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Abstract

Natural killer (NK) cells are crucial components of the innate immune system and play 
critical roles in host immunity against viral infections and cancer. NK cells’ activity is 
controlled by the interaction of a wide range of receptors expressed on their surfaces 
with cell surface ligands. Opposite signals delivered by inhibitory and activating recep-
tors tightly regulate NK cells’ cytotoxicity. Natural killer cells can discriminate between 
normal and cancer cells. NK cells are known to directly recognize and kill malignant 
cells or induce apoptosis. However, tumor cells have the ability to evade those attacks. 
The main mechanisms involve the lack of expression or downregulation of the expres-
sion of major histocompatibility complex (MHC) class I molecules and secretion of 
soluble NKG2D ligands by tumor cells. Furthermore, tumors harbor a population of 
cancer stem cells (CSCs), which can drive tumor progression and therapeutical resis-
tance. This chapter highlights the roles of NK cells in tumor immunosurveillance and 
their applications for cancer immunotherapy. NK cell biology and function as well as 
the role of their receptor interactions will be described. We will discuss the therapeutic 
applications of NK cells in cancer and NK cells targeting CSCs as a promising strategy 
for cancer therapy.

Keywords: NK cells, cancer-immunotherapy, cancer stem cells

1. Introduction

Natural killer (NK) cells constitute a minor subset of lymphocytes that are crucial components 

of the innate immune system and play critical roles in host immunity against malignant cells 

and virus-infected cells but also in bacterial, fungal, and parasite immune responses [1]. NK 

cells represent 10% of the lymphocytes in human peripheral blood, and they comprise the 

third largest population of lymphocytes following B and T cells.

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Natural killer cells have diverse biological functions including killing pathogen-infected cells 

and cancer cells as well as an immunoregulatory role [2]. Natural killer cells can discriminate 

between normal cells and cells that do not express adequate amounts of major histocompat-

ibility complex (MHC) class I molecules.

NK cell cytotoxicity is regulated by a balance between activating and inhibitory signals deliv-

ered by receptors expressed at the cell surface. These cells are known to directly recognize 

and kill malignant cells or induce apoptosis. However, tumor cells have the ability to evade 

immunosurveillance by using multiple mechanisms. Furthermore, tumors harbor a popula-

tion of cancer stem cells (CSC), which is responsible of tumor progression and therapeutical 

resistance.

Therapeutic applications of NK cells in cancer and NK cells targeting cancer stem cells (CSCs) 

represent a promising strategy for cancer immunotherapy.

2. NK cells’ biology and function

NK cells originate from common lymphoid progenitor cells and further differentiate into 
immature/mature NK cells in bone marrow. They are then distributed in peripheral lymphoid 

and nonlymphoid organs and tissues [3–5], including bone marrow, spleen, peripheral blood, 

placenta, lung, liver, uterus [6], and peritoneal cavity while limited numbers are localized in 

lymph nodes [7]. Human NK cell turnover in blood is around 2 weeks [8].

NK cells were originally described as large granular lymphocytes with natural cytotoxicity 

against tumor cells. NK cells were later recognized as a separate lymphocyte lineage, with 

both cytotoxicity and immunoregulatory role, as they are involved in the production of cyto-

kines [9]. More recently, data revealed that activated NK cells may also influence the out-
come of helminth infections. CD4-NK cells increasing early following nematode infection 

with Brugia pahangi are able to produce IL-4 and then could polarize the immune response 

toward a Th2 profile [10]. In fact, protection against helminthic infections are usually medi-

ated by Th2 immune response characterized by secretion of IL-4, IL-5, and IL-13, secretion 

of IgE antibodies, and activation of mast cells [11, 12]. Studies revealed that the clearance of 

these parasites is more efficient and complete in the presence of NK cells. In the case of Th2 
immunity disruption, NK cells may become an important source of IL-13 during murine gas-

trointestinal nematode infections [13, 14]. Human NK cells can be classified into two major 
subsets CD56dim and CD56bright depending on their immunophenotype and functions and 

more recently in terms of their homing properties [15, 16]. CD56dim NK cells are fully mature, 

make up about 90% of the NK cells in peripheral blood and inflammatory sites, and they 
express perforin and exhibit a high cytotoxic activity after encountering target cells [17, 18]. 

These CD56dim NK cells are cytotoxic and produce interferon γ (IFN-γ) upon interaction with 
tumor cells in vitro [19]. In contrast, CD56bright cells are more immature, make up about 5–15% 

of total NK cells, and have been considered primarily as cytokine producers, while playing 

a limited role in cytolytic responses. Approximately, 90% of NK cells in lymph nodes belong 
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to the CD56bright subset and lack perforin [20]. These cells exert immunoregulatory function 

by producing abundant cytokines such as IFN-γ in response to stimulation with interleukins 
(IL)-12, IL-15, and IL-18 [21]. In response to nematode infection, CD56bright NK cells can bind 

with a secreted protein ES from the human hookworm Necator americanus and induce IFN-

gamma production [22]. Natural killer cells have diverse biological functions, which include 

recognizing and killing pathogen-infected and cancer cells. Circulating NK cells are mostly 

in their resting phase, but after activation by cytokines and chemokines, they are capable of 

extravasation and recruitment into distinct inflamed or malignant tissues [9, 23]. NK cells also 

have an immunoregulatory role as their ligand interaction with cell-surface receptors lead to 

the production of several cytokines.

NK cells mediate two predominant pathways of cell death. The first pathway, a granule exocy-

tosis pathway [24], involves the release of cytotoxic granule, perforin (a membrane-disrupting 

protein), and granzymes (a family of structurally related serine proteases) responsible for NK 

cell-mediated killing by inducing apoptosis of the target cell [25–27]. In the second pathway, a 

caspase-dependent apoptosis involves the association of death receptors such as first apopto-

sis signal (Fas) cell surface death receptor and tumor-necrosis-factor–related apoptosis induc-

ing ligand receptor (TRAILR) on target cells with their corresponding ligands, members of 

the tumor necrosis factor (TNF) family of cytokines, expressed by NK cells, and regulated by 

IFN-γ, such as FASL, and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), 
resulting in caspase-dependent target cell apoptosis [28–32]. Antibody-dependent cellular 

cytotoxicity (ADCC) can also be a mechanism of killing of tumor cells by NK cells by trigger-

ing the NK CD16 receptor (FcγRIII), which binds to the IgG and antibody-coated targets [33].

Natural killer cells can discriminate between normal cells and those that do not express ade-

quate amounts of MHC class I molecules. They were originally defined by their ability to 
spontaneously eliminate cells lacking expression of MHC class I molecules. NK cells express 

receptors that bind to MHC class I molecules including the killer cell immunoglobulin-like 

receptors (KIRs) that play major roles in regulating the activation thresholds of NK cells in 

humans [34].

3. NK cell cytotoxicity

NK cell cytotoxicity is tightly regulated by a balance between activating and inhibitory sig-

nals [35] delivered by a multitude of receptors expressed at the cell surface [36] (Figure 1). 

The inhibitory NK cell receptors interact with MHC class I molecules expressed on almost 

all nucleated cells, preventing NK cell activation against healthy cells (Figure 2a). NK cell 

activation is blocked through engagement of their KIR receptors [37]. This explains self-

tolerance and prevention of host cell killing. NK cells can discriminate between normal host 

cells and infected or abnormal cells by recognition of MHC class I molecules. It was earlier 

discovered that NK cells are activated when they encounter cells that lack self-MHC class I 

molecule. For example, under stress conditions, such as cellular transformation, cells down-

regulate MHC-I expression causing NK cells to lose inhibitory signaling and be activated in 
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a process called “missing-self recognition” [38]. This model is based on the fact that NK cell 

activity is normally controlled by self-MHC molecules that interact with a large repertoire 

of inhibitory NK receptors. In this condition, activation receptors are no longer suppressed 

and they induce potent stimulatory signals, resulting in NK cell activation including cyto-

kine production and granule release leading to cytotoxicity [39, 40]. Abnormal cells can also 

upregulate the expression of ligands to activate receptors on the NK cells that can overcome 

the inhibitory signals.

3.1. Activating NK cell receptors

NK cells require external signals to begin the process of cell activation, which usually occurs 

via triggering receptors. A number of receptors have been identified that allow NK cells to 
become activated. The major activating receptors expressed on human NK cells include the 

natural cytotoxicity receptors (NCRs: NKp30, NKp44, NKp46), the immunoglobulin gamma 

Fc-region receptor III (FcγRIII/CD16), activating forms of killer cell Ig-like receptors (KIR: 

Figure 1. Examples of activating and inhibitory NK cell receptors and their respective ligands. AICL: activation-induced 

C-type lectin; B7-H6: Member of the B7 family of immunoreceptors; DNAM-1: DNAX accessory molecule 1; HLA: 

human leucocyte antigen; KIR2DL: killer-cell immunoglobulin-like receptor 2DL; KIR3DL: Killer-cell immunoglobulin-

like receptor 3DL; KIR2D5: killer-cell immunoglobulin-like receptor 2D5; KIR3D5: killer-cell immunoglobulin-like 

receptor 3D5; LIR-1: leukocyte inhibitory receptor 1; MICA: MHC class I polypeptide-related sequence A; MICB: MHC 

class I polypeptide-related sequence B; NKG2A: natural killer group protein 2 family member A; NKG2C: natural killer 

group protein 2 family member C; NKp30: natural killer Cell P30-related Protein; NKp46: natural killer Cell P46-related 

Protein; NKp80: Natural killer Cell P80-related Protein; PD1: programmed cell death 1; PD-L1: programmed death-

ligand 1; PD-L2: programmed death-ligand 2; PVR: polio virus receptor; TIGIT: T cell immunoreceptor with Ig and ITIM 

domains.
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KIR2DS and KIR3DS), NKG2D, C-type lectin receptors (CD94/NKG2C, NKG2E/H, and 

NKG2F), NKp80, and 2B4 [41]. NKG2D and NCRs are particularly important receptors for 

triggering NK cell responses toward tumor cells [42].

A new family of receptors that recognize nectin and nectin-like molecules has recently 

emerged as a critical regulator of NK cell functions — DNAX accessory molecule 1 (DNAM-

1, CD226) is an adhesion molecule that controls NK cell cytotoxicity and interferon-γ produc-

tion against a wide range of cancer and infected cells [43].

The B7 family member B7-H6 is a tumor cell ligand for the activating natural killer cell recep-

tor NKp30 in humans [44]. Activating KIR receptor recognizes classical MHC-I molecules [45], 

whereas NKG2D recognizes the nonclassical MHC-I molecules, MICA/MICB, retinoic acid 

early transcript 1E protein (RAET1E), RAET1G, RAET1H, RAET1I, RAET1L, and RAET1N 

(also known as ULBP1–ULBP6) [46, 47]. These ligands are not present on the cell surface 

of most normal cells, but are upregulated at the cell surface after cellular stress, on rapidly 

proliferating cells, infected cells, transformed cells, and tumor cells [48], further increasing 

the NK cell activity [49]. CD16 binds the Fc portion of IgG antibodies to initiate antibody-

dependent cellular cytotoxicity (ADCC) and provides NK cells with the ability to recognize 

Figure 2. NK cell functions. (a) Inhibitory NK cell receptors interact with MHC class I molecules expressed on 

nucleated cells, preventing NK cell activation and lysis against normal cells. (b) NK cells can eliminate tumors cells that 

downregulate major histocompatibility complex (MHC) class I molecules causing NK cells to lose inhibitory signaling 

and be activated in a process called “missing-self recognition.” (c) NK cells can kill tumor cells that retain full expression 

of MHC class I but overexpress induced stress ligands recognized by activating NK cell receptors, which override the 

inhibitory signals and elicit target cell lysis.
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and kill target cells coated with antibodies [50]. DNAM-1 ligands CD112 and CD155 have 

been described in different pathological conditions, and recent evidence indicates that their 
expression is regulated by cellular stress.

All of these activating receptors promote cytotoxicity and cytokine production responses 

through stimulating intracellular protein tyrosine kinase cascades.

3.2. Inhibitory NK cell receptors

Inhibitory receptors are able to prevent the activation of NK cells and have been thought of 

as fail-safe mechanisms to prevent attack on normal cells and tissues. In general, these recep-

tors express one or more immunoreceptor tyrosine-based inhibition motifs (ITIM), and they 

recruit SH2-containing phosphatase-1 (SHP1), SH2-containing phosphatase-2 (SHP2), and/

or SH2-containing inositol phosphatase (SHIP) proteins upon binding to their ligands [51]. 

These phosphatases prevent the activation of cellular signaling cascades by inhibiting phos-

phorylation of proteins.

The inhibitory receptors encompass two distinct classes: the monomeric type I glycoprotein 

of the immunoglobulin superfamilies KIR2DL and KIR3DL [51], leukocyte immunoglobulin-

like receptors (ILT2), and the hetero-dimeric C-type lectin-like receptor (CTLR) called CD94/

NKG2A (natural killer group protein 2 family member A) [52, 53].

4. NK cells in tumor immunosurveillance and cancer

NK cells are innate cellular components that regulate adaptive immune responses in the 

immune surveillance of cancer. Primary immunodeficiencies affecting NK cells were associ-
ated with higher rates of malignancy and a higher risk of developing various types of cancer 

[54, 55]. NK cells have been shown to control the growth and metastasis of transplantable 

tumors in numerous mouse models by antibody depletion of NK cells [56].

NK cells can eliminate tumors that downregulate expression of MHC class I (Figure 2b), pos-

sibly in response to selective pressure exerted by CD8+ T cells. Furthermore, NK cells can kill 

tumor cells that retain full expression of MHC class I if they have upregulated ligands that 

engage activating NK cell receptors, thus overriding the inhibitory signals (Figure 2c).

For example, NKG2D ligand expression on tumor cells induces NK cell activation and is suf-

ficient to overcome inhibitory signals delivered by MHC class I receptors, thereby enabling 
NK cells to eliminate tumors expressing normal levels of MHC class I [48, 57]. Mice deficient 
of NKG2D (Klrk1−/−) are more susceptible to tumorigenesis [58] confirming the crucial role of 
NKG2D in tumor immunosurveillance.

However, tumor cells are able to evade immunosurveillance by using multiple mechanisms. 

Tumor cells can secrete inhibitory cytokines such as transforming growth factor-β (TGFβ) 
that suppresses the activity of NK cells. Furthermore, tumor cells can express inhibitory 

receptor-specific ligands such as glucocorticoid-induced TNFR-related protein (GITR) that 
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can downmodulate activating receptors NKG2D on NK cells. To escape to NK cell immu-

nosurveillance, tumor cells can also secrete immunomodulatory molecules such as prosta-

glandin E2 (PGE2), indoleamine 2,3-dioxygenase (IDO), adenosine, TGFβ, and interleukin-10 
(IL-10). Tumor cells can proteolytically shed NKG2D ligands (NKG2DLs) leading to a 

decreased amount of NKG2DL and to the production of soluble ligands that downmodulate 

NKG2D receptor on NK cells [59, 60]. Finally, secretion of immunosuppressive molecules or 

expression of NKG2DLs by cells of the tumor microenvironment can downmodulate NKG2D 

receptor on NK cells.

Soluble NKG2DLs have been detected at high levels in the serum of cancer patients [61] and 

might be used as a diagnostic marker [62]. Tumor cells can escape immunosurveillance by the 

secretion of soluble factors such as lactate dehydrogenase, leading to NKG2DLs expression 

on healthy host myeloid cells [63]. NKG2D Downregulation could be the result of its chronic 

exposure to NKG2D ligand on tumor cells [64]. Recent work in a mouse model suggests that a 

shed NKG2D ligand, MULT1, stabilizes expression of NKG2D on NK cells and increase their 

antitumor activity [65]. Controlling NKG2DL expression level on tumors provides an attrac-

tive therapeutic strategy for immunotherapy.

In patients and animal models, impaired NK cells or NK cell deficiency have been associated 
not only with recurring viral infections, but also with an increased incidence of various types 

of cancer [55]. Tumor cells often acquire the ability to escape NK cell-mediated immune sur-

veillance. In fact, during tumor development and progression, many malignant cells acquire 

the ability either to evade from NK cell recognition or to impair NK cell function.

Cells undergoing malignant transformation often downregulate their expression of MHC 

class I molecules, and the absence of inhibitory signaling on NK cells permits their func-

tion. A defective immunity has been well established in different types of cancer. The imbal-
ance of immune status is inclined to immunosuppression in cancer patients, which results in 

tumor immune evasion. Such immunosuppression is characterized by a decrease in NK cell 

numbers in peripheral blood and a decreased tumor infiltrate as compared to normal tissues. 
Moreover, in many types of cancer, a defective expression of activating receptors and overex-

pression of inhibitory receptors is observed [66].

The role of NK cells against parasites that may promote or impede carcinogens is poorly 

understood. Chronic inflammation is a key feature in carcinogenesis associated with helminth 
infections. For example, Strongyloides stercoralis infection was associated with an increased 

occurrence of lymphoid cancers [67]. An association of colorectal cancer with chronic S. ster-

coralis infection has also been reported in a Columbian patient [68]. This nematode is not only 

a cofactor for the development of lymphoid cancers induced by HTLV-1 [69] but is also associ-

ated with the development of colon adenocarcinoma by activating the host immune response. 

A study reports a case of Strongyloides infection in a 72-year-old man presenting a large pop-

ulation of cells (NK-LGL) with a natural killer phenotype abnormally activated and diagnosed 

with NK-LGL leukemia [70]. The role of NK cells in the immune response to Strongyloides is 

not defined, but it is possible that an abnormal or clonal expansion of NK cells could suppress 
antihelminth immunity. Activated NK cells, perhaps producing interferon, suppressed the 

T-helper 2 response that previously controlled the Strongyloides infection.
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5. NK cell in cancer immunotherapy

Cancer immunotherapy is the targeted therapy designed to induce antitumor response 

against malignancies by harnessing the power of the immune system [71]. The ability to 

recognize and lyse transformed cells without prior immunization, the ease of isolation 

and expansion ex vivo, and the shorter life span make NK cells a good alternate to immu-

notherapy. Furthermore, NK cell can kill cancer cells without damaging healthy tissues or 

risking the T cell–driven inflammatory cytokine storm that can accompany other immu-

notherapies. The NK cells derived from peripheral or umbilical cord cells, embryonic or 

induced pluripotent stem cells, and NK cell lines were being tested for treating various 

malignancies. Several promising clinical therapies have been used to exploit NK cell func-

tions in treating cancer patients.

5.1. Adoptive NK cell transfer therapy

Adoptive NK cell transfer therapy is a strategy aimed at enhancing the biological function 

of the immune system by means of autologous or allogeneic NK cells. NK cells for adoptive 

NK cell transfer therapy (autologous or allogeneic) are usually obtained from the peripheral 

blood of the patient or from a donor. They can also be derived from the bone marrow, umbil-

ical-cord blood, human embryonic stem cells, or induced pluripotent stem cells and are now 

considered as alternative sources of therapeutic NK cells [72].

Various approaches exist for the therapy with the adoptive transfer of NK cells. In autolo-

gous transfer, NK cells from the patient are activated and expanded in vitro in the presence 

of cytokines. IL-2 has been used for this purpose, but recently, the combination of IL-12, 

IL-15, and IL-18 might generate NK cells that are more functional and have memory prop-

erties. The expanded and activated NK cells are then transferred back into the patient. To 

sustain the expansion and function of the infused NK cells, patient receives IL2 cytokine 

administration. Although autologous NK cells might recognize activating signals such as 

stress molecules on cancer cells, their anti-tumor activity is limited by the inhibitory signal 

transmitted by self-HLA molecules.

In allogenic transfer, NK cells can be obtained from HLA-matched or haploidentical (par-

tially matched) donors. The best responses are obtained when haploidentical donors do 

not express KIRs that recognize the patient’s HLA molecules, because donor NK cells 

do not receive an inhibitory signal from the patient’s cancer cells. NK cells are expanded 

through processes similar to those used for autologous transfer except that T cells should 

be removed.

5.1.1. CAR-engineered NK cells

NK cells can be transduced with activating chimeric antigen receptors (CARs) that specifically 
bind to antigens overexpressed by tumor cells. CARs are designed by the fusion of an antigen 

binding with a hinge region, a transmembrane domain and one or more stimulatory molecules. 
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CARs can be engineered in autologous or allogeneic NK cells or in NK cell lines such as NK-92. 

Each CAR has the CD3ζ chain (or sometimes the FcRγ chain) as its main signaling domain. To 
increase persistence and superior functionality, co-stimulatory domains, usually from CD28 or 

CD137, can be added to the CAR construct. CARs from the first generation have no stimula-

tory domain, whereas CARs from the second generation and third generation have one co-

stimulatory domain or two co-stimulatory domains, respectively. CAR engineering endows 

NK cells with antigen specificity. The binding of a CAR to the tumor antigen delivers a potent 
activating signal that triggers NK cell cytotoxicity, which results in the elimination of cancer 

cells. Several recent studies have documented a success using NK cells engineered to express 

activating chimeric antigen receptors (CARs) specific to tumor antigens [73]. Many B-cell acute 

and chronic leukemia can escape killing by natural killer cells. The introduction of chimeric 

antigen receptors (CAR) into T cells or NK cells could potentially overcome this resistance 

[74]. NK-92 leukemia cell lines were transduced to express CARs specific for CD19 [75] and 

CD20 [76] expressed on B cell malignancies and also for disialoganglioside GD2, a glycolipid 

expressed on neuroblastoma and various other cancer types [77].

In glioblastoma, the most aggressive primary brain malignancy, intracranial administration 

of NK-92-EGFR-CAR cells represents a promising therapy [78]. In human multiple myeloma 

(MM), CS1-specific (a surface protein highly expressed on MM cells) chimeric antigen recep-

tor (CAR)-engineered natural killer cells [79] enhance responses to tumor cells in vitro and 

suppressed tumor growth when tested in vivo in xenograft models [65, 78, 80]. Autologous or 

allogeneic transplantation of CS1-specific CAR NK cells may be a promising strategy to treat 
multiple myeloma.

5.2. Cytokine-induced NK cell activation

To promote NK cell expansion, the use of IL-2 has demonstrated the effectiveness on NK 
cell activation and anti-tumor responses [81]. It was reported that NK cells from lung cancer 

patients could regain the cytotoxicity against targets after activation by IL-2 [82]. However, 

NK cells activation using high-dose IL-2 has some side effects because of severe capillary 
leaky syndrome. To improve the therapeutic efficacy and safety, a different strategy com-

bining IL-2 with other NK cell activators was used. Hellstrand et al. [83] administered IL-2 

together with histamine to 22 acute myeloid leukemia (AML) patients and showed a good 

clinical outcome. IL-2 diphtheria toxin (IL2DT), a recombinant cytotoxic fusion protein has 

been used in order to increase the depletion of regulatory T cells (Treg) and therefore improv-

ing in vivo donor NK cell expansion and remission induction [84].

5.3. NK cells targeting cancer stem cells

Tumor harbors a population of cancer cells with “stem-cell” like properties including self-

renewal and the ability to produce differentiated progeny [85]. These cells termed cancer stem 

cells (CSCs) can drive tumor progression and therapeutic resistance to standard cancer ther-

apy. In fact, cancer stem cells have been proposed as an important mechanism of tumor initia-

tion and/or repopulation after tumor debulking by chemotherapy and/or by radiotherapy.
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In addition, CSCs have been associated with tumor relapse and metastasis, even in cases of 

apparent complete response to systemic therapy [86]. Then, targeting CSCs is a promising 

strategy for cancer therapy. Natural killer cells have the ability to reject allogeneic hemato-

poietic stem cells, and there are increasing data demonstrating that NK cells can selectively 

identify and lyse CSCs. Tallerico et al. [87], for example, demonstrated that metastatic colorec-

tal cancer, which contains a high proportion of CSCs, showed increased susceptibility to NK 

cytotoxicity. Similarly, Castriconi et al. [88] reported that glioblastoma-derived CSCs were 

susceptible to NK cell cytotoxicity. Human cancer cells with stem cell-like phenotype exhibit 

enhanced sensitivity to the cytotoxicity of IL-2 and IL-15 activated natural killer cells [89]. 

IL-2- and IL-15-activated NK cells were found to be cytotoxic against human breast cancer 

stem cells and CD 133+ melanoma CSCs [90]. Recently, Ames et al. [91] showed that NK cells 

kill CSCs from different kinds of tumors, through the interaction of the NKG2D activating 
receptor with its ligand (MICA/B).

6. Conclusions

NK cells have a crucial role in immunosurveillance against tumor development. However, 

when both the innate and adaptive immune systems fail and tumors develop, NK cells and 

their receptors can still be targeted in many therapeutic approaches. NK cells are more effec-

tive in treating hematologic malignancies than in treating solid tumors. This might result 

from inefficient homing of NK cells to the site of tumor. Therefore, NK cell-based immuno-

therapy can be successfully exploited in the hematopoietic stem cell transplantation for the 

treatment of hematological malignancies, but efforts have to be made to improve the homing 
and in vivo persistence of NK cells. Targeting CSCs with NK cell-based immunotherapy rep-

resents an attractive strategy for cancer therapy.

NK cells clearly have a role in future immunotherapies of the treatment of cancer and should 

continue to be evaluated in clinical trials.
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