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Abstract

Renewable energy generation has been constantly increasing during recent years.
Wind and solar have had the most significant growths among all renewable resources.
Wind and solar resources are highly intermittent and dependent on meteorological
parameters and climatic conditions. The power output of wind turbines is subject to
various meteorological parameters, such as wind speed, wind direction, air tempera-
ture, relative humidity, etc., among which the wind speed is the most direct and
influential factor in wind power generation. Solar photovoltaic (PV) power is a func-
tion of solar radiation. Wind speed and solar radiation time series data exhibit unique
features which complicate their prediction. This makes wind and solar power fore-
casting challenging. Accurate wind and solar forecasting enhances the value of renew-
able energy by improving the reliability and economic feasibility of these resources. It
also supports integrating solar and wind power into electric grids by reducing the
integration and operation costs associated with these intermittent generation sources.
This chapter provides an overview of the time series methods that can be used for
more accurate wind and solar forecasting.

Keywords: forecasting, renewable energy, solar, time series, wind

1. Introduction

Power generation forecasting is the fundamental basis in managing existing and newly

constructed power systems. Without having accurate predictions for the generated power,

serious implications such as inappropriate operational practices and inadequate energy trans-

actions are inevitable. High penetrations of intermittent renewable energy sources such as

wind and solar significantly increase uncertainties of power systems which in turn, complicate

the system operation and planning. Accurate forecasting of these intermittent energy sources

provides a valuable tool to ease the complication and enable independent system operators

(ISOSs) to more efficiently and reliably run power systems.

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



There are three major methods for wind and solar forecasting; classical statistical techniques,

computational intelligent methods, and hybrid algorithms. Each category includes several

methods.

Time series methods are one of the most commonly used statistical techniques for forecasting.

Time series can be defined as “the evolution of a set of observations sampled at regular

intervals along time. The specificity of time series models, compared to other statistic methods,

is that it introduces ‘time’ as one of its explicative variables” [1]. Time series develop mathe-

matical models that can forecast future observations on the basis of available data. Section

below provides definitions and explanations for time series methods commonly in use for

forecasting.

2. Time series methods

This section provides an overview of the most commonly used time series methods for solar

and wind forecasting. A brief description is provided for each method along with its mathe-

matical representation.

2.1. Autoregressive (AR)

The autoregressive (AR) model presents a process whose current value can be represented as a

linear combination of the past values and a signal noise ωt. The ARmodel of orderm, AR(m), is

described by [2]:

~xt ¼
Xm

i¼1

Φi xt�i þ ωt ¼ Φ1 xt�1 þ Φ2 xt�2 þ…þ Φm xt�m þ ωt (1)

where xt is the time series values, ωt is the noise, Φ = (Φ1, Φ2, …, Φm) is the vector of model

coefficients and m is a positive integer.

2.2. Moving average (MA)

Unlike the AR model that uses a weighted sum of past values (~xt�i) to provide a time-series

representation, the moving average (MA) model combines n past noise values (ωt, ωt� 1,ωt� 2,

ωt� n) to develop a time-series process. The MA model of order n, MA(n), is describes as, is

describes as [3]:

~xt ¼
Xn

j¼0

θj ωt�j ¼ ωt þ θ1 ωt�1 þ θ2 ωt�2 þ…þ θn ωt�n (2)

where θ = (θ1,θ2, …,θn) is the vector of model coefficients and θ0 = 1.
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2.3. Autoregressive moving average (ARMA)

The autoregressive moving average (ARMA) model is developed by combining AR and MA

terms to provide a parsimonious parametrization for a process. The ARMA model of orders

m and n, ARMA(m, n) is given by [3]:

~xt ¼
Xm

i¼1

Φi xt�i þ

Xn

j¼0

θj ωt�j (3)

where Φi and θj are the autoregressive and moving average coefficients of the ARMA model.

2.4. Autoregressive moving average model with exogenous variables (ARMAX)

The auto regressive moving average model with exogenous variables (ARMAX) provides a

multivariate time-series representation to enhance the accuracy of the univariate ARMAmodel

by including relevant information in addition to the time-series under consideration. For

example, climate information such as cloud cover, humidity, wind speed and direction can be

included as exogenous variables in an ARMA model to develop an ARMAX for more accurate

forecasting of solar radiation time series. The ARMAX model of orders m, n and p, ARMAX

(m, n, p), is defined as [3]:

~xt ¼
Xm

i¼1

Φi xt�i þ

Xn

j¼0

θj ωt�j þ

Xp

k¼1

λk et�k (4)

where Φi, θj and λk are the autoregressive, moving average and exogenous coefficients of the

ARMAX model, and et is the exogenous input term.

2.5. Autoregressive integrated moving average (ARIMA)

The autoregressive integrated moving average (ARIMA) model is used for non-stationary time

series. Despite representing differences in local trend or level, different sections of non-

stationary processes exhibit certain levels of similarity. A stationary ARMA (m, n) process with

the dth difference of the time-series develops an ARIMA (m, d, n) model. The ARIMA (m, d, n)

model is represented by [4]:

~xt ¼
Xm

i¼1

Φi S
dxt�i þ

Xn

j¼0

θj ωt�j (5)

where S = 1� q�1 and Φm(q) is a stationary and invertible AR(m) operator; xt, ωt,Φi and θj are

the observed time series values, error, AR and MA parameters, respectively; d is the number of

non-seasonal differences; m is the number of autoregressive terms, and n is the number of

lagged forecast errors.
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2.6. Autoregressive fractionally integrated moving average (ARFIMA)

The autoregressive fractionally integrated moving average (ARFIMA) model is used for long-

memory forecasting. ARFIMA generalizes ARIMA by allowing the differencing to take frac-

tional values. An ARFIMA model is given by [5]:

1�
X

m

i¼1

Φi L
i

 !

1� Lð Þd~xt ¼ 1þ
X

n

j¼1

θj L
j

0

@

1

A ωt (6)

where powers of L indicate a corresponding number of shifts backward in the time series, and

(1� L)d is the fractional differencing operator.

2.7. Autoregressive integrated moving average with exogenous variables (ARIMAX)

The autoregressive integrated moving average with exogenous variables (ARIMAX) includes

the previous values of an exogenous time-series in the ARIMA to enhance its performance and

accuracy. It is more applicable to time-series with sudden changes in trends. An ARIMA

(m, d, n) process including the past p values of an exogenous variable et develops an ARIMAX

process of order (m, d, n, p). The ARIMAX (m, d, n, p) model is represented by [3]:

~xt ¼
X

m

i¼1

ΦiS
dxt�i þ

X

n

j¼0

θj ωt�j þ
X

p

k¼1

λk et�k (7)

where ωt is the white noise. Φi, θj and λk are the coefficients of the autoregressive, moving

average and exogenous inputs, respectively.

2.8. Vector autoregressive (VAR)

The vector autoregressive (VAR) model characterizes linear dependences between two or more

time-series. VAR model uses multiple variables to generalize the univariate autoregressive

model (AR model). A k-dimensional VAR model of order L is given by [6].

~xt ¼ vþ
X

L

i¼1

Ai xt�i þ ωt ¼ vþ A1 xt�1 þ…þ AL xt�L þ ωt (8)

where xt and v are k � 1 vectors of variables and constants, respectively. L is the maximum lag

in the VAR model, Ai is a k � k matrix of lag order parameters, and ωt = (ω1t, …,ωkt) is the

vector of white noise [6, 7].

2.9. Autoregressive conditional heteroscedasticity (ARCH)—generalized ARCH (GARCH)

The autoregressive conditional heteroscedasticity (ARCH) is used for time series with specific

variances for the error terms [7].
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Estimated values are calculated using the following equations [8]:

xt ¼ εt σt (9a)

σt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a0 þ
X

q

i¼1

ai x
2
t�i

v

u

u

t (9b)

where xt is the observed time series values; εt is the error; σt is the conditional standard

deviation; and a0 is the constant added to the model.

The generalized ARCH (GARCH) model estimates the values by:

xt ¼ εt σt (10a)

σt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a0 þ
X

p

i¼1

ai x
2
t�i þ

X

q

i¼1

βj σ
2
t�i

v

u

u

t (10b)

By setting p = 0, the GARCH model reduces to an ARCH process with parameter q.

3. Performance metrics

The performance of the forecast methods is measured by various metrics related to the forecast

error. Higher values of errors correspond to less forecast accuracies. This section provides the

definitions and equations for performance metrics which are commonly used to calculate the

forecast error. Note that x represents the observed value, ~x is the predicted value (forecast) and

n is the total number of samples.

3.1. MSE

Mean square error (MSE) is calculated by:

MSE ¼
1

n

X

n

i¼1

~xi � xi
� �2

(11)

3.2. NMSE

Normalized mean square error (NMSE) is calculated by normalizing the MSE as:

NMSE ¼

n
P

n

i¼1

~xi � xi
� �2

P

n

i¼1

xi
P

n

i¼1

~xi

(12)

3.3. RMSE

Root mean square error is given by calculating the square root of the MSE as:
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RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n

X

n

i¼1

~x
i
� xi

� �2

s

(13)

3.4. NRMSE

Normalized root mean square error (NRMSE) is calculated by normalizing the RMSE as:

NRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n

P

n

i¼1

~x
i
� xi

� �2

s

1
n

P

n

i¼1

xi

(14)

3.5. MAE

Mean absolute error is calculated by:

MAE ¼
1

n

X

n

i¼1

~x
i
� xi

�

�

�

� (15)

3.6. NMAE

Normalized mean absolute error (NMAE) is calculated by normalizing the MAE as:

NMAE ¼
1

n

X

n

i¼1

~x
i
� xi

�

�

�

�

max xið Þ
(16)

3.7. MRE

Mean relative error (MRE) is calculated by:

MRE ¼
1

n

X

n

i¼1

~x
i
� xi

�

�

�

�

xi
(17)

3.8. MBE

Mean bias error (MBE) is calculated by:

MBE ¼
1

n

X

n

i¼1

~x
i
� xi

� �

(18)

3.9. MAPE

Mean absolute percentage error is calculated by:
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MAPE ¼
1

n

X

n

i¼1

~x
i
� xi

xi

�

�

�

�

�

�

�

�

� 100% (19)

3.10. MASE

Mean absolute scaled error is calculated by:

MASE ¼

P

n

i¼1

~x
i
� xi

�

�

�

�

n

n�1

P

n

i¼2

xi � xi�1j j

(20)

3.11. MSPE

Mean square percentage error is calculated by:

MSPE ¼
1

n

X

n

i¼1

~x
i
� xi

xi

� �2

� 100% (21)

4. Time series methods for solar energy/wind power forecasting

Time series methods have been extensively used to forecast solar radiation/power and wind

speed/power. Typically, solar and wind data exhibit features such as non-linearity and non-

stationarity which cannot be captured by most of the time series methods. To address this

limitation, these methods are used in combination with other computational intelligent or data

processing methods to take advantage of their capabilities to better characterize wind and

solar data for more accurate forecasting. These combinations are referred to as hybrid methods

which are proven effective for renewables forecasting.

4.1. Time series methods for solar energy forecasting

This section provides a review of the articles that use time series methods individually or in

hybrid algorithms for solar radiation/power forecasting. The literature review provides a sum-

mary of the solar-related variable that is predicted, the horizon for which the variable is

predicted, the performance metrics in use to calculate the forecast error, the time series methods

and data in use, and the research findings of each article. Table 1 provides the summary.

4.2. Time series methods for wind power forecasting

This section provides a review of the articles that use time series methods individually or in

hybrid algorithms for wind speed/power forecasting. The literature review provides a sum-

mary of the wind variable that is predicted, the horizon for which the variable is predicted, the

performance metrics in use to calculate the forecast error, the time series methods and data in

use, and the research findings of each article. Table 2 provides the summary.
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References Forecast

variable

Forecast

horizon

Error

metric

Time series

method

Data Finding

[9] 5, 15, 30, and

60 min

averaged

global

horizontal

irradiance

(GHI)

5 min to

several

hours

MAPE Regressions in

logs, ARIMA, and

hybrid (ARIMA

and ANN)

4 years of hourly GHI

data for three locations

in USA

ARIMA can obtain

better results if used in

logs with time varying

coefficients

[10] Daily GHI 1 day RMSE,

NRMSE,

MAE,

and MBE

AR, ARMA 19 years of daily GHI

from the metrological

station of Ajaccio,

France

AR and ANN models

perform better than

other prediction

methods (ARMA,

k-Nearest Neighbors,

Markov Chains, etc.), if

the time-series data is

not pre-processed

[11] Hourly GHI 1 h MBE and

RMSE

ARIMA Meteorological data

including GHI, diffuse

horizontal irradiance

(DHI), direct normal

irradiance (DNI) and

cloud cover from two

weather stations in

USA (Miami and

Orlando)

Cloud cover

information yields to

more accurate

forecasting

[12] Half daily

values of

GHI

Up to

3 days

NRMSE AR Hourly GHI

measurements from

stations of the Spanish

National Radiometric

Network

Neural network models

obtain better results for

almost all stations

except for Lerida

station where the

clearness index-based

models outperform

[13] Hourly solar

irradiance

1 h RMSE,

and

NRMSE

Naive, ARMA 144 months of hourly

solar irradiance of the

Paris suburb of

Alfortville

ARMA model has

competitive results as

compared to similarity

method (SIM), support

vector machine (SVM)

and neural network

(NN)

[14] Hourly solar

radiation

1 h RMSE,

and

NRMSE

Hybrid (ARMA

and time delay

neural network

(TDNN))

10 months of solar

radiation data from the

observation station in

Nanyang

Technological

University

The combination of the

ARMA and TDNN

provides more accurate

results than each

individual forecaster

[15] Daily

average of

solar

irradiance

1–15 h MAPE ARIMA Solar irradiance data

from a 4.0 kW PV panel

in the city of Awali,

Kingdom of Bahrain

ARIMA models are

proved to effectively

capture the auto-

correlative structure of

the solar irradiance

[16] Daily solar

irradiance

1 day NA ARIMA Solar irradiance and

surface air temperature

Various climate time

series are dependent on
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References Forecast

variable

Forecast

horizon

Error

metric

Time series

method

Data Finding

and surface

air

temperature

data from 10

meteorological stations

in Europe and 4

stations in Asia

long-range variability

of solar irradiance

[17] Hourly solar

power from

PV systems

1 h up to

36 h

RMSE AR, AR with

exogenous input

(ARX), RX

(regressive model

with no

endogenous

variables)

1 year of solar power

observations from 21

PV systems in

Denmark

ARX model with both

solar power

observations and

numerical weather

predictions (NWPs) as

the input outperforms

the AR model for

forecast horizons

longer than 2 h ahead

[18] Hourly GHI,

DHI and

DNI

1 h RMSE,

and MBE

AR 5 min GHI data from

Jeddah, Saudi Arabia

for a five-year interval

Using sunshine

duration, relative

humidity and air

temperature as the

inputs result in the

most accurate forecast

by the developed

adaptive model

[19] Monthly

average

solar

radiation

1 month RMSE Linear regression

(LR)

Daily GHI and

meteorological data in

Darwin, Australia from

2000 to 2011

LR obtains the best

predictions compared

to Angstrom-Prescott-

Page (APP) and ANN

models

[20] Hourly PV

power

1 and 2 h MAE,

MBE,

RMSE,

and

NRMSE

ARIMA Hourly average power

of a 1 MW PV power

plant located in

Merced, California

collected between

November 2009 and

August 2011

ANN-based forecasting

models including the

ANN and GA-

optimized ANN obtain

better predictions than

Persistent, ARIMA and

k-NN models

[21] Hourly GHI 1 h NRMSE Hybrid (ARMA

and ANN)

6 years of hourly solar

radiation and

meteorological data

from five locations in

the Mediterranean area

in France

Combining ARMA and

ANN enhances the

forecast accuracy

[22] Hourly solar

irradiation

24 h NRMSE ARMA 2 years of

meteorological data

from Ajaccio, France

ANN outperforms the

ARMA by 1.3 points

reduction in the error

estimate

[23] Daily GHI 1 day RMSE,

NRMSE,

MAE,

and MBE

AR, ARIMA 30 min global solar

radiation data in

Corsica Island, France

from January 1998 to

December 2007

An ANN with

exogenous and

endogenous data

outperforms univariate

forecasters such as

ARMA models

[24] Solar

irradiance

12 h Hybrid (ARIMA-

Back Propagation)

Hourly solar irradiance

observations from
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References Forecast

variable

Forecast

horizon

Error

metric

Time series

method

Data Finding

RMSE,

and

MASE

National Solar

Radiation Data Base

(NSRDB) site between

2008 and 2009

The hybrid ARIMA-BP

does not outperform

ARIMA

[25] Solar power 1 min MAE,

MSE,

and

MAXE

Hybrid (Wavelet,

ARMA, and

Nonlinear

Autoregressive

model with

exogenous

variables (NARX))

1 min solar power data

from the solar panel at

UCLA for nearly

200,000 observations

Capability of the

ARMA process to

model the linear

features of the data and

the NARX advantage

to compensate the error

of Wavelet-ARMA

enhances the forecast

accuracy of the hybrid

Wavelet-ARMA-NARX

method

[26] Solar

generation

1–5 h MAE,

and MSE

ARMA 14 years of hourly solar

radiation data from

SolarAnywhere

ARMA outperforms

the persistence model

for short and medium

term solar predictions

[27] Hourly solar

irradiance

1 h and

3 h

RMAE Hybrid (non-linear

regression and PR)

Solar radiation data

from sensors, and

National Digital

Forecast Database, as

well as the

meteorological

measurements from

local airports in Los

Angeles region

The hybrid method

excels the benchmark

methods including the

regression, ARIMA and

ANN by 40% and

33.33% for 1-h and 3-h

ahead, respectively

Table 1. Summary of the articles with time series methods (individual or hybrid) for solar radiation/power forecasting.

References Forecast

variable

Forecast

horizon

Error

metric

Time series

method

Data Finding

[28] Hourly

average

wind

Speed

1 h NA ARMA 2 years of wind speed

data from Quetta in

Pakistan

ARMA is more

appropriate for

prediction intervals

and probability

forecasts

[29] Wind

power

density

1–

10 days

MAE, and

RMSE

AR-GARCH, ARFI-

GARCH

Daily midday wind

speed measurements

from 1995 to 2004, as

well as weather

ensemble predictions

from 1997 to 2004 for

five wind farms in UK

Weather ensemble-

based forecasters are

shown to perform

better than time series

models and

atmospheric-based

models

[30] Mean

hourly

wind

speed

1 h RMSE AR, and ARIMA 744 hours of wind

speed measurements in

Odigitria of the Greek

island of Crete in

March 1996

The neural logic-based

models perform better

than the time series

methods
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References Forecast

variable

Forecast

horizon

Error

metric

Time series

method

Data Finding

[15] Daily

average of

wind

speed

1–15 h MAPE ARIMA Wind speed data from

a 1.7 kW wind turbine

in the city of Awali,

Kingdom of Bahrain

ARIMA models are

proved to effectively

capture the auto-

correlative structure of

the wind speed

[31] Wind

speed

3 h RMSE AR Wind speed data

measured every 3-h in

three Mediterranean

sites in Corsica

AR is sufficient to

simulate 3-h wind

speeds

[32] Wind

speed

1, 2 and

3-step(s)

MAE,

MAPE

and MSE

Hybrid (Wavelet

Packet-ARIMA-

BFGS (Broyden-

Fletcher-Goldfarb-

Shanno))

Half-hourly wind

speed measurements

from 20 December 2011

to 5 January 2012 in

Chinese Qinghai wind

farm

The ARIMA models

have better time

performance than the

ANN models in

approximating wind

speed time series while

providing a little lower

accuracy

[33] Hourly

mean

wind

speed and

direction

1 h MAE ARMA, and VAR Hourly average wind

data from May 1 to

October 21, 2002 in two

wind sites in North

Dakota, USA

ARMA forecasts the

wind speed better than

the component model

whereas the opposite is

observed for wind

direction forecasting

[34] Wind

power

3 h MAPE,

and

NMAE

ARIMA Wind power data in

Portugal

The ARIMA model is

used as a benchmark to

evaluate the

performance of the

proposed hybrid

Wavelet-PSO-ANFIS

forecasting method

[35] Wind

speed

1–24 h MAE, and

RMSE

AR, ARX, ARX-

GARCH, Hybrid

(ARX-TN

(truncated normal),

ARX-GARCH-TN)

3 years of hourly wind

speed observations

from a meteorological

station in Denmark, as

well as wind speed

predictions based on a

NWP model from the

Danish Meteorological

Institute

The time series models

are used as benchmark

methods to evaluate

the performance of the

developed stochastic

differential equation

for probabilistic wind

speed forecasting

[36] Wind

speed/

power

1–24 h MAE,

MBE,

RMSE,

MASE

NMBE,

NMAE,

and

NRMSE

AR, ARMA, and

ARIMA

Wind speed, wind

direction, humidity,

solar radiation,

temperature,

atmospheric pressure,

and heat radiation data

from two anemometric

measuring towers in La

Ventosa, Mexico

Results show that the

developed method

based on support

vector regression is

more accurate than the

persistence and

autoregressive models

[37] Wind

speed/

power

1 and

2 day(s)

Daily

mean

fractional-ARIMA

(f-ARIMA)

4 weeks of hourly

average wind speed

data from four wind

The proposed f-ARIMA

is more accurate than

the persistence method

Time Series and Renewable Energy Forecasting
http://dx.doi.org/10.5772/intechopen.70845

87



References Forecast

variable

Forecast

horizon

Error

metric

Time series

method

Data Finding

error

(DME)

monitoring sites in

North Dakota

[38] Average

hourly

wind

speed

1 h ME, MSE,

and MAE

Hybrid (ARIMA-

ANN)

1 month of wind speed

measurements in three

regions of Mexico

The combination of

ARIMA and ANN

predicts the wind

speed with more

accuracy than the

individual ARIMA and

ANN

[39] Wind

speed

1 day MAPE Hybrid (KF-ANN

model based on

ARIMA)

Daily wind speed

observations from two

meteorological stations

in Mosul, Iraq and

Johor, Malaysia

The ARIMA model

provides inaccurate

wind speed forecasts

due to its limitation to

capture the

nonlinearity of the

wind speed patterns

[40] Wind

speed

1, 2 and

3-step(s)

MAE,

MSE, and

MAPE

Hybrid (ARIMA-

ANN and ARIMA-

Kalman)

Hourly wind speed

measurements from a

station

Both hybrid methods

can obtain accurate

forecasts and are

appropriate for non-

stationary wind speed

datasets

[41] Wind

speed

1 h NA ARMA-GARCH 7 years of hourly wind

speed data from an

observation site in

Colorado, USA

The ARMA-GARCH

model is proved

efficient in capturing

the trend change of

wind speed mean and

volatility over time

[42] Hourly

average

wind

speed

1 h up to

10 h

RMSE ARMA 9 years of hourly wind

speed data of five

locations in Navarre,

Spain

For longer term

forecasting, the ARMA

models with

transformed and

standardized data

perform better than the

persistence model

[43] Wind

speed

1 month MSE,

MAE, and

MAPE

ARIMA 7 years of wind speed

measurements from the

South Coast of Oaxaca,

Mexico

ARIAM models

provide more

sensitivity than the

ANN methods to the

adjustment and

prediction of the wind

speed

[44] Win speed 1–6 min

(s), and

1–6 hour

(s)

MAE, and

MAPE

Hybrid (Empirical

mode

decomposition

(EMD)-Least

squares support

vector machines

(LSSVM)-AR)

1 year of wind speed

data measurements in

Beloit, Kansas, USA

The proposed hybrid

approach is proved

more accurate than the

existing forecasting

approaches
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5. Conclusion

This chapter provides a comprehensive literature review to demonstrate the application of

time-series methods for renewable energy forecasting. In spite of recent developments in

intelligent methods and their extensive applications for more accurate solar energy/wind

power forecasting, our literature review concludes that time-series methods, individually or

in combination with intelligent methods, are still viable options for short-term forecasting of

intermittent renewable energy sources due to their less computational complexities.
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