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Abstract

This chapter deals with launcher aerodynamic design activities at phase-A level. The goal
is to address the preliminary aerodynamic database of a typical launch vehicle configura-
tion as input for launcher performances evaluations, control, sizing, and staging design
activities. In this framework, different design approaches relying on both engineering and
numerical methods are considered. Indeed, engineering-based aerodynamic analyses by
means of a three-dimensional panel methods code, based on local surface inclination
theory, were performed. Then, accuracy of design analysis increased using steady-state
computational fluid dynamics with both Euler and Navier-Stokes approximations.

Keywords: launcher vehicles, aerodynamic design, subsonic, transonic, supersonic and
hypersonic speed flows, computational fluid dynamics, panel methods aerodynamics

1. Introduction

During the design phase of launchers, the aerodynamic characterization represents a funda-

mental contribution. Usually, it is accomplished by means a hybrid approach encompassing

wind tunnel testing (WTT) and computational fluid dynamics (CFD) investigations [1]. This

combined design approach (i.e., WTT and CFD analyses) is extremely reliable in providing

high quality data as input for launchers’ sizing, performance evaluations, control, and staging

dynamics [2]. Indeed, launcher aerodynamics focuses on the assessment of the pressure and

skin friction loads the atmosphere determines over the vehicle surface [3]. As well known,

these loads result in a global aerodynamic force that acts at the aeroshape center of pressure

(CoP) which generally does not coincide with the vehicle center of gravity (CoG) [4]. As a

result, the related aerodynamic moment acting at the CoG can lead to a stable or unstable

behavior of the launcher to account for in the control software [5]. Moreover, the analysis of the

flowfield past the launcher is also fundamental to address the effects of aeroshape’s structures
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and protrusions. Indeed, aeroshell steps and gaps determine local pressure (and convective

heat flux) overshoots all along the ascent trajectory [6]. This assessment is fundamental for

launcher sizing and thermal protection design activities [7].

With this in mind, the present research effort describes typical aerodynamic analyses

performed at Phase-A design level [8]. Indeed, engineering-based analyses are carried out by

exploiting local surface inclinations methods. After that, fully three-dimensional steady-state

CFD analyses have been addressed to feed launcher aerodynamic design in the range between

Mach 0.5 and 5.

Nevertheless, this chapter opens focusing attention on the assessment of the reliability of the

present numerical design approach. Indeed, a CFD validation study was undertaken in order

to highlight the capability of this CFD approach in assessing some critical aerothermal design

issues, namely shock-shock interaction (SSI) and shock wave boundary layer interaction

(SWIBLI), of vehicle aeroshapes flying at hypersonic speed, like launchers.

Finally, note that numerical flowfield analyses are performed with FLUENT code and perfect

gas flow model.

2. CFD validation study

In the last years, CFD has played an important role in hypersonics being able to address

particular design issues, such as the well-known SSI and SWIBLI [4]. These flowfield features

occur whenever different shocks interact each other or with the boundary layer when a shock

impinges on a wall, respectively. For launchers, SSI and SWIBLI phenomena typically take

place in the flowfield region within launcher main body and boosters, as shown in the sche-

matics of Figure 1.

In this figure, the fairings bow shock meets that of booster, thus originating a SSI. This

interaction results in more or less complex shock patterns including shear-layers or jets, which

Figure 1. Example of SSI and SWBLI for launchers.
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can impinge on the launcher aeroshape and cause local pressure and heat flux overshoots, well

in excess of those occurring at stagnation points.

On the other hand, SWBLI occurs, for instance, when the shock resulted from the SSI meets the

launcher wall, thus promoting boundary layer separation and transition.

As a result, SSI and SWBLI demand accurate prediction for a reliable and affordable aero-

thermal design of launcher vehicles.

In this framework, the results of the computational analysis of the flowfield past a double

wedge test bed are reported and discussed in detail. This configuration, in fact, is a benchmark

as it presents unique flow patterns typical of SSI and SWIBLI. In particular, the experiment of

Swantek and Austin was selected and numerically rebuilt [9]. The test bed geometry is shown

in Figure 2. It is a double wedge with θ1 = 30� and θ2 = 55� where the lengths of the first and

second face are L1 = 50.8 mm and L2 = 25.4 mm, respectively.

Along with the center of the model 19 coaxial thermocouple gauges at 16 different streamwise

locations are mounted. Therefore, several experimental data exist for numerical-to-experimen-

tal comparisons. The test campaign was performed by using high enthalpy air at the free-

stream conditions summarized in Table 1.

The numerical rebuilding was carried out by means of a steady-state two-dimensional

Reynolds-averaged Navier-Stokes (RANS) simulation performed with the commercial CFD

tool Fluent. Air was modeled with a five species chemistry mixture (N2, N, O2, O, NO) in

Figure 2. Test bed configuration with quotes.

Parameter M7_8

Stagnation enthalpy (MJ/kg) 8.0

Mach 7.14

Static temperature (K) 710

Static pressure (kPa) 0.780

Velocity (m/s) 3812

Density (kg/m3) 0.0038

Unit Reynolds number (106/m) 0.435

Table 1. Free-stream conditions of experiment.

Launcher Aerodynamics: A Suitable Investigation Approach at Phase-A Design Level
http://dx.doi.org/10.5772/intechopen.70757

93



thermo-chemical non-equilibrium conditions. Turbulence has been taken into account with the

k�ω SST model. The wall was assumed isothermal (Tw = 298 K) and noncatalytic; while, in

order to take into account the effects of the boundary layer transition, a trade-off analysis was

undertaken (and not shown here for simplicity) in order to determine a proper flow transition

location (xtr) to fix along with the first ramp. Results highlighted that xtr = 58% L1 is a viable

option. Further details about the numerical setting can be found in Ref. [10].

A structured multiblock mesh of 433 � 707 points was considered to solve for complex flow

structure past the test bed. In particular, a great deal of care was taken in grid development. In

fact, the distribution of grid points has been dictated by the level of resolution desired in

various areas of the computational domain such as SSI, triple points, shear layer and

recirculation region. An example of the computational grid is provided in Figure 3.

As far as numerical results are concerned, Figure 4 shows the qualitative comparison between

experimental data (i.e., Schlieren image) and the Mach isolines.

As one can see, CFD results compare rather well with the Schlieren. Indeed, the numerical

flowfield presents the same structure as pointed out by the experimental data, as the triple

point, due to a strong shock that originates ahead the recirculation bubble, the reattachment

shock and the shear layer.

Results comparison in terms of pressure and heat flux distribution is presented in Figure 5,

where measures available for the heat flux are also provided.

As shown, the computed heat transfer is within the experimental uncertainty upstream of the

separation point at xtr = 58% L1 (i.e., x = 27 mm); while rather good agreement with experiment

is observed over the second wall of the double wedge, where the heat flux and pressure

overshoots take place due to the shear layer impingement.

Figure 3. An example of the computational grid.
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In particular, Figure 5 points out that CFD predicts well the recirculation bubble and the peak

heat transfer location, but the numerical value is about 43% of that measured during the

experiment [10].

Regarding pressure distribution, it is noticeable the pressure increase behind the separation

shock on the first ramp. Then, a pressure overshoot, located just downstream of the reattachment

point, is predicted on the second ramp. This is typical for the Edney type IV interaction. After the

peak, the pressure suddenly drops toward the asymptotic pressure due to the strong expansion

at the end of ramp [10].

3. Launcher aerodynamic appraisal

The launcher vehicle features a hummer head cylinder, as main body, with two boosters, see

Figure 6. Non-dimensional aeroshape sizes are also reported in figure, being L the launcher

Figure 5. Heat flux and pressure profiles. Comparisons with experimental data.

Figure 4. Comparison between Schlieren image and Mach isolines with streamtraces.
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height. As shown, the aeroshape under investigation also features a central core stage with a

remarkable boat-tail configuration, which ends in correspondence of booster stage. The fairing

diameter is 16% launcher height, while that of booster is equal to 0.076 L. The booster length is

40% of whole launcher’s height [11].

Aerodynamic data for launcher are provided in the Body Reference Frame (BRF), as illustrated

in Figure 7 [11]. In this figure, aerodynamic force and moment coefficients are also provided,

with sign convention according to the ISO norm. 1151.

The global aerodynamic force F
!

and momentM
!

acting on the launcher are expressed in BRF as

follows:

F
!

¼ �FAbi þ FYbj � FNbk
� �

¼ Sref q∞ �CA
bi þ CY

bj � CN
bk

� �
(1)

M
!

¼ Ml
bi þMm

bj þMn
bk

� �
¼ Sref q∞Lref Cl

bi þ Cm
bj þ Cn

bk
� �

(2)

Figure 6. The launcher configuration.

Figure 7. The body reference frame according to the ISO 1151.
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where CA is the axial force coefficient, CY the transverse force coefficient, CN the normal force

coefficient, Cl = CMx the rolling moment coefficient, Cm = CMy the pitching moment coefficient,

Cn = CMz the yawing moment coefficient, bi;bj;bk
� �

are the reference unit vectors, Sref the refer-

ence surface, Lref the reference length (see Figure 6), and q
∞
the free-stream dynamic pressure.

The definition of force and moment coefficients is:

Ci ¼
Fi

Sref q∞
i ¼ A,Y,N (3)

Ci ¼
Mi

Sref q∞Lref
i ¼ l, m, n (4)

where ρ
∞

is the atmospheric density and V
∞

the speed relative to air, and the reference

quantities (see Figure 6) are:

Lref ¼ 0:16L (5)

Sref ¼
πL2ref

4
(6)

The present preliminary assessment, however, focuses on the longitudinal aerodynamic only,

i.e., CA, CN and Cm are addressed. Aerodynamic coefficients are important at system level for

the assessment of launcher general loading determinations, performances and, as well as,

control. For instance, performances studies use the axial force coefficient CA since this aerody-

namic force opposes to the vehicle movement. Further, the launcher control needs the evalua-

tion of the aerodynamic moment at the CoG since the control software changes the rocket’s

thrust direction in order to null global incidence of the vehicle, except during maneuvers.

Anyway, considering that propellants are constantly consumed along the ascent flight, the

CoG location is continuously changing too. Therefore, it is preferred to provide aerodynamic

moments at a conventional location, namely moment reference center (MRC), see Figure 7. The

relationship for the pitching moment coefficient evaluation, passing from MRC to CoG, reads:

Cmð ÞCoG ¼ Cmð ÞMRC þ CN
∆x

Lref
� CA

∆z

Lref
(7)

where ∆x = xCoG� xMRC and ∆z = zCoG� zMRC are evaluated in the Layout Reference Frame

(LRF), as shown in Figure 8.

The flow regime investigated for launcher aerodynamic appraisal during ascent encompasses

subsonic, transonic-supersonic and hypersonic regimes.

In the present research effort, the range 0.5 ≤ M∞ ≤ 5 is investigated. Indeed, launcher aerody-

namics has been addressed considering four Mach numbers, namely 0.5, 1.1, 2.5, and 5, at three

angle of attacks, i.e., α = 0, 5, and 7�, as summarized by the CFD test matrix in Table 2. Therefore,

Eulerian and Navier-Stokes 3D CFD computations have been carried out on several unstruc-

tured hybrid meshes and in motor-off (i.e., without the effect of rocket plume) conditions.
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Engineering-based aerodynamic analyses were also performed by using a 3D Panel Method

(PM) code, namely Surface Impact Method (SIM), developed by CIRA [12]. This tool is able to

accomplish the supersonic and hypersonic aerodynamic and aerothermodynamic analyses of

complex vehicles configuration by using simplified approaches as local surface inclination

methods and approximate boundary-layer methods, respectively. Surface impact methods

Figure 8. The layout reference frame.

α (�) Mach

0.5 1.1 2.5 5

0 E E E E

5 E E E, NS E, NS

7 E E E E

E: Eulerian CFD; NS: Navier-Stokes CFD.

Table 2. The CFD test matrix.
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typical of Hypersonics, are Newtonian, Modified Newtonian, Tangent cone and Tangent

Wedge theories [4].

A typical mesh surface that has been used for the engineering-level computations is shown in

Figure 9. Some engineering-based aerodynamic results for axial and normal force coefficient

are provided in both Figures 17 and 19, respectively.

On the other hand, the mesh domains for subsonic and sup-hypersonic speed flow simulations

are shown in Figures 10 and 11, respectively [13].

As on can see, a square brick wide 20 body length upstream, downstream, upward and

downward the launcher is considered to assure farfield unperturbed free-stream flow condi-

tions at subsonic speed. Indeed, in this flow regime (i.e., elliptic flow), disturbances due to the

Figure 9. Panel code mesh for sup-hypersonic aerodynamics.

Figure 10. Overview of the hybrid mesh domain for subsonic speed.
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body influence flow everywhere since they are propagated upstream via molecular collisions

at approximately the speed of sound. Therefore, the computational domain must be wide

enough to avoid interferences between flowfield and farfield boundary conditions.

At supersonic speed, however, a shock wave appears at launcher leading edge (i.e., hyperbolic

flowfield) because of, when flow moves faster than the speed of sound, disturbances cannot

work their way upstream but coalesce forming a standing wave, namely bow shock. As a

result, the computational domain is quite narrow, as shown in Figure 11.

CFD results of the preliminary assessment of launcher aerodynamics are summarized from

Figures 12–21. For instance, Figure 12 shows the pressure distribution expected on the surface

of the launcher flying at M
∞
= 0.5 and α = 5�. Flow compression that takes place for this flight

conditions at the stagnation regions of launcher fairings and of boosters’ conical forebody is

clearly shown. A recompression zone at the beginning of the cylindrical trunk, just after the

fairings, and on that close to the boosters’ forebody can be noted as well.

Results for numerical investigations at higher Mach numbers are provided in Figure 13. Here,

an overview of pressure coefficient (Cp) distribution on launcher symmetry plane and surface

is provided for M
∞
= 2.5 and α = 5�.

Flow streamtraces on the symmetry plane are reported as well [13]. This CFD computation is

carried out with SST k-ω turbulence flow model and for cold wall boundary condition (i.e.,

Tw = 300 K).

Results in Figure 13 highlight a complex flowfield past the launcher due to the flow separation

bubble at fairing boat-tail and the effect of fuselage/booster SSI and SWIBLI. For instance, after

compression at conical flare of main fairings the flow undergoes to expansions that align it along

with the constant cross section part of hammerhead. Hence, at the end of fairings another strong

expansion takes place to accommodate the flow to the variation in launcher cross section (i.e.,

narrow cross section due to fairing boat-tail). Then, a shock wave arises at the beginning of the

cylindrical trunk, just after the fairings, to redirect the flow along with the launcher wall.

Flow complexity increases further in the region close to the boosters leading edges, as also shown

in Figure 14. This figure provides an overview of pressure coefficient distribution on launcher

Figure 11. Overview of a hybrid mesh domain for sup-hypersonic CFD simulations.
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Figure 13. Overview of Cp distribution on symmetry plane and launcher at M
∞
= 2.5 and α = 5�.

Figure 12. Pressure coefficient at M
∞
= 0.5 and α = 5�.
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aeroshape with skin friction lines. As one can see, in the region close to the boosters’ leading

edges, complex SSI and SWIBLI phenomena take place. They result in higher thermo-mechanical

loads (i.e., local pressure and thermal overshoots) on the launcher wall that must be carefully

addressed in the vehicle design [13].

The effect of SSI between launcher and booster at M
∞
= 5 and α = 0� flight conditions is clearly

highlighted by the pressure overshoots shown at about x = 26 m in Figure 15. As one can see,

also at those flight conditions complex flowfield interaction phenomena are expected.

Figure 14. Contours of Cp with skin friction lines on launcher aeroshape at M
∞
= 2.5 and α = 5�.

Figure 15. Profiles of Cp on launcher and booster centerlines at M
∞
= 5 and α = 0�.
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Figure 16. Axial force coefficient versus Mach at different AoA, namely α = 0, 5, and 7�.

Figure 17. CA versus AoA at M
∞
= 2.5 and 5. Comparison between PM and CFD results.

Figure 18. Normal force coefficient versus Mach at different AoA, namely α = 0, 5, and 7�.
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As far as aerodynamic coefficients are concerned, results for launcher axial force, normal force

and pitching moment coefficients are summarized from Figures 16–21. For instance, Figure 16

shows the axial force coefficient versus Mach number at different AoA, namely α = 0, 5, and 7�.

As one can see, CA does not significantly change passing from 0 to 7� AoA at each considered

Mach number.

On the contrary, the effect of flow compressibility is remarkable, as expected. Indeed, the

strong increase to which undergoes the axial aerodynamic force, when M
∞
becomes transonic,

is due to the wave drag contribution, as expected. Nevertheless, this contribution tends to be

less strong as Mach number goes toward hypersonic speed conditions considering that the

shock becomes weak due to the streamlined vehicle aeroshape (i.e., high inclined shock to

assure a narrow shock layer).

The variation of CA versus the angle of attack, α, at M
∞
= 2.5 and 5 is provided in Figure 17,

where a comparison between SIM and CFD results is also available. As shown, engineering

and numerical results compare rather well, thus confirming the reliability of the panel methods

outcomes [14].

Regarding normal force coefficient results, Figure 18 highlights that, for each Mach number,

CN features a quite linear slope as α increases up to 7� AoA. In addition, in this case,

Figure 19. CN versus AoA at M
∞
= 2.5 and 5. Comparison between PM and CFD results.

Figure 20. Pitching moment coefficient versus Mach at different AoA, namely α = 0, 5, and 7�.
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compressibility effect influences launcher normal force by means of different curve slopes for

each Mach number. Results comparison between SIM and CFD is provided in Figure 19 at

M
∞
= 2.5 and 5.

As one can see, the reliability of the panel methods outcomes is still confirmed.

The vehicle pitching moment coefficient features a behavior quite close to that described for

the CN, but with a strong pitch down detected moving toward M
∞
= 5.

Note that both CN and Cm at α = 0� are null due to the symmetric launcher aeroshape.

Finally, the axial coefficient breakdownatM
∞
= 5 andα = 0� is shown in Figure 21. Here the lumped

contributions of launcher fairings, boat-tail, core, cylinder, and base, as well as of booster fuse and

base are recognized. As one can see, launcher fairings contribute to about 68% of total drag

coefficient; while this percentage for booster fuselage and base is close to 21 and 5%, respectively.

4. Conclusion

In this research effort launcher aerodynamic design activities at phase-A level are described.

The goal is to address the preliminary aerodynamic database of a typical launch vehicle

configuration as input for performances evaluations as well as launcher control, sizing, and

Figure 21. CA breakdown at M
∞
= 5 and α = 0�.
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staging dynamics. To this end, both reliable engineering-based and steady-state computational

fluid dynamics, with both Euler and Navier-Stokes approximations, are carried out at several

Mach numbers, vehicle attitude conditions, and in motor-off conditions. In particular, launcher

aerodynamic performance is provided in terms of axial, normal and pitching moment coeffi-

cients. Numerical results point out that the axial force coefficient does not significantly change

passing from 0 to 7� angle of attack at each considered Mach number; while the effect of flow

compressibility is remarkable. Regarding normal force coefficient, results highlight that, for

each Mach number, it features a quite linear slope as the angle of attack increases up to 7�.

Finally, the behavior of the vehicle pitching moment coefficient is quite close to that described

for the normal force coefficient, but a strong pitch down is detected when launcher speed

becomes hypersonic.
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