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Abstract

The relationship between antioxidant trace elements (ATE) and metabolic disease is 
subtle and complex due to overproduction of reactive oxygen species (ROS). In type 
2 diabetes (T2D), the relationship between ATE and insulin-like trace elements is very 
complex during oxidative stress (OS), being mediated by hyperglycemia, dyslipidemia 
and inflammation. The important role assigned to ATE (zinc, selenium, copper, manga-
nese and chromium) by their involvement at different levels: Hemodynamic homeosta-
sis (endothelial function and protein glycation), energy metabolism (carbohydrate and 
lipid tolerance) and enzymatic antioxidant protection [superoxide dismutase (SOD), 
glutathione peroxidase (GPx)]. The ROS-mediated cellular signaling process is crucial. 
Manganese and selenium levels abnormalities might to be useful indicators of oxida-
tive damage. Two major factors were suggested: lack of Mn bioavailability leading to the 
decrease of mitochondrial SOD activity (cytosolic SOD remains active), and low blood 
selenium level implying a decrease in GPx activity. In T2D pathophysiology, it appears 
that antioxidant defense is preserved in the cytosol (Cu/Zn-SOD) in T2D, whereas it is 
impaired in mitochondria (Mn-SOD) in the three pathologies, which make this cell organ-
elle a true ATE therapeutic target. Future challenges require the in-depth investigations of 
mitochondrial mechanisms, involved the antioxidant trace elements signaling pathways 
in T2D pathophysiology.

Keywords: type 2 diabetes, oxidative stress, antioxidant trace elements (zinc, selenium, 
copper, manganese, and chromium)

1. Introduction

Type 2 diabetes (T2D) is a major risk factor for cardiovascular diseases and acute oxidative stress 

(OS) by high production of reactive oxygen species (ROS) related to the lipotoxicity and gluco-

toxicity processes [1]. The mechanisms underlying OS disorders modulated by antioxidant trace 
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elements (ATE) such as selenium (Se), manganese (Mn), zinc (Zn), copper (Cu) and chromium 

(Cr) status are not completely clear [2]. The role of ATE as an essential micronutrient has been 

identified for a long time as a potential candidate for improving metabolic disorders, like glucose 
homeostasis in prediabetes state [3]. Antioxidant enzymatic system (AES) such as superoxide 

dismutase (SOD), glutathione peroxidase (GPx), and catalase plays an important protective role 

in the emergency of glucose intolerance, insulin resistance and dyslipidemia. T2D is character-

ized by elevated glycated hemoglobin (HbA1c) and insulin resistance maintains the toxic hyper-

glycemia and dyslipidemia effects, leads to disturb ATE status. This situation amplifies OS and 
aggravates the diabetes vascular complications [4].

The ROS neutralization is conducted primarily by AES through ATE integrated as AES cofac-

tors. Cu and Zn are incorporated both into the Cu-Zn-SOD to reduce the cytotoxic ROS effects 
in cytosolic compartment cells [5]. Mn is incorporated into the Mn-SOD to remove the ROS 

effects in mitochondrial compartment cells [6]. Se is incorporated into the GPx1 to remove the 

ROS effects in cytosolic and mitochondrial compartment cells [7]. The present review updates 

our actual state of knowledge about highlight role of ATE in OS damage in T2D pathogenesis, 

and that consider their therapeutic potential.

Several studies have reported that pathogenesis of type 2 diabetes (T2D) is related to the 

imbalance of some antioxidant trace elements such as zinc, selenium, copper, manganese and 

chromium might adversely affect pancreatic islet and cause development of diabetes [8]. Type 

2 diabetes is clearly associated with ROS production and insulin signaling depends on the 

balance of ROS production and antioxidant defense. Excessive ROS are involved in the multi-

factorial etiology of insulin resistance and the subsequent development of T2D [9]. Oxidative 

stress alters the insulin receptor and the insulin receptor substrate (IRS) signaling pathway 

via kinase activity (serine/threonine), leading to multi-site phosphorylation [10]. These events 

increase serine IRS phosphorylation and decrease thyrosine, leading to insulin resistance [11]. 

The ATE trace elements shows a profile disturbance in T2D is associated with increased pro-
inflammatory cytokines (TNF-α, IL-6) may contribute to development of diabetic complica-

tions [12, 13] and increased glycated hemoglobin formation [4].

2. Zinc in T2D pathogenesis

Zinc (Zn) is a necessary micronutrient which has an essential role in insulin metabolism [14, 

15]. In pancreatic beta cells, Zn is required for the synthesis, storage and insulin secretion 

[79]. It has been described in diabetic subjects pancreas is zinc deficiency compared to normal 
subject. These data confirmed that zinc is involved in insulin signaling pathways [16]. Zn may 

stimulate energy consumption in skeletal muscle and brown adipose tissue and may increase 

the pancreatic insulin content and improve the glucose tolerance test [17]. Zn is found largely 

in cereals, animal protein and seafood [18]. Zn absorption can be inhibited by iron. Zn is trans-

ported across cell membranes via ZnT family’s transporters [19].

In diabetes diseases (insulin resistance, metabolic syndrome), Zn is considered important 

mainly because: (i) it plays a major role in the stabilization of insulin hexamers and the 
hormone pancreatic storage [20] and (ii) it is an efficient antioxidant [21]. Zinc deficiency in 

Diabetes Food Plan94



type 2 diabetes is mainly due to a significant urinary zinc loss [22], nevertheless, this Zinc 

deficiency is not very significant versus healthy subject [23]. Lower Zn plasma concentra-

tions were found in T2D to relate of cardiovascular risk metabolic syndrome factors [24], and 

reduced Zn levels in diabetics appear to be related to increased risk for coronary artery dis-

ease [25]. It has been described that zinc effects mimic the insulin action mainly via the gly-

cogen synthesis/degradation enzymes signaling pathways [26]. Other mechanisms include 

Cu/Zn-superoxide dismutase regulation via the post receptor proteins Akt and PI3-kinase 

via NF_B [27]. On the other hand, some particular forms of Zn have been discovered in ob/

ob mice, such Zn-α 2-glycoprotein is an adipokine which stimulates energy expenditure in 
skeletal muscle and brown adipose tissue, resulting in reductions in glycaemia, triglycerides 

and Free Fatty Acids. Their level is lower in obese human subcutaneous and visceral adipose 
tissue and liver, but interestingly does not appear to be related to insulin resistance [28].

3. Selenium in T2D pathogenesis

Early studies indicated that inorganic Se acted as an insulin mimic [29] and epidemiologic 

investigations showed correlations between abnormal glucose or lipid metabolism and 

decreased plasma Se concentrations or glutathione peroxidase activity in diabetic subjects 

[30–32]. Indeed, intraperitoneal injection or oral administration of sodium selenate improved 

glucose homeostasis in type 1 and type 2 diabetic animals [33]. Similarly, previous studies 

have shown that the insulin-like and antidiabetic effects of sodium selenite and selenomethio-

nine were also observed in diabetic animals [34]. Several selenium supplementation studies 

were undertaken in diabetic subject with vascular complications, unfortunately the beneficial 
antioxidant effects were not obtained [35, 36].

Se is a key component of GPx, an enzyme that prevents the cells oxidation. Compared with 

liver, islets contain only 2% GPx [37]. Accordingly, β cells are considered to be low in antioxi-
dant defenses and susceptible to oxidative stress. In diabetic subjects, β-cell apoptosis seems 
to be more of a deciding factor than replication in controlling the cell mass compared with 

control subjects [38]. Selenoprotein (SelP), a secretory protein primarily produced by the liver 

and regulated similar to that of the gluconeogenic enzyme glucose 6-phosphatase [39], by 

concerted action of peroxisome proliferator-activated receptor co activator 1α (PPAR-1α) and 
the transcription hepatocyte nuclear factor-4α [40]. It has been shown a positive correlation 

between hepatic SelP mRNA levels and insulin resistance in humans, a long with a positive 
correlation between serum SelP levels and both fasting plasma glucose and hemoglobin A1C 

(HbA1c) levels. The metabolic selenium effects are mediated by selenoproteins (SeP) via the 
adenosine monophosphate-activated protein kinase (AMPK) inactivation [41]. Probably, SePs 

insulin-sensitizing effect like to glutathione peroxidase (GPx). However, SelP does not seem to 
act upon insulin synthesis or a trophic effect on pancreatic beta mass cells [42].

On the other hand, some studies have shown that Tanis (in humans encoded by the SelP gene) 

was regulated by glucose and altered in the diabetic state [43]. It has been reported that Tanis 

protein overexpression in H4IIE cells acts at different points: (i) glucose transport; (ii) basal 
insulin secretion; (iii) glycogen synthesis and storage; (iv) attenuates the phosphoenol pyruvate 
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carboxykinase gene expression [44]. These data confirm that Tanis protein is involved in glyce-

mic homeostasis and hepatic insulin resistance. Furthermore, emerging evidence suggests that 

elevation of SelP [45] mRNA and protein expression was observed in T2D patients. Otherwise, 
it has been described that Selenium modulates vascular inflammatory syndrome by reducing 
p38 MAP kinase and NF-κB signaling pathway [46]. Besides, selenium is able to inhibit athero-

sclerotic processes by endothelial adhesion molecules expression [47].

4. Copper in T2D pathogenesis

Plasma Cu concentrations have been reported in some studies to be altered in diabetic humans 

compared to non-diabetics [4], particularly in diabetic patients with microvascular disease 

complications [48] and proteinuria [49]. Similarly, serum ceruloplasmin has been noted to be 

higher in T2D subjects compared to non-diabetics in numerous studies [50]. Alterations in Cu 

metabolism coupled with an increase in glycated proteins [4] may contribute to the progres-

sion of diabetes-related pathologies. Several lines of evidence support a role of Cu in diabetes-

induced oxidative stress. Several previous studies have showed that ceruloplasmin can be 

fragmented following non-enzymatic glycosylation [51]. Secondly, glycation of CuZn-SOD in 

humans with diabetes leads to a site-specific fragmentation resulting in its inactivation [52] 

as well as the release of Cu, which can further exacerbate oxidative stress. Glycation of CuZn-

SOD increases the formation of DNA damage in vitro, which suggests that the release of Cu2+ 

from glycated SOD can participate in cleavage of nuclear DNA [53]. As CuZn-SOD accounts 

for 90% of the total SOD activity of the mouse lens [54], the excessively high concentrations 

of glycated CuZn-SOD in diabetic rat lenses are postulated to be involved in lens pathology 

[55]. Cu can increase the rate advanced glycated end (AGE) products formation, which is 

associated with the pathogenesis of secondary complications in diabetes [56]. Agents used to 

prevent or reduce AGE formation typically have potent Cu chelating [57].

5. Manganese in T2D pathogenesis

The manganese status in T2D is still unclear and the few studies that have addressed this 

issue in humans are controversial. However, Mn acts as a cofactor in several metalloenzymes 
including those involved in glucose homeostasis (Pyruvate carboxylase, GTP oxaloacetate carbox-

ylase, Isocitrate dehydrogenase, Malate dehydrogenase, Phosphoenolpyruvate carboxykinase). These 

enzymes play a critical role in the blood glucose regulation via glycolysis, gluconeogenesis, 

Krebs cycle [58]. Mn is required for insulin synthesis [59], and to regulate of glucose utiliza-

tion and lipogenesis in adipose tissue [60]. Previous studies have shown that blood man-

ganese levels are unchanged in plasma, not significantly (approx. 15%) reduced in whole 
blood [61], or decreased in erythrocytes [62], from diabetic patients as compared to controls. 

In healthy subjects, manganese is very present in tissues rich in mitochondria (12–16 mg), 

in particular skeletal muscle, liver, pancreas and kidney. Mn is necessary for the synthesis, 

secretion and action of insulin. Mn is also indispensable for the maturation of bones and 

cartilage. Mn plasma levels are essentially regulated via the bile excretion pathway. Mn also 
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participates in vitamins E and B1 synthesis [63]. Mn is found mainly in quinoa, rye, whole 

rice, soybeans, avocado, egg yolk, green beans, spinach, walnuts, olive oil, oysters, green tea 

and provence herbs [64].

Our recently diabetes investigation [65], we found Mn blood concentrations are significantly 
increased (23%) in diabetic patients compared to controls. The correlation is positive with 

hyperglycemia and HbA1C. Our data suggest that Mn play a crucial role in antioxidant capac-

ity and we hypothesize that antioxidant defense is preserved in the cytosol (superoxide dis-

mutase Cu/Zn-SOD), whereas it is impaired in mitochondria (Mn-SOD), which makes this cell 

organelle a true therapeutic target in diabetes. In our recent study, we showed the competitive 

effect between the manganese and iron in T2D. However, when the iron was in the free form 
and reduced, it was constantly a pro-oxidant, whereas Mn was an anti-oxidant. Several stud-

ies suggesting that transferrin (Tf)/Tf receptor (TfR) transport system is the major transport of 

manganese and iron in plasma. The Mn bioavailability is reduced due to altered Tf/TfR trans-

port system [66–69]. Consequently, the Mn (III) forms a more stable with Tf than the Mn (II) 

form [70]. The more complex questions related to the regulation of each by Mn and Fe might 

affect the insulin secretion and glucose homeostasis. Probably the increased Mn levels would 
affect the availability or concentration of both various transporters and finally bêta cell Mn 
distribution [71]. The interactions of Mn, Fe and ferritin are closely related in the following 

manner; and can lead to hyperglycemia associated to mitochondrial Fe, Mn, copper, and zinc 
levels [72], demonstrating the interrelationship with glycemia homeostasis. Probably, that 

the heightened β-cell oxidative stress may result from occurring Tf/Tf receptor system, and 
elevated manganese is produced via an extracellular Tf-manganese redox mechanism, rather 

than simply the presence of elevated tissue manganese per se. In this context, the plasma man-

ganese accumulation was associated to iron plasma depletion and ferritin increased, suggest-

ing that mitochondrial iron accumulation resulting in generation of ROS by Fenton chemistry 

[73]. The Mn is confined to the cytosol where it is associated with decreased mitochondrial 
SOD-Mn due the lack of mitochondrial manganese. The finding that DT2 pathogenesis are 
able to regulate manganese transport into, and/or export from, mitochondria and maintain 

a normal pool of mitochondrial manganese, despite the presence of a two-fold increase in 

cytosolic manganese content. Among possible explanations for this result, the upregulation 

of mitochondrial manganese transporters in situations of large changes in metal availability, 

or a heretofore undescribed function for the transferrin in regulation of mitochondrial metal 

accumulation. At last, in diabetes vascular complications, Mn is involved in Arginine produc-

tion, precursor to nitric oxide (NO) formation as endothelial vasodilator [74].

6. Chromium in T2D pathogenesis

Chromium (Cr) that is mineral trace deserves special attention in diabetes pathophysiology, 
as has been reported during the 50th anniversary of this trace element and they termed it glu-

cose tolerance factor (GTF) [75]. The Cr recommended nutritional requirements are estimated 

between 50 and 200 mg, but this requirement is estimated at 30 mg/day. Barley is the most 
important Cr food source [76]. Cr plays a crucial role in glycaemia homeostasis and Cr defi-

ciency leads to a glucose tolerance disorder, moderate fasting hyperglycemia and occasionally 
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dyslipidemia. This observation has been observed both in human clinical and experimental 

models [77, 78]. Cr plasma concentrations can be explained by its mobilization from its stor-

age site (liver, kidneys) to the blood by chromodulin binding (intracellular transport protein) 

[79]. However, Cr bioavailability depends on the nutrients with which it is associated: Cr/
phenylalanine, Cr/cysteine, Cr/biotin and Cr/vitamin E or Cr/vitamin C complexes have been 

described [80–83]. Cr acts as carbohydrate tolerance factor, increases insulin sensitivity, par-

ticularly in the skeletal muscle. Indeed, trivalent chromium is an insulin pathway signaling. 

Cr increases insulin receptors number, insulin internalization and an activation of the GLUT4 
and GLUT1 glucose carriers translocation [84]. The insulin binding to the α-subunit receptor 
is induced by a phosphorylation reactions cascade catalyzed by tyrosine kinase that is acti-

vated by Cr; however, phosphotyrosine phosphatase which inactivates the insulin receptor is 
inhibited by Cr [85]. In type 2 diabetes and obesity, the Cr deficiency can be observed in sub-

jects consuming excessively rapid absorption carbohydrates that increase the urinary elimina-

tion of chromium. Cr Supplementation during 6 months may be prescribed in a forms variety: 
Cr-chloride, Cr-nicotinate, Cr-propionate, Cr-histidinate or Cr-picolinate leads to a significant 
decrease HbA1c and AGE [86, 87]. Cr supplementation effects appear to be mediated by AMP 
kinase activation and p38 MAP kinase signaling pathway [88]. Cr controls body fat and body 

weight by satiety mechanisms (food intake control) and thermogenesis [89]. The Cr effects are 
observed via the resistin and uncoupling protein (UCP) decoupling proteins signaling pathway 
[84, 90]. Otherwise, experimental animal studies have shown that Cr modulates the inflam-

matory state during diabetes by decreasing proinflammatory cytokines production such as 
tumor necrosis factor (TNF-α), and interleukin IL-6 [91].

7. Conclusions

Glycemic homeostasis is not only dependent on hormonal control, especially insulin; but 
also the micronutrients such as Chromium, Zinc, Selenium, Manganese and Copper. These 

Antioxidant Trace Elements act as cofactors of antioxidant enzymes (SOD, GPx) which pro-

tect the glucose-dependent tissues from the deleterious effects of reactive oxygen species fol-
lowing oxidation of glucose.
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