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Abstract

For decades, super-resolution has been a widely applied technique to improve the
spatial resolution of an image without hardware modification. Despite the advantages,
super-resolution suffers from ill-posedness, a problem that makes the technique suscep-
tible to multiple solutions. Therefore, scholars have proposed regularization approaches
as attempts to address the challenge. The present work introduces a parameterized
diffusion-steered regularization framework that integrates total variation (TV) and
Perona-Malik (PM) smoothing functionals into the classical super-resolution model.
The goal is to establish an automatic interplay between TV and PM regularizers such
that only their critical useful properties are extracted to well pose the super-resolution
problem, and hence, to generate reliable and appreciable results. Extensive analysis of
the proposed resolution-enhancement model shows that it can respond well on different
image regions. Experimental results provide further evidence that the proposed model
outperforms.

Keywords: super-resolution, resolution, enhancement, regularization, diffusion

1. Introduction

Before deepening into the super-resolution imaging, let us discuss the term resolution. Most

people, particularly those not in the imaging field, define resolution broadly as the physical

size of an image. For a two-dimensional digital image, this definition implies an area in the

image given as the product of the number of pixels in the horizontal and vertical dimensions

(pixel or picture element is the smallest unit of information in a digital image). In this context,

therefore, a high-resolution image contains a higher pixel count than a low-resolution image.

Figure 1(a) includes features with higher perceptual qualities than those in Figure 1(b), but

both images have equal sizes. From the figure, therefore, we see that dimension only seems

inadequate to define the resolution of an image.

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Resolution, more generally, means the quality of a scene (image or video). Five major types

of image resolutions are known: pixel resolution, spectral resolution, temporal resolution,

radiometric resolution, and spatial resolution. The use of these variations depends on the

application. Pixel resolution refers to the total number of pixels a digital image contains.

Hence, both images in Figure 1(a) and (b) possess equal pixel resolutions of 2179� 2011. In

other words, each image is approximately 4.4 megapixels (2179� 2011 = 4,381,969 pixels

≈4.4 megapixels). Unfortunately, pixel count offers fraction of the pieces of information

contained in the image. For a colored image with red, green, and blue channels, an individ-

ual pixel can only accommodate the details of a single color. Spectral resolution describes

the ability of an imaging device to distinguish the frequency (or wavelength) components of

an electromagnetic spectrum. Imagine spectral resolution as the degree in which you can

uniquely discern two different colors or light sources. Temporal resolution refers to the rate

at which an imaging device revisits the same location to acquire data. When dealing with

videos, for example, the term implies an average time between consecutive video frames: a

standard video camera can record 30 frames per second, implying that every 33 ms, this

camera captures an image. In remote sensing, temporal time is usually measured in days to

represent time that a satellite sensor revisits a specific location to collect data. Radiometric

resolution defines the degree at which an imaging system can represent or distinguish

intensity variations on the sensor. Expressed in number of bits (or number of levels),

radiometric resolution provides the actual content of information in the image. Spatial

resolution explains how an imaging modality can distinguish two objects. In practical

situations, spatial resolution describes clarity of an image and defines the resolving power

of an image-capturing device. The perceptual quality of an image increases with the spatial

resolution. This research presents super-resolution imaging as one of the available tech-

niques to enhance the spatial resolution of an image.

Most people are naturally inclined to high-quality and visually appealing images that contain

adequate details. However, this demand is not always achieved because of some imperfections

in the imaging process. Therefore, scholars have proposed hardware and software approaches

Figure 1. Images of dimensions 2179� 2011.
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to address the challenge. The former approach requires sensor modification, and it may be

achieved by reducing the physical sizes of the pixels—a process that increases pixel density

(number of pixels per unit area) on the surface of the sensor [1]. The hardware approach gives

perfect resolution enhancement, but the technique endures several drawbacks: (1) it introduces

shot noise into the captured images, (2) it makes the imaging device costly and unnecessarily

bulkier, and (3) it lowers the charge transfer rate because of the increased chip size [2]. These

challenges have prompted scholars to search for software techniques, which are cost-effective

and reliable, to improve the spatial resolution of an image without effecting circuitry of the

imaging device. In this case, an image can be captured by a low-cost device and processed to

generate its corresponding high-quality version.

The classical software approach that has gained a considerable attention of scholars is called

super-resolution [3–6], which uses signal processing principles to restore high-resolution

images from at least one low-resolution image. Super-resolution techniques can be put into

two major categories: single-frame-based, which generates a high-resolution image from the

respective single low-resolution image [7, 8], and multi-frame-based, which exploits informa-

tion from a sequence of degraded images to generate a high-quality image [2, 6]. The current

work builds on the multi-frame super-resolution framework, which implicitly encourages

noise reduction from the input low-resolution images. The framework bridges total variation

(TV) [9] and Perona and Malik [10] smoothing functionals and allows for these functionals to

interact in such a way that super-resolution and preservation of critical image features are

simultaneously conducted.

2. Image degradation model

The multi-frame super-resolution framework can better be understood through a conceptual

degradation model, which shows how an unknown high-resolution image, u, undergoes a

variety of degradations to form M low-quality images, yk, with k = 1,…,M denoting positions

of the low-resolution frames (Figure 2). In practice, the degradation process of u to generate yk
involves warping, blurring, decimation (downsampling), and noising, respectively defined in

this work by the operators Wk, Bk, Dk, and ηk: warping introduces rotations and translations

into u, hence changing its geometrical properties; blurring reduces sharpness of features in u;

decimation samples u and lowers its physical size; and noising corrupts uwith noise, assumed

to be additive.

Figure 2 can be transformed into

yk ¼ WkBkDkuþ ηk, (1)

which explains how the degradation model generates frame k in a set of low-resolution

images. The goal of the present study is to estimate u under the degradation conditions, and

one approach to achieve the goal is to re-define Eq. (1) into the minimization problem that aims

to lower ηk. Therefore, using the Lp norm, where p∈ [1, 2] (the range 0 ≤ p < 1 is excluded

because the values of p contained in this interval lead to nonconvex minimization problems

that are susceptible to unstable solutions), the formulation to optimize u becomes
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min u E uð Þ ¼
1

2M

X

M

k¼1

∥WkBkDku� yk∥
p
p

( )

, (2)

where E is modeled as an energy functional that defines noise level in the degraded image. The

gradient of the cost of E in Eq. (2) is

Jp ¼
∂

∂u

1

2M

X

M
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p
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" #

(3)

¼
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⊙ WkBkDku� yk
�

�

�

�

p�1
, (4)

where DT
k is the upsampling operator, BT

k and WT
k are the inverse operators for blurring and

warping, respectively, and ⊙ denotes the Hadamard (element-wise) operator for two matrices.

The solution of Eq. (2) can be obtained when Jp = 0.

For p = 1, Eq. (4) evaluates to
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Figure 2. Image degradation model.
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J1 ¼
1

2M

X

M

k¼1

DT
k B

T
kW

T
k sign WkBkDku� yk

� �

¼ 0, (5)

which shows that, after shifting and zero filling, DT
k B

T
kW

T
k copies values from the low-

resolution to the high-resolution images, and WkBkDk reverses the operation [11]. Pixel values

are unaffected by these complimentary operations, implying that each entry in J1 is impacted

by entries from all low-resolution images. Figure 3 shows the influences of D and that of DT on

the reconstructing image. In their work, Farsiu et al. noted that the L1 minimization in Eq. (5)

corresponds to the pixel-wise median, a robust estimator that addresses favorably noise and

outliers in the input data. But the L1 norm is nondifferentiable at zero, a property that makes

the minimization process unstable and that generates undesirable solutions.

For p = 2, Eq. (4) becomes a solution of the L2 norm minimization, or

J2 ¼
1

2M

X

M

k¼1

DT
k B

T
kW

T
k WkBkDku� yk
� �

¼ 0, (6)

which was proved in [12] that it represents pixel-wise mean of measurements. The L2 norm is

less-robust against erroneous data, but the metric has better mathematical properties: convex-

ity, differentiability, and stability. Therefore, several scholars prefer the L2 objective functions in

situations where data contain low noise as in our case.

The super-resolution problem, whether formulated through L1 or L2 norm, has an ill-

posedness nature. Given that r is the resolution factor, then for the under-determined case, or

for M < r2, and for the square case, or for M = r2, the problem may evaluate to infinitely many

undesirable solutions. Also, for the small amount of noise in the data, ill-posed problems tend

to introduce larger perturbations in the final solutions. These issues can be effectively

addressed through a technique called regularization, which has another advantage of speed-

ing the convergence rate of the evolving solution. This work addresses the super-resolution ill-

posedness through regularization functionals from nonlinear diffusion processes, which have

been reported that they can preserve important image features (edges, contours, and lines)

[13–15]. The proposed regularizer integrates total variation (TV) [9] and Perona and Malik

(PM) [10] models that complement one another to generate appealing results.

Figure 3. Downsampling matrix, D, and upsampling matrix, DT, applied on an image. The resolution reconstruction

factor used is two for both horizontal and vertical dimensions of the image.
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3. Hybrid super-resolution model

3.1. Regularization functionals

Considering the super-resolution ill-posedness property, a hybrid framework combining TV

and PM regularization kernels has been formulated. The framework includes additional

parameters, α and β, which establish a proper balance between TV and PM during regulariza-

tion. The objective is to de-emphasize weaknesses of the models and amplify their strengths so

that the super-resolved images are superior.

In [9], Rudin et al. established the TV model that explains how noise in the image can be

reduced. The model is based on the fact that a noisy image contains a higher total variation,

defined by the integral of the absolute gradient of the image or

ρ ∇uj jð Þ ¼

ð

Ω

∇uj jdx, (7)

where ρ is the TV energy functional,Ω defines the domain under which u exists, and x denotes

the two-dimensional spatial coordinate on Ω. Therefore, reducing noise is equivalent to mini-

mizing ρ. Being defined in the bounded variation space, TV functionals allow for discontinu-

ities in the image functions. Hence, regularization through TV promotes recovery of edges,

which appear as “jumps” or discontinuous parts of the image, and effective noise removal. But

studies have revealed that TV formulations favor piecewise-constant solutions, a consequence

that generates staircase effects and introduces false edges [16]. Also, TV regularization tends to

lower contrast even in noise-free or flat image regions [17].

In the similar notion of the TV principle, Perona and Malik proposed an energy functional, ϕ,

defined by

ϕ ∇uj jð Þ ¼
K2

2

ð

Ω

log 1þ
∇uj j

K

� �2
 !

dx, (8)

where K denotes the shape-defining constant, which can be minimized to suppress noise [10].

Minimizing Eq. (8), which originates from robust statistics, produces a nonlinear diffusion

equation that embeds a fractional conduction coefficient for preserving edges. The PM energy

functional in Eq. (8) is nonconvex for |∇u| >K, an undesirable property that can generate

instabilities in the evolving solution. This work presents a technique that retains the convex

portion, |∇u| ≤K, and complements the nonconvex portion of the PM potential by the TV

energy functional.

The regularization process is often supported by the fidelity potentials

ψ uð Þ ¼
λ

2

ð

Ω

u� fð Þ2dx (9)

for additive noise, f = u + η, and
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φ uð Þ ¼ λ

ð

Ω

log uþ
f

u

� �

dx (10)

for multiplicative noise [18], f =uη, where f is the corrupted image and λ is the fidelity param-

eter that balances the trade-off between u and f. The fidelity term is often added to the

regularization framework.

3.2. Proposed super-resolution model

The hybrid model can be derived from the minimization problem that integrates the

corresponding energy functionals from super-resolution, TV, PM, and fidelity. Assuming addi-

tive noise and L2 estimator for the super-resolution part, the (regularized) minimization super-

resolution problem parametrized in α and β becomes

min u H u; ∇uj jð Þ ¼
1

2M

X

M

k¼1

∥WkBkDku� yk∥
2
2 þ αρ ∇uj jð Þ þ βϕ ∇uj jð Þ þ ψ uð Þ

( )

, (11)

where α, β∈ [0, 1] and β ¼ α. Solving Eq. (11) using the Euler-Lagrange equation, and embed-

ding the result into the time-dependent system gives

∂u

∂t
¼

1

2M

X

M

k¼1

DT
k B

T
kW

T
k WkBkDku� yk
� �

þdiv
α

∇uj j
∇u

� �

þdiv
β

1þ ∇uj j
K

� �2
∇u

0

B

@

1

C

A
�λ u� fð Þ: (12)

Eq. (12) offers both super-resolution image reconstruction and noise removal capabilities,

dictated by TV and PM models. From the equation, as t! ∞ , u approaches an optimal

solution—a stationary function that solves the energy functional, H, in Eq. (11). Eq. (12)

has interesting properties for various parts of the image: in flat regions (|∇u|!0), Eq. (12)

reduces to

∂u

∂t
¼

1

2M

X

M

k¼1

DT
k B

T
k W

T
k WkBkDku� yk
� �

þ αCþ β
� �

Δu� λ u� fð Þ, (13)

where C > 0 is a constant. This equation has a Laplacian term, Δu, which possesses isotropic

diffusion characteristics to strongly and uniformly suppress noise in flat regions. In the neigh-

borhood of the edges (|∇u|!∞), Eq. (12) becomes

∂u

∂t
¼

1

2M

X

M

k¼1

DT
k B

T
k W

T
k WkBkDku� yk
� �

� λ u� fð Þ, (14)

implying protection of edges against smoothing. This automatic interplay between recon-

struction and regularization components helps to generate superior super-resolved

images.
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3.3. Numerical implementation

The solution of the proposed super-resolution model in Eq. (12) was iteratively estimated

using the steepest descent method. Therefore, the evolution equation in Eq. (12) can be

converted into a numerical system

unþ1 ¼ un � τ
1

2M

X

M

k¼1

DT
k B

T
k W

T
k WkBkDkun � yk
� �

þ div
α

∇unj j
∇un

� �

(

þdiv
β

1þ ∇unj j
K

� �2
∇un

0

B

@

1

C

A
� λ un � f n

� �

9

>

=

>

;

,

(15)

where n denotes the iteration number that defines the solution space index of u, and τ > 0

denotes constant of the step size in the gradient direction. To encourage stability of the

evolution equation in (15), the Courant-Friedrichs-Lewy condition, that is 0 < τ ≤ 0.25, should

be satisfied [19]. From the equation, the degradation matrices, namely Wk,Bk,and Dk, and their

corresponding transpose versions may be regarded as direct operators for image manipula-

tions: shifting, blurring, and downsampling, along with the reverse of these operations [11].

With this observation of the matrices properties, implementation of the super-resolution com-

ponent of Eq. (15) can be achieved using cascaded operators without explicitly constructing the

Figure 4. Block diagram representation of the proposed super-resolution model. The blocks Pk and Q are defined in

Figures 5 and 6.
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operators as matrices. This implementation strategy helps to boost the algorithmic speed and

to optimize hardware resources.

Eq. (15) can be represented in block form by Figure 4. From the Figure, each low-resolution

frame, yk, is compared with the current estimate, un, of the high-resolution image. This process

is undertaken by block Pk, detailed in Figure 5—an operator that represents the gradient back

projection to compare the kth degraded frame and the high-resolution estimate at the nth

Figure 5. Extended block diagram representation of the similarity cost derivative, Pk, in Figure 4.

Figure 6. Block diagram representation of the smoothing cost derivative, Q, in Figure 4.
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iteration of the steepest descent method. Note from Figure 5 that T(PSF), with PSF denoting

the point spread function, replaces BT
k with a simple convolution operator. This block can be

implemented by flipping, on the respective axes, rows, and columns of the PSF in the up-down

and left-right directions, respectively. Gradient of the regularization term is represented by

block Q, defined more explicitly in Figure 6, which ensures that the evolution process con-

verges and gives desirable solutions.

4. Experimental methodology

Several experiments were executed to determine performance of the proposed super-

resolution model relative to the classical approaches. The methodology and procedures

under which the experiments were undertaken can be explained as follows: firstly, high-

resolution images of bike, butterfly, flower, hat, parrot, Parthenon, plant, and raccoon

(Figure 7) were degraded to generate the corresponding low-resolution images (Figure 8,

first column). Note that the original images were downloaded from the public domain with

standard test images.1 These images were selected because they contain detailed features,

and hence it would be easier to test the superiority of various super-resolution methods. As

an example, the “Raccoon” image contains small-scale features (fine textures or fur) that

most super-resolution approaches may find hard to restore. Degradation of the original

images was achieved through warping, blurring, decimation, and noise addition to create

sequences of 10 low-quality images with consecutive pairs differing by some rotation and

translation motions. To void impacts of registration errors on the reconstruction process, the

Figure 7. Original high-resolution images.

1

http://www4.comp.polyu.edu.hk/~cslzhang/NCSR.htm
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Figure 8. Super-resolution results from different methods.
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warping matrix was fixed. Thus, for 10 multiple low-resolution images, the warping matrix

for the horizontal and vertical displacements, respectively denoted by ∆x and ∆y, was

defined as follows:

Next, super-resolution methods based on a variety of regularizers, namely NC00 [20], TV [9],

ANDIFF [21], and Hybrid, were applied on the degraded images to restore their original

versions. Lastly, the objective metric, namely feature similarity (FSIM) [22], and the subjective

metric were used to compare performances of different methods. FSIM incorporates into its

formulation some aspects of the human visual system, and hence the metric is considered

superior over several other existing image quality metrics. A visually appealing image has a

higher value of FSIM, and vice versa.

5. Results and discussions

Visual results show that the classical methods tend to add undesirable artificial features into the

reconstructed images (Figure 8). For instance, NC00 introduces bubble-like features around

borders, edges, and corners, which are the critical features that emulate the human visual system.

The method, on the other hand, does well on homogeneous image regions. The super-resolution

method based on TV produces relatively sharper images, but the method also adds artifacts on

homogeneous parts of the final images—an effect that degrades the visual quality of the images.

The ANDIFF method generates smoother results that contain little artifacts, but the method

underperforms for highly-textured images such as the Raccoon. The proposed hybrid model

established a proper balance between smoothness and critical feature preservation (Figure 8, last

column). Visually, the reconstructed images by our approach are more natural and are free from

obvious artifacts. One may argue about a slight blurriness in our results. However, given the

higher capability of the proposed method to preserve sensitive image features, this effect may be

ignored. Also, the line graphs (taken near the last row across all columns) further confirm that the

proposed method is superior because it generates a one-dimensional curve that closely matches

the original one (Figure 9).

Numerical results demonstrate that, in all cases of the input images, the proposed super-

resolution method achieves higher quality values (Table 1). These convincing objective obser-

vations can be explained well from the new formulation in Eq. (12): the hybrid super-

resolution model captures the qualities of both PM and TV, an advantage that may promote

higher objective quality results. Besides, our formulation incorporates parameters that give an

effective interplay between the regularization functionals.

∆x 0.56 1.03 0.85 0.32 �0.45 �0.43 0.92 1.23 0.93 0.64

∆y 0.12 0.53 0.27 0.00 �0.83 1.12 1.08 0.12 0.54 1.37
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6. Conclusion

In this work, we have established a hybrid super-resolution framework that combines desir-

able features of TV and PM models. The framework has been parametrized to mask weak-

nesses of the models, introduce an automatic interplay between TV and PM regularizations,

Figure 9. Line graphs of images generated by different super-resolution methods.

Image NC00 TV ANDIFF Proposed method

Bike 0.7139 0.7148 0.7386 0.7642

Butterfly 0.6721 0.6733 0.7386 0.7592

Flower 0.6998 0.7084 0.7669 0.7970

Hat 0.7512 0.7624 0.8106 0.8194

Parrot 0.7672 0.7908 0.8595 0.8738

Parthenon 0.7101 0.7287 0.7450 0.7618

Plant 0.7429 0.7416 0.8230 0.8401

Raccoon 0.7591 0.7877 0.8046 0.8257

Table 1. Feature similarities of images restored from various super-resolution methods.

Diffusion-Steered Super-Resolution Image Reconstruction
http://dx.doi.org/10.5772/intechopen.71024

129



and promote appealing results. More emphasis was put on super-resolving low-quality

images while retaining their naturalness and preserving their sensitive image features.

Experimental results demonstrate that the proposed framework generates superior objective

and subjective results.
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