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Abstract

In recent years, the application of nonlinear filtering for processing chaotic signals has
become relevant. A common factor in all nonlinear filtering algorithms is that they
operate in an instantaneous fashion, that is, at each cycle, a one moment of time magni-
tude of the signal of interest is processed. This operation regime yields good perfor-
mance metrics, in terms of mean squared error (MSE) when the signal-to-noise ratio
(SNR) is greater than one and shows moderate degradation for SNR values no smaller
than �3 dB. Many practical applications require detection for smaller SNR values (weak
signals). This chapter presents the theoretical tools and developments that allow
nonlinear filtering of weak chaotic signals, avoiding the degradation of the MSE when
the SNR is rather small. The innovation introduced through this approach is that the
nonlinear filtering becomes multimoment, that is, the influence of more than one
moment of time magnitudes is involved in the processing. Some other approaches are
also presented.

Keywords: nonlinear filtering, chaotic systems, Rossler attractor, Lorenz attractor, Chua
attractor, Kalman filter, weak signals, mean squared error

1. Introduction

The detection of chaotic (stochastic) weak signals is relevant (among others) for applications

such as biomedical telemetry [1, 2], seismological signal processing [3], underwater signal

processing [4], interference modeling [5], etc. Effective detection of weak and rather weak

chaotic signals (�3 dB or less) is a challenge whose solution can improve, for example, the link

budget (communication distance). Among different approaches to this problem, one can

mention techniques such as stochastic resonance [4], instantaneous spectral cloning [6], etc.

The problem in this chapter is addressed from the standpoint of nonlinear filtering techniques

which earlier was designed to operate with signal-to-noise ratio (SNR) values bigger than one

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



or at least rather close to one (with an acceptable slight degradation as the SNR approaches

�3 dB [7]. Far down �3 dB, the performance of the available filtering methods drops down

sharply and becomes ineffective. One of the possible explanations for this issue is that current

nonlinear filtering algorithms can be considered as one moment in the sense that they operate

in an instantaneous fashion, that is, during each operation cycle, they process an instantaneous

one moment of time magnitude of the received aggregate signal; in the next cycle, a new

instantaneous one moment of time magnitude is processed and so on. This is precisely the

operation rule for all known optimum algorithms and their quasi-optimum versions as well,

for instance, the extended Kalman filter (EKF) [7], but it can also be found in strategies such as

unscented Kalman filter (UKF), Gauss-Hermite filter (GHF), and quadrature Kalman filter

(QKF), among others. One of the goals of this chapter is to describe the detection of weak

chaotic signals applying the principles of noninstantaneous filtering in a block way, that is,

multimoment filtering theory [8], through a real-time implementation in a digital signal

processing (DSP) block. Moreover, some space of this chapter will be dedicated to the condi-

tionally optimum approach for the nonlinear filtering methods as well, together with some

asymptotic methods.

Theoretically, for many cases, the chaos might be represented as an output signal of dissipative

continuous dynamic systems (strange attractors) [9]:

_x ¼ f x tð Þð Þ, x∈Rn, x t0ð Þ ¼ x0, (1)

where f(•) = [f1(x),…fn(x)]
T is a differentiable vector function.

According to the idea of Kolmogorov, the equations for strange attractors (1) can be successfully

transformed in the equivalent stochastic form as a stochastic differential equation (SDE) [9, 10]:

_x ¼ f x tð Þð Þ þ εξ tð Þ: (2)

The influence of a weak external source of white noise is denoted by ξ(t), and the noise

intensities are given in a matrix form ε = [εij]
nxn.

Note that a stationary distribution Wst(x) exists even when the weak white noise component is

tending to zero [11–13].

Nonlinear filtering of chaotic desired signals comes up naturally when SDE (2) is used as

model of chaos. This follows straight from the classical theory of nonlinear filtering for Markov

processes, proposed more than 50 years ago [14, 15] and extensively developed in subsequent

studies [16–21], although those methods are still under development.

From the practical implementation point of view, the nonlinear filtering strategies are approx-

imate (see the references above). This follows from the fact that, in general, there is no

analytical solution for the a posteriori probability density functions when one attempts solving

the Stratonovich-Kushner equations (SKE).

In the following, some of the numerous nonlinear filtering approximate approaches that have

been developed will be presented.
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2. Nonlinear filtering for Markovian processes

Let assume that filtering of the following received signal is required:

y tð Þ ¼ s t; x tð Þð Þ þ n0 tð Þ, (3)

where s (�) is a vector function of the “message dependent” desired signal (which is subject of

filtering) of dimension “m,” the received signal is denoted by the vector y(t) (also of dimension

“m”), and n0 is a vector of the white additive noises characterized by the intensity matrix

N0(m � m). The following SDE is used to model the signal s (�) as an n-dimensional Markov

diffusion process [22]:

_x ¼ g t; xð Þ þ ξ tð Þ: (4)

Strictly speaking, Eqs. (4) and (2) are the same SDE, and the vector function g (�) substitutes f (�)

in (2); for (4), D denotes the correspondent matrix of intensities for ξ(�).

Under this assumption ([14, 22] and so on), one can use the so-called Fokker-Planck-Kolmogorov

(FPK) equation in order to solve the a priori probability density function (a priori PDF), for x(t):

∂WPR x; tð Þ

∂t
¼ �

X

n

i¼1

∂

∂xi
gi t; xð ÞWPR x; tð Þ
� �

þ
1

2

X

n

i¼1

X

n

j¼1

∂2

∂xi∂xj
DijWPR x; tð Þ
� �

, (5)

where WPR(x,t0) = W0(x).

The Eq. (5) can be rewritten in another form [21, 23] as well:

∂WPR x; tð Þ

∂t
¼ �divπ x; tð Þ, (6)

or

∂WPR x; tð Þ

∂t
¼ LPR WPR x; tð Þf g, (7)

where π(x, t) is a probabilistic “flow” with components:

π x; tð Þ ¼ gi x; tð ÞWPR x; tð Þ �
1

2

X

n

j¼1

∂

∂xj
DijWPR x; tð Þ
� �

: (8)

In Eqs. (5)–(8), {Dij} denote diffusion coefficients of the Markov process and gi x; tð Þ
� �n

1
are the

correspondent drift coefficients, and both of them will be used in the Stratonovich sense

[14, 22]; LPR{�} denotes a FPK linear operator.

The integrodifferential equation for the a posteriori probability density function WPS(x, t) is

given by any of the two equivalent expressions (see [14]:
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∂WPS x; tð Þ

∂t
¼ LPR WPS x; tð Þf g þ

1

2
F x; tð Þ �

ð∞

�∞

F x; tð ÞWPS x; tð Þdx

2

4

3

5WPS x; tð Þ (9)

or

∂WPS x; tð Þ

∂t
¼ �divbπ x; tð Þ þ

1

2
F x; tð Þ� < F x; tð Þ >½ �WPS x; tð Þ, (10)

where < F x; tð Þ > denotes the averaging of F(x,t) given by < F x; tð Þ >¼
Ð∞

�∞

F x; tð ÞWPS x; tð Þdx,

bπ x; tð Þ is (5), WPR(x, t) is substituted by WPS(x, t), and

F x; tð Þ ¼ y tð Þ �
1

2
s x; tð Þ

� �T
N�1

0 y tð Þ �
1

2
s x; tð Þ

� �
: (11)

The combination of Eqs. (9)–(11) is known as the Stratonovich-Kushner nonlinear equations

(SKE), and they have an appealing physical sense: the first term in (9) represents the dynamics

of the a priori data of x(t). For the second term, the analysis of observations is used to drive the

innovation of the a priori data.

Using any optimization criteria, one can get bx tð Þ (the optimum estimation of x(t)) which comes

as a solution of (9), when y(t) is the input signal, that is, filtering of x(t).

Here, one has to note that Eq. (9) turns into FPK (6) if the intensity of the additive noises N0

grows (the first term in (9) is dominant), and as a consequence, the filtering accuracy dimin-

ishes drastically. In the opposed scenario (large signal-to-noise ratio), the WPS(x, t) tends to the

unimodal Gaussian PDF [14, 20].

Note that the time evolution of WPS(x, t) is completely described by the SKE but, as it was

mentioned earlier, does not provide exact analytical solutions. There are very few exceptions:

linear SDE (4) which yields the well-known Kalman filtering algorithm [14–24], the Zakai

approach [25], and so on. Due to this, the nonlinear filtering algorithms are practically always

approximate. As it was mentioned before, during almost 50 years of intensive research, the

bibliography for nonlinear filtering algorithms has become enormous; in the next section, we

will consider only few of those works taking into account the following considerations:

• the models applied for filtering of chaos correspond to the equations for Rössler, Chua,

and Lorenz strange attractors with n = 3, that is, low dimensional;

• the algorithms for nonlinear filtering have to be of reduced computational complexity in

order to satisfy real-time application requirements;

• the algorithms for nonlinear filtering, according to the aim of the material of the chapter,

have to be able to perform satisfactorily in scenarios with low or very low signal-to-noise

ratios (SNR), although the Gaussian assumption for WPS(x) is not always valid;

•
s x tð Þ; tð Þ ffi x tð Þ; (12)

• All Dij are equal to zero, except D11 ffi D1 [11].
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2.1. Approximate approaches for nonlinear filtering

For the sake of simplicity, it is “easier” to approximate the a posteriori PDF WPS(x, t) than the

nonlinearity at (4) and (9) [16, 17, 19]. In this sense, let us just list some of the approximate

approaches for WPS(x, t):

• Integral or global approximations for WPS(x, t) [20];

• Functional approximations for WPS(x, t) [16, 21];

• Higher Order Statistics (HOS) approximations for WPS(x, t), and so on;

• Gaussian approximations: extended Kalman filter (EKF) [14–24]; unscented Kalman filter

(UKF) [19]; quadrature Kalman filter (QKF) [17]; iterated Kalman filter (IKF), etc.

It is hardly feasible to give a complete overview of all those methods; moreover, not all of them

are adequate, taking into account the observations introduced at the end of the previous section.

Let us start with the extended Kalman filter (EKF): considering WPS(x, t) as a three-

dimensional Gaussian PDF- cWG x; tð Þ, from (9), it is possible to obtain the following equations

for per-component of the mean estimates bxif g
3
1 and for estimates of the elements of the a

posteriori covariance matrix bRij

n o3

i, j¼1
:

_bxi ¼
ð∞

�∞

bπT
x; tð Þgrad xi

� 	
dxþ

1

2

ð∞

�∞

xiF x; tð ÞcWG x; tð Þdx� bxi
ð∞

�∞

F x; tð ÞcWG x; tð Þdx

2
4

3
5

_bRij ¼

ð∞

�∞

bπT
x; tð Þgrad x

∘

ix
∘

j

� 	
dxþ

1

2

ð∞

�∞

x
∘

ix
∘

jF x; tð ÞcWG x; tð Þdx� bRij

ð∞

�∞

F x; tð ÞcWG x; tð Þdx

2
4

3
5,

(13)

where x
∘

i ¼ xi � bxi and x
∘

j ¼ xj � bxj.

The matrix form [14–16, 20] can be used to represent Eq. (13); however, for some specific

applications, per-component representation (13) could be more adequate (see the following).

It is reasonable to assume convergence to the stationary values Rij for ∀bRij tð Þ when t!∞, and

as a result, the second equation in (13) can be expressed as a system of nonlinear algebraic

equations, with standard numerical solutions. This consideration is relevant for real-time

scenarios, as it significantly simplifies the implementation of the related EKF algorithms.

Functional approximation for WPS(x, t) is, as it was described in [16, 21],

WPS x; tð Þ ¼
Y3

i¼1

WPS xið Þ 1þ
X3

q¼2

Xq�1

j¼1

Rqj

RqqRji
xq � bx

q

� 	
xj � bx

j

� 	
2
4

3
5

: (14)

From (14), we see that the functional approximation for the PDF is sufficiently non-Gaussian

(marginal WPS(xi) is arbitrary), but for “joint” characterization of the vector bx, only elements of

the a posteriori covariance matrix bR ij are considered.
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It can be shown that the equations for bxif g
n
1 and bR ij

n o
coincide with those in (13), and the

unique difference would be that one has to apply in (13) the approximation for WPS(x, t)

instead of cWG x; tð Þ. The resulting integrals can be solved either through the Gauss-Hermit

quadrature formula [17, 18] or analytically.

The integral or Global approximation forWPS(x, t) is another approach for approximate solution.

Maybe the experienced reader already noticed that the last two approximations forWPS(x, t) can

be considered as “local” as they offer maximum ofWPS(x, t), estimation of bxif g, and bR ij

n o
.

For conditions of significantly large SNR, this is sufficient, but for low SNR, one has to find a

different approach, known as integral approximation. This strategy was suggested as an ade-

quate approximation ofWPS(x, t) together with the PDF’s “tails,” that is, for the whole span of x.

Let us suppose that WPS(x, t) can be characterized as:

WPS x; tð Þ ¼ WPS x;α tð Þð Þ: (15)

Here α is an unknown vector of approximation parameters. As an approximation criterion for

PDF, it is possible to use the Kullback measure; thus, one might obtain the following equation

for the unknown vector α:

_α ¼ LþPR h x; tð Þf g

 �

þ V
�1 tð Þ h x; tð ÞF x; tð Þh i, (16)

where h x; tð Þ ¼ ∂lnWPS x;α tð Þð Þ
∂α , V tð Þ ¼

Ð∞

�∞

∂lnWPS x;α tð Þð Þ
∂α

h iT
WPS x;α tð Þð Þdx ¼ ∂

2WPS x;α tð Þð Þ
∂α∂αΤ , LþPR •f g is a

self-adjoint operator to the FPK operator [22].

Now, as an integral approximation of WPS(x, α(t), let us choose the so-called “Dynkin PDF”

with α(t) is the vector of sufficient statistics for WPS(�):

WPS x;α tð Þð Þ ¼ C exp
XK

p¼1

αp tð Þϕp xð Þ þ ϕ0 xð Þ

8
<

:

9
=

;, (17)

where {φp(x)} are orthogonal multidimensional operators: Laguerre, Hermite, and so on.

One can notice that there is a significant coincidence between (17) and the orthogonal series

characterization of WPS(x, α(t) [22]: even though both apply series of orthogonal functions, in

(17), it is not used for WPS(x, α(t)) but for its monotonical transform ln{WPS(x, α(t)}. So, the

coefficients {αp(t)} can be expressed by means of the cumulants of WPS(x) [22]. Thanks to this,

instead of searching for a solution of (17), hardly possible in an analytically way, one can

search directly equations for the cumulants (HOS) of WPS(x, t) [16, 26].

Here, the HOS approach will be presented because the last problem was addressed in the cited

references. It is worth noticing the following: for real-time scenarios when n > 1, equations for

HOS and Eq. (16) are significantly complex; for n = 1, both strategies are equivalent [26].
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3. Multimoment filtering of chaos

As it follows from the material of Section 2, all the algorithms are “one-moment” in the sense

that they are operating only with the data at each time instant, that is, they are tracking

instantaneously one moment magnitude of the received aggregate signal. As it was shown at

[27], the adequate filtering algorithm (for the one-moment case) is an Extended Kalman Filter

(EKF).

This choice is more or less expected, due to the experience which is already known from the

available references (see above). EKF shows rather good performance for the filtering of

chaotic signals: the mean squared error (MSE) is less than 1% when SNR is about �3 dB, and

for SNR bigger than �3 dB, the results are much better.

In this regard, a question arises: is it possible to improve this approach in the sense of getting

still rather good MSE’s for successively lower thresholds of the SNR with an algorithm of

reasonable complexity? The following material attempts to prove that the answer is “yes,” if

one can apply some additional information from the received aggregate signal taken on

several sequential time instants.

It means that the information has to be considered in the block manner by aggregating data, in

our case, for several time instants ([8, 16, 27], and so on.). The difference between the following

approach and that from the cited references is precisely the aggregated data obtained for many

time instants: multimoment algorithms are carried out through the generalization of the

Stratonovich-Kushner equations (SKE) for the corresponding multimoment data, and there-

fore, in the following, all heuristics for the simplification, considered as Generalized SKE

(GSKE), are not arbitrary but can be taken as generalized heuristics from the “standard” one-

moment SKE (see below). This gives a “hope” to achieve the abovementioned improvement

for the SNR threshold with less complex tools.

It follows from the fact that, as it was shown in [8] (see also the references therein), the GSKE

comes from the same structure as its one-moment prototype. So the way of its simplification

(except for the limiting of the number of time instants) in order to get a quasi-optimum

algorithm, could be done in a similar way as for the one-moment case: approximation of the a

posteriori PDF (characteristic function) in SKE with a minimum set of significant parameters.

Moreover, there is an additional way to improve the accuracy of the quasi-optimum solution

for the GSKE: assume this quasi-optimum algorithm as a “given structure,” as it was proposed

in [16] and also considered in the following.

3.1. Generalization of SKE for the multimoment case

In the same way, as it was underlined earlier, the chaos is “generated” by the equation:

_x ¼ f xð Þ, x∈Rn, x t0ð Þ ¼ x0, (18)

where f(•) = [f1(x),…fn(x)]
T is a differentiable vector function and it can be considered as a

degenerated Markov process from the following stochastic equation:
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_x ¼ f xð Þ þ εξ tð Þ, (19)

where ξ(t) is a vector of “weak” external white noise with the related positively defined matrix

of “intensities” ε = [εij]
n�n.

In the following, one can consider both the ordinary differential equation (ODE) (18) and the

stochastic differential equation (SDE) (19) when the noise intensities tend equally to zero.

Adding the ε term in (19) guarantees the existence of a stationary PDF for x(t) as well, no

matter how small the elements of εmight be [28]. So, one can suppose that this stationary PDF,

WST(x), is known a priori. For our case in practical sense, one can deal actually only with the

stationary PDF, which we assumed is modeled by means of a chaotic process (concretely let us

say the first component, x1(t), of certain attractor model). Certainly WST(x1) can easily be

obtained from WST(x). If the two PDFs coincide in terms of certain fitness criteria, then only

for simplicity in the subsequent developments, the SDE (19) can be substituted by its statisti-

cally equivalent one-dimensional SDE with the same WST(x1):

_x1 ¼ f x1ð Þ þ
ffiffiffi

ε
p

ξ tð Þ, (20)

where f x1ð Þ ¼ ε
2

d
dx1

lnWST x1ð Þ and ε in (20) can be considered here as a “scale factor” and can

be chosen by equalizing the average powers of real x1(t) and solution of (20). Formally, there is

no need for all those operations, but then the reader has to be extremely concentrated with

“multiindex” definitions: one index for the number of applied components of the attractor and

another index for the time instant, that is, xm(ti), which might cause confusion in further

developments, as x1(t) is an observable component whose dynamics depends on other

“nonobservable” components. For those reasons, in the following, (20) will be considered as a

model of the desired signal for filtering.

Let us introduce the following notation for the time instants (time moments): t1 < t2 < t3 … <tn

and xi = x(ti), i ¼ 1, n. Then, x tið Þf gn1 forms a vector x(t) = [x(t1),…, x(tn)]
T and Wn(x, t)ffiWn(x1,

…xn; t1,…tn); Wn(x,t) is an a priori PDF for x(t). As it follows from ([16], ch. 5):

∂Wn x; tð Þ
∂ti

¼ Li Wn x; tð Þf g (21)

where Li •f g ¼ � ∂

∂xi
K1 xið Þ þ 1

2
∂
2

∂x2
i

K2 xið Þ is the FPK operator [16] with K1(xi) = f1(xi), K2(xi) = ε
2. It

is easy to show that by consecutive differentiation one can obtain:

∂
nWn x; tð Þ
∂t1…∂tn

¼
Y

n

i¼1

Li Wn x; tð Þf g, (22)

LPR •f g ¼
Y

n

i¼1

Li •f g: (23)

Certainly, the adjoint operator [16, 22] for the multimoment case is:
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bLPR •f g ¼
Yn

i¼1

bLi •f g, (24)

where bLi ¼ K1 xið Þ ∂

∂xi
þ K2 xið Þ

2
∂
2

∂x2
i

is a Kolmogorov operator [22].

Let us then introduce the a posteriori n-dimensional PDF Wps(y|x,t) ffi Wps(x,t) for the

multimoment case. Then, repeating formally the development for the SKE, but in this case

generalized for the “n” time case (in the same way as it was done at [27]), one can get:

∂
nWps x; tð Þ

∂t1…∂tn
¼ LPR Wps x; tð Þ

� �
þ
1

2
F x; tð Þ �

ð

Rn

F x; tð ÞWps x; tð Þdx

2

4

3

5Wps x; tð Þ (25)

with t = [t1, …, tn]
T,

F x; tð Þ ¼
y tð Þ � 1

2 x tð Þ
� �T

N0
y tð Þ �

1

2
x tð Þ

� �
, (26)

where y(t) = [y(t1), …, y(tn)]
T is the vector of x tið Þf gn1 taken from y(t) = x(t) + n(t) and n(t) is the

AWGN with intensity N0.

Analyzing (25) by comparing it with the standard form of the SKE (see Eqs. (9) and (10) in part

II), one can see that there is a total “structural” identity! The same matter takes place for the a

posteriori cumulants [16, 27], that is:

∂κ
ps
r1,…rn tð Þ

∂t1…∂tn
¼ �jð Þk

∂k

∂λ
r1
1 ,…∂λ

rn
n

M bL exp jλTx
� �

F x; tð Þ
n o

M exp jλTx
� �� �

2

4

3

5

λ¼0

þ
M exp jλTx

� �
F x; tð Þ

� �

M exp jλTx
� �� �

" #

λ¼0

8
<

:

9
=

;

(27)

where r1+ r2 + … + rn = k, k = 1, 2, ….

One can see from (25) and (26) that those algorithms are rather complex for implementation in

real-time regime. So, in addition to the one-moment SKE, they have to be modified in order to

get the quasi-optimum solution.

3.2. Quasi-optimum solutions. Generalized EKF

One has to know that “quasi-optimum” solutions (for any problem) are based on some heuris-

tics and those heuristics have to be reasonable and based on previous experience in solving

similar problems. In the case of multimoment filtering, the analogies can be the following (of

course implicit considerations for complexity have always to be taken into account):

• The priority will be given to the quasi-linear approximation for nonlinear functions in the

same way as it was assumed for the “standard” one-moment filtering.
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• All algorithms for block processing show that there is in some sense a reasonable block

length for the processed data. Taking into account the complexity limits and that the

covariance function of the chaos initially drops rather fast [29], let us take first n = 2.

• The approximation of the a posteriori PDF (characteristic function) has to apply the

minimum set of first cumulants; one has to remind that, as the order of cumulants grows,

their significance for PDF approximation vanishes [22];

Taking these observations into account, let us take n = 2, that is, two-moment filtering case,

then [16, 22]:

θps λð Þ ffi exp
X

2

s¼1

js

s!

X

S

r1, r2
κs t1; t2ð Þλr1λ

r2

( )

, (28)

and cumulants are:

κ
psð Þ
r1,…rn

tð Þ ¼ �jð Þk
∂
k

∂λ
r1
1 ,…∂λ

rn
n

lnθps λð Þ

� �

λ¼0

:

Another assumption is that the a posteriori process is supposed to be stationary; then, the one-

moment cumulants for t1 and t2 have to be the same and the only mutual cumulant taken into

account might be κ11(t1, t2). Next, for each moment “t1” and “t2” one-moment cumulants can

be calculated applying Gaussian approximation for the a posteriori PDF, and for the two-

moment case, the “functional approximation” could be applied. In a rigorous sense, the a

posteriori variance κ
ps
2 has to be evaluated as κ

ps
2 t1; t2ð Þ, considering the covariance among time

instants “t1” and “t2”; in the following, the heuristic strategy will be introduced, which avoids

the cumbersome calculations.

One can obtain the first two-moment cumulants:

_κ1 ¼< K1 xð Þ > þ
1

2
< xF x; tð Þ > �

κ1

2
< xF x; tð Þ >

_κ2 ¼< 2xK1 xð Þ > �κ1 < K1 xð Þ > þεþ
1

2
< x� κ1ð Þ2F x; tð Þ > �

κ2

2
< xF x; tð Þ > ,

(29)

where < > is a symbol for the averaging procedure, F x; tð Þ ¼ 1
N0

y tð Þ � 1
2 x tð Þ

� �

, and K1(x) is the

drift coefficient for (19).

One has to notice that at (29) κ1(t) is an estimation of the filtered signal (in our case, it is a

chaotic signal); κ2(t) is a measure of the filtering accuracy. As it can be is seen from (29), those

equations were written without any intention for linearization, that is, they are presented in a

generalized form. For the quasi-linear algorithms, it is well known [27] that κ2(t)/N0 is the main

part for the “averaging coefficient” of the second element in the first quasi-linear equation of (29),

that is, it is an averaging value for the instantaneous information actualization from the

entering desired signal plus noise. Thus, if one can reduce κ2 through the two-moment

processing, the accuracy of the quasi-linear method will grow and the challenge stated before
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will be almost solved. To achieve the latter, one can take into account that κ2(t) in the stationary

regime is oscillating around its stationary value κ2 tð Þ ¼ limt!∞ κ2 tð Þ which is commonly

assumed as an accuracy measure in the one-moment case.

The value of κ2 tð Þ can be diminished applying the information from κ11(t) also in the stationary

case, that is, κ11 ¼ limt1, t2!∞ κ11 t1; t2ð Þ; then, it is known that bκ2 ¼ κ2 1� κ
2
11

 �
and it is always

less than κ2, if and only if the κ11 ≥ 0; In this way, bκ2 can be used as a new weighting coefficient

in (29). To find κ11(t1,t2) from (27), some cumbersome developments are required which finally

yield to:

∂κ11 t1; t2ð Þ

∂t1∂t2
¼< K1 x1ð ÞK1 x2ð Þ > þ <

x1x2

2
F x; tð Þ > �

κ11 t1; t2ð Þ

2
< F x; tð Þ > (30)

and

κ11 ¼
2 <

x1x2F x;tð Þ
2 þ 2K1 x1ð ÞK1 x2ð Þ >

h i

< F x; tð Þ >
: (31)

First we would like to stress here that, as we are interested in covariance calculation, it is

necessary to preserve the notations x(t1) = x1 and x(t2) = x2. Second, we want to “improve” the

stationary value κ2 evaluated for the one-moment case through its indirect dependence on κ11

as if it was “evaluated” for the two-moment case.

Thus in doing so, the direct calculation of the quasi-linear algorithm for the two-moment case

is bypassed (see (29) and (30)). For applications in real time, the formal calculus is almost

impossible. Instead, we simplified it with a formal “ignorance” of the two-moment features.

There might be for sure a compromise between the complexity and the improvement attempt

for the “classic” EKF.

In order to avoid some additional complexities for the calculation of (31), let us make the

following assumption: introduce the SNR of the filtering in the way: h2 ¼
κ

2

1

N0
<< 1, that is,

weak signal case. In this regard [16, 27], the a priori data are the main influence, that is,

approximately only <K1(x1) K1(x2) > can be applied. Or one can simply apply a Gaussian

approximation for the second equation in (29) for the stationary regime ( _κ2 ffi 0)

2 K1
0
κ1ð Þ þ κ11

h i
κ2

2
þ εþ

1

4
F00 κ1ð Þκ22 ¼ 0: (32)

In the case h2 < 1, it is possible to achieve:

κ2 �
1

2 K0
κ1ð Þ þ κ11

h i , (33)

and if κ11 > 0, and K0(κ1) ≥ 0, κ2 is always reduced compared with the one-moment approach.

Formula (33) can be seen as another illustration about the usefulness of the heuristic
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approximation proposed above. Then, to evaluate the order of the κ11, let us apply for averag-

ing of <K1(x1) K1(x2)> the functional approximation of Wps(x1, x2) in the way:

Wps x1; x2ð Þ ¼
1

2πκ2
exp �

x1 � κ1ð Þ2

2κ2

" #

exp �
x2 � κ1ð Þ2

2κ2

" #

1þ κ11 x1 � κ1ð Þ x2 � κ1ð Þ½ �: (34)

As an approximate result, one can substitute (34) in (33), assume h2 < 1 and see that the

normalized value κ11 has the same order as h2, that is, κ11 � O(h2). This is an important

consideration because usually the pure chaos has a low covariance interval [29] and one can

obtain a very small MSE for two time instants t1 and t2 arbitrarily close. In this sense and fixing

SNR� 0.5 andMSE� 0.1%, an equivalent MSE can be reached using the two-moment approach

but with an SNR threshold 30% lower than for the one-moment case. Let us be emphatic and say

that the approximation κ11 � O(h2) is valid just for h2 < 1, and calculation of bκ2 � κ2 1� κ2
11

 �
has

to be updated instantaneously because h2 is varying in the interval 0 ≤ h2 < 1.

Of course this calculation is quite approximated and true superiority for the two-moment case

of the modified quasi-linear strategy has to be verified by computer experiments. Anyway it is

a strong sign indicating that the use of the two-moment strategy can be very opportunistic if

and only if one can find strategies to reduce the computational complexity, for example, the

generalized extended Kalman filter (GEKF) algorithm.

Finally, let us reiterate that the GEKF is yet a one-moment strategy for quasi-optimum filtering,

but internally makes processing of the statistical features of the chaotic data (input) through

the multimoment (two-moment) apparatus. That is why this modified GEKF improved accu-

racy in comparison with the standard EKF. In the following in order to additionally improve

the accuracy of this one-moment modified EKF, it is convenient to apply the principles of the

theory of so-called “conditionally optimum filtering” proposed in ([16], ch. 9), taking this

generalized EKF as the “tolerance” or “admitted” filter.

4. Conditionally optimum filtering approach

The ideas and methods for conditionally optimum filtering are rather simple and are thor-

oughly described at ([16], ch. 9). So, let us first present the basic idea of this method. In the

general case, the conditional optimum filter for the optimum estimation of the desired signal

x(t) in presence of AWGN n(t) can be presented in the form [16]:

_κ1 ¼ αξ y;κ1; tð Þ þ βη y;κ1; tð Þy tð Þ, (35)

where κ1(t) is a filtered signal; y(t) = x(t) + n(t); n(t) is the AWGN with intensity N0; α, β are

some time-dependent coefficients which have to be found.

The representation (35) is a generalized representation of the filtering algorithms where _κ1 is

the expectation of the filtered signal. It is clear as well [16] that this form is valid also for the

quasi-optimum nonlinear filtering algorithms. In the previous part, a modified EKF algorithm
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was proposed for the two-time-moment case, which shows rather opportunistic improvement

of the filtering accuracy, applying some heuristics related to the simplified implementation of

the two-moment principle of filtering. Sure those simplifications do not allow taking full

advantage of the application of the two-moment principle. Once again, this simplification is

reasonable for diminishing the dimension of the filtering algorithm in order to make it practi-

cal for real-time applications. Therefore, the hope for further improvement of the characteris-

tics of this modified EKF might be based on further optimization in the framework of

conditional optimality [16].

In the theory of conditional optimality, the structure of the filter is already chosen (in our case,

it is the GEKF) and the only chance for further accuracy improvement is to optimize the

coefficients α(t) and β(t) in order to minimize the MSE. The structure which was chosen

initially is a so-called admitted structure which actually belongs to a class of the admitted

filters. The next step is to minimize the MSE. The minimization of the MSE is a strategy in

which the admitted filter makes an optimal transition at the moment “s” (s > t, s ! t) from an

initial stage, at moment “t,” to a new stage at the moment “s” with the minimum MSE. The

algorithm of such kind of filter is “conditionally optimum” according to Ref. [16].

Hereafter we are not going to present all the material related to this approach as it was

comprehensively described at ([16], ch. 9), we will only apply the necessary final formulas

from there. Unfortunately, full use of the abovementioned approach is not possible (as we will

see in the following), and so, we will present some developments that allow to obtain the

coefficients α(t) and β(t) successfully.

4.1. Approach to find unknown coefficients α(t) and β(t)

It is possible to present an admitted structure of the conditionally optimum filter from (29) in

two equivalent forms:

_κ1 ¼ α K1 κ1ð Þ þ
bκ2

2
K1

00

κ1ð Þ

" #

þ β
bκ2

N0
y tð Þ � κ1 tð Þ½ � (36)

_κ1 ¼ α K1 κ1ð Þ þ
bκ2

2
K1

00

κ1ð Þ �
bκ2κ1

N0

" #

þ β
bκ2

N0
y tð Þ, (37)

where, as it was proposed earlier,

bκ2 ¼ κ2 1� κ2
11

 �
: (38)

Then, from (36) and (37), one has

ξ tð Þ ¼ K1 κ1ð Þ þ
bκ2

2
K1

00

κ1ð Þ, η tð Þ ¼
bκ2

N0
y tð Þ � κ1 tð Þ½ � (39)

ξ tð Þ ¼ K1 κ1ð Þ þ
bκ2

2
K1

00

κ1ð Þ �
bκ2κ1

N0
, η tð Þ ¼

bκ2

N0
y tð Þ: (40)

Nonlinear Filtering of Weak Chaotic Signals
http://dx.doi.org/10.5772/intechopen.70717

91



One can see that in this regard, α and β are weighting coefficients of a priori information

related to the desired chaotic signal and a posteriori data. This issue was thoroughly

commented in [27]. For SNR < 1, the weight of ξ(t) obviously prevails, because a posteriori

data are strongly corrupted by the additive noise. Nevertheless, taking into account that bκ2 is

rather small for the modified EKF, in the following, bκ2 (which is actually the MSE) will be

considered as a “small parameter” in all the approximations.

In order to follow all definitions and notations from ([16], ch. 9), one has to use the Ito form in

all the equations:

dy ¼ Xdtþ dW1 ¼ ϕ1 y; x; tð Þdtþ ψ1 y; x; tð ÞdW1

dx ¼ f xð Þdtþ dW2 ¼ ϕ1 x; tð Þdtþ ψ x; tð ÞdW2,
(41)

where {Wi(t)} are independent Wiener processes, i = 1, 2. It is obvious that:

φ1 x; tð Þ ¼ f xð Þ ¼ κ1 xð Þ

φ1 y; x; tð Þ ¼ x

ψ1 y; xð Þ ¼ 1

ψ x; tð Þ ¼ 1

(42)

Then, from ([16], ch. 9)

bxs � bxt ffi κs � κt ¼ αξtΔtþ βηt ϕ1t
Δtþ ϕ1t

ΔW
� 	

: (43)

Unbiased conditions for the optimum estimation from (43) are [16]:

α < ξt > þ < ηtϕ1t
> � < ϕ1 >¼ 0: (44)

Taking ξt and ηt according to its definitions from (40), it is easy to get from (44):

αm1 þ βm2 ¼ m0, (45)

where m0 = <φt>, m1 = <ξt>, m2 = < ηtφ1t>.

Taking into account (42) with conditions bκ2 < 1 and assuming that K1(κ1) ≈ K1´´(κ1) ≈ 01, finally

one gets:

β

α
¼

κ2

< x2 >
: (46)

The next step, as it was proposed in ([16], ch. 9), is focused on checking the correlation

conditions for the error (κs�xs) with the vector [ξΔt, ηΔy] which yields to [16]:

1

This assumption follows from symmetry conditions for f (x).
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β ¼ κ02κ
�1
22 , (47)

where

κ02 ¼< xt � κ1tð Þxt
bκ2

N0
yt > þ < ηt � yt >

bκ2

N0
, κ22 ¼

bκ2

N0

 !2

< y2t � ηt > : (48)

From the second equation in (48), it follows that β ! ∞ which is a clear absurd. So, why this

happened and what is wrong? Is the approach in ([16], ch. 9) wrong? Definitively, no. It is

possible to show that the estimate κ1 is unbiased and decorrelated with both components ξ(t)

and η(t), but for our special case, the condition that κ22 (a matrix in the general case) has to be

invertible is violated. Opposed as it was stated in ([16], ch. 9), the approach is not working.

The solution might be found from direct calculation of (x�κ1) from the SDE of chaos and (29)

and by minimization of <(x-κ1)
2 > by α or β.

4.2. Direct evaluation of the MSE and its minimization

As a first step, let us calculate the difference between the solution of (20) and (39) by applying (46):

x� κ1ð Þ ¼

ðT

0

K1 xð Þ � αK1 κ1ð Þ½ � �
ακ1

bκ2n tð Þ

< x2 > N0

( )

dt: (49)

Let us take the second power of (49) and make a statistical average. One has to notice that the

second power of (49) is a double integral and <n(t1) n(t2)> = N0δ(t2�t1). Then, applying finally

the assumption bκ2 < 1, one can get for the MSE:

MSE ≈ < K2
1 xð Þ > þα2

< K2
1 κ1ð Þ > �2α < K1 xð ÞK1 κ1ð Þ > þ

α2bκ2

< x2 > N0
: (50)

Looking for the minimum of (50) in terms of “α”, one easily finds:

α ¼
< K1 κ1ð ÞK1 xð Þ >

< K2
1 κ1ð Þ > þ

bκ2
<x2>

: (51)

Assuming that still bκ2 is a “small parameter,” it follows that α ≈ 1 and β ffi κ1
<x2> ffi O 1

κ1

� 	
. In this

regard,

MSE �

bκ2

� 	2

< x2 >
: (52)

Comparing Eq. (52) with the MSE of the one-moment filtering which is κ2, one can see that the

conditional optimum filtering might significantly improve the MSE with the same SNR or

significantly diminish the SNR threshold for a fixed MSE.
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The authors consider that the two-moment filtering of chaos together with the conditionally opti-

mum principle is a very opportunistic approach to significantly improve theMSE for chaos filtering.
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