13]. ROS and quinones derived 

from 6-OHDA diminishes the antioxidant capacity of the cell, resulting in oxidative damage 

to proteins, lipids and DNA [34]. Miyama and colleagues observed that 6-OHDA treatment 

decreased cellular glutathione content in a time-dependent manner before the oxidation of 

DJ-1 (oxDJ-1), a PD-related endogenous protein [35]. The oxidative stress generated can be 
amplified by the increase of free calcium in the cytoplasm, which is the product of glutamate 
excitotoxicity or by the loss of mitochondrial membrane permeability [36].

The dopaminergic neurons of the SNpc are vulnerable to oxidative stress induced by 6-OHDA, 
because they have increased basal levels of ROS, as well as low levels of glutathione peroxidase, 
an enzyme that reduces hydrogen peroxide to water [37]. The dopamine neurotransmitter has a 
high susceptibility to auto-oxidize and to become neuromelanin, which promotes the formation 
of hydroxyl radicals. This when combined with iron accumulated normally at high concentrations 
in dopaminergic neurons [3, 38], affects its elimination capacity. Also, during the oxidation of 
dopamine, several transient metabolites are formed such as dopamine o-quinone, aminochrome 

and 5,6-indolequinone [39]. These metabolites induce the formation of superoxide and adducts 
with several proteins like parkin [40, 41], tyrosine hydroxylase (TH) [42], glutathione peroxidase 

4 [43] and several others. Indeed, it has been proposed that 5,6-indolequinone is the most reactive 

species that could form adducts with alpha-synuclein generating neurotoxic oligomers [7].

However, not all dopaminergic neurons of SNpc are vulnerable to 6-OHDA toxicity because 
there are subpopulations of dopaminergic neurons in SNpc expressing calcium-binding proteins 

such as calretinin and calbindin-D28k, which prevent the accumulation of intracellular calcium, 
avoiding the consequent excitotoxicity due to glutamate, and the cytotoxic action of 6-OHDA 

[44, 45]. The redox system plays an important role in protecting the dopaminergic neurons 
against oxidative stress. The thioredoxin and glutaredoxin systems directly mediate reduction 
of the 6-OHDA-quinone in vitro and protect neurons against dopamine-induced cell death [46].

4. 6-OHDA model

Ungerstedt and colleagues demonstrated that intracerebral stereotaxic injection of 6-OHDA 
causes degeneration of the nigrostriatal pathway [10]. To evaluate the 6-OHDA toxicity in vivo, 

three models of injury have been developed: (1) the medial forebrain bundle injection [47, 48], 

(2) the intranigral lesion [21, 49] and (3) the intra-striatal injury [20, 50–52]. Although injury to 
the medial forebrain bundle and the intranigral lesion is useful to demonstrate the immediate 

neurotoxic effects, it has the disadvantage of causing rapid and generalized degeneration of 
the injured nucleus [53], being unfavorable models to study the cell death type generated by 

long-term oxidative stress. However, the unilateral or bilateral intra-striatal model does cause 
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the progressive loss of dopaminergic neurons of the SNpc, emulating the nigrostriatal dam-

age observed in PD (Figure 1) [23, 24, 54–56].

4.1. Intra-striatal model

Kirik and colleagues [20] described that the ventrolateral region of striatum in the rat that 

receives afferents from the motor and the sensorimotor areas of the cortex and exclusive 
innervations of the SNpc. The dorsomedial region of the striatum has a mixture of inner-

vations of the SNpc, the VTA, the frontal cortical area and the limbic system. Therefore, 
6-OHDA lesions involving the dorsomedial region have general effects on locomotion and 
drug-induced (such as amphetamine and apomorphine) rotational behavior, while lesions 
affecting the ventrolateral region show effects pronounced at the beginning of the move-

ment, sensorimotor orientation and fine motor behavior [20]. In addition, they observed that 

a single dose given at one striatal site causes 80% reduction in striatal innervation, and a loss 

of about 90% of the nigral dopaminergic population; while the dose administered at several 
sites of the striatum generates damage in extra-striatal innervation [20]. The effect of intra-
striatal injection depends on the site of injury and dose.

Figure 1. Overview of cellular processes promoted by 6-OHDA in rat.
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The intra-striatal injection of 6-OHDA mainly affects dopaminergic neurons of the SNpc, and 
it also generates a reduction of dopaminergic neurons in the VTA, which form the mesolimbic 
pathway and innervate to the nucleus accumbens [28, 57]. The loss of dopaminergic neurons 
in the VTA does not exceed 20% of the population, and the damage does not progress over 
time, as observed in the SNpc. The 6-OHDA model does not replicate the presence of Lewy 
bodies [8], and for this reason, murine models with alpha-synuclein have been established. 
These approaches are based on gene knockout models [58], or gene overexpression [59] and 

intracerebral injection of alpha-synuclein [60]. These approaches might be the relevant in 
understanding the degeneration of the nigrostriatal pathway and its impact on other brain 
nuclei, but further research is still needed.

5. Neuroinflammation

Neuroinflammation in PD is characterized by microgliosis and astrogliosis increased around 
the dopaminergic neurons in SNpc [61]. These cellular process promotes high levels of 
expression of major histocompatibility complex type II (MHC-II) [62], chemokine receptors, 

integrins, neurotrophins and several other markers [63]. Elevated levels of pro-inflammatory 
cytokines, inducible nitric oxide synthase (iNOS), cyclooxygenase 2 (COX2), nitric oxide and 

reactive oxygen or nitrogen species (ROS/RNS) by NADPH oxidase system or by mitochon-

dria are also observed in PD patients [31, 64]. Recently it has been demonstrated that copper-

zinc superoxide dismutase (SOD1) released by microglial cells, or a TNF receptor 2 selective 
agonist, could confer neuroprotection against 6-OHDA toxicity in vivo [65, 66].

Injury of CNS leads to cell death, cellular swelling, excitotoxicity and the release of free radi-
cals and nitric oxide, which triggers a strong glial response [67, 68] referred as reactive gliosis, 

involving the activation of microglia, astrocytes, oligodendrocytes and Neuron/glial 2 (NG2) 

cells [69, 70]. After injury, mature astrocytes proliferate and acquire stem cell properties suggest-
ing their capacity to promote regeneration [71]. Depending on the stimulus and intensity of the 

lesion, all the three types of glia directs the cell either toward the neuroprotection by producing 
neurotrophic factors or toward the neurodegeneration by producing apoptotic mediators and 
ROS/RNS. However, NG2 cells, with their neurogenic [72], oligodendrogenic [73], astrogenic 

[74] and microgliogenic properties play indirect role in directing the cell toward apoptosis or 
protection. The presence of NG2-positive cells has been identified in SNpc but not in the stria-

tum of the rat [75]. A recent study in a murine paradigm showed that conversion of NG2 cells 
to astrocytes to produce cerebral dopamine neurotrophic factor (CDNF) is anti-inflammatory 
in 6-OHDA-induced rat PD model [76]. However, studying the role, mode of activation and 
conversion of NG2 cells could give further clues to the field of neuroinflammation.

The neuroinflammatory process has been evaluated through glial cell markers such as glial 
fibrillary acidic protein (GFAP) for astrocytes [77, 78] and OX-42 or Iba-1 antibodies to microglia 

[79, 80]. The temporal course of activation of these glial populations has been determined by 
the neurotoxic effect, from day 3 post-injury [51], and even its activation was observed up to 
3 weeks after injury with 6-OHDA [78]. The neuroinflammatory process to that precedes the 
death of nigral dopaminergic neurons (2 weeks post-injury) is probably a mechanism indicating 
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cell damage. Another body of evidence suggests that the increase in the activation of glial cells, 

and the consequent release of pro- and anti-inflammatory cytokines at the site of damage, could 
increase the cytotoxicity of 6-OHDA [26]. Overexpression of human alpha-synuclein in a mouse 

model of PD showed enhanced expression of proinflammatory cytokines and microglial activa-

tion [81]. Recently, the studies focused on NG2 cells, mitochondrial dysfunction or Lewy body 
accumulation (trend topic based in alpha-synuclein model) has been relevant to understand 

neuroinflammatory process and define alternative therapeutic targets for PD.

6. Apoptosis

The majority of studies indicated that apoptosis is the main type of cell death produced 
by 6-OHDA, but necrosis and autophagy contribute on neurodegenerative process also 

[29, 82, 83]. Given the variety of experimental models, it is not still possible to determine the 

proportion of dopaminergic neurons of the SNpc affected by one or other types of cell death. 
However, the convergence of several types of cell death could explain the time course of 
degeneration and the activation of the neuroinflammatory process [84].

Cell death has been highlighted as the final effect of 6-OHDA cytotoxicity. Several techniques 
are used to determine cell death type in dopaminergic neurons in rats (TUNEL, silver staining, 
and immunostaining to caspase-3, GSK-3β, Bax, Bad) [85–87]. Interestingly TUNEL technique 
is unspecific to identify apoptosis because on in vitro studies the 6-OHDA induces necrosis 

at same dose used in vivo [88, 89]. So the use of other apoptotic markers is recommended to 

show the loss of cellular integrity or specific chromatin condensation on the dopaminergic 
neurons of the SNpc [51].

Caspase-3 is the major effector caspase in neurons and its activation has been demonstrated 
by applying neurotoxins in vitro and in vivo. This cysteine protease is enrolled both in intrinsic 
and in extrinsic apoptotic pathway [90–92]. In in vivo studies, its presence has been evidenced 

1 week after intra-striatal injection of 6-OHDA in rats [78, 93]. Most in vivo studies have dem-

onstrated the expression of caspase-3 in different cell death models, suggesting that caspase-3 
activation is involved in programmed cell death of the SNpc [92, 94, 95]. However, some recent 
studies are unable to confirm the presence of active caspase-3 or caspase-9 and, based on this, 
state that these caspases are not involved in the apoptosis of dopaminergic neurons of the 

SNpC [96, 97]. This controversy is further exacerbated by recent findings demonstrating the 
involvement of caspase-3 in non-apoptotic functions, such as the activation of microglia [98, 

99]. Although most authors agree with the involvement of caspase-3 in the 6-OHDA-induced 
neurodegeneration, the doubt still remains if caspase-3 expression only leads to neuronal death. 

It has therefore been necessary to explore other markers of the apoptotic process and in this 

regard, scientists have highlighted the study and role of glycogen synthase kinase 3β (GSK-3β).

GSK-3β is involved in the signaling pathway of neuronal apoptosis activated by oxidative 
stress [100], a central factor in the neuropathological process of PD [101]. GSK-3β is activated 
by phosphorylation of the tyrosine residue 216 (Y216), located in the kinase domain and inac-

tivated by the phosphorylation of serine 9 (S9) [100]. It was observed that a single dose of 
6-OHDA administered in the neostriatum of the rat causes caspase-3 and GSK-3β expression, 

Animal Model of Parkinson Disease: Neuroinflammation and Apoptosis in the…
http://dx.doi.org/10.5772/intechopen.71271

381



loss of cytoskeletal integrity, TH levels decreased and activation of apoptotic process in dopa-

minergic neurons of SNpc [51, 85, 92].

Other authors demonstrated atrophy and progressive death of dopaminergic neurons depen-

dent on translocation to the nucleus of the inducing factor of Apoptosis-inducing factor 

(AIF), in which there was no activation of caspase-3 or release of cytochrome C or signs of 
apoptosis. These researchers further demonstrate that death induced by 6-OHDA in dopami-
nergic neurons is mediated by activation of AIF-dependent Bax [97]. In this work, AIF acti-
vation suggests the involvement of regulated necrosis. The controversy between dependent 
or independent death of caspase-3 could be explained by the dose, study model and site of 

injury employed. However, since most evidence includes the involvement of caspase-3 in the 
6-OHDA-induced apoptotic process, studies that contradict this fact suggest that 6-OHDA 

could also lead to neuronal death by apoptosis (independent of caspase-3) or other cell death 

processes (necrosis and autophagy) in vivo.

All the toxin-induced PD models had scant attention when it comes to the neuroprotective or 
regenerative strategies. Neuropathology and studies related to the correlation between inflam-

mation and immune cells need to pay much more attention. It is of great interest to know 
the stimulus by which glial cells respond to the microenvironment and how do they decide 
whether to release neuroprotective or apoptotic mediators. It would be of interest to know if 
all the activated glial cells arise from a limited number of precursor cells or if all glia have equal 

potential to proliferate. It is also most important to study in detail about the types of receptors 

which are present on glial cells that play a major role in the field of neuroinflammation.

7. Relevance of 6-OHDA model in gene therapy

The 6-OHDA injury model has been used to demonstrate the benefits of neurotrophic therapy 
(NT) [102]. NT consists of directed delivery of genes encoding neurotrophic factors such as 
brain derived neurotrophic factor (BDNF) [103], glial cell line-derived neurotrophic factor 

(GDNF) [104–109], cerebral dopamine neurotrophic factor (CDNF) [76, 110], mesencephalic 

astrocyte-derived neurotrophic factor (MANF) [111], vascular endothelial growth factor 
(VEGF) [112] through nanoparticles [113, 114], or through viral or non-viral gene vectors [76, 

104–107, 115]. The purpose of NT assessed in the 6-OHDA model is to prevent the progres-

sion of neurodegeneration and to stimulate the functional regeneration of the nigrostriatal 

system [116, 117]. The recovery of dopaminergic populations could improve motor function. 
It is therefore important to identify further underlying mechanisms of oxidative stress, neuro-

inflammation, neurodegeneration and neuronal death caused by 6-OHDA. This knowledge is 
the key to discovery novel therapies to treat PD.

8. Conclusion

The 6-OHDA model reproduces several cellular processes identified in the PD, therefore it 
is a key model to explore the molecular bases of cytotoxicity, as well as to study the cellular 
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processes activated by oxidative stress (neuroinflammation and neuronal death), and conse-

quently a useful model to understand the mechanisms of novel therapies for PD.
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6-OHDA 6-hydroxydopamine

AIF apoptosis-inducing factor

BBB blood–brain barrier

BDNF brain derived neurotrophic factor

CDNF cerebral dopamine neurotrophic factor

CNS central nervous system

COX2 cyclooxygenase 2

DAT dopamine transporter

GDNF glial cell line-derived neurotrophic factor

GFAP glial fibrillary acidic protein

GSK-3 glycogen synthase kinase-3

Iba-1 ionized calcium binding adaptor molecule 1

iNOS inducible nitric oxide synthase

MANF mesencephalic astrocyte-derived neurotrophic factor

MHC-II major histocompatibility complex type II

MPP+ 1-methyl-4-phenylpyridinium

MPTP 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine

NADPH nicotinamide adenine dinucleotide phosphate

NAT noradrenaline transporter

NG2 neuron/glial 2
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NT neurotrophic therapy

OX-42 CD11b antibody (integrin, alpha M)

oxDJ-1 oxidized DJ-1 protein

PD Parkinson’s disease

PINK1 PTEN-induced putative kinase 1

ROS reactive oxygen species

ROS/RNS reactive oxygen or nitrogen species

S9 serine 9

SN substantia nigra

SNpc substantia nigra pars compacta

SOD1 superoxide dismutase 1

TNF tumor necrosis factor

TUNEL terminal deoxynucleotidyl transferase mediated X-dUTP nick end labeling

VEGF vascular endothelial growth factor

VTA ventral tegmental area

Y216 tyrosine residue 216
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