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Abstract

We propose a widely tunable parametric source in the 3 μm range, based on intracavity 
spontaneous parametric down conversion (SPDC) of a quantum-dot (QD) laser emitting 
at 1.55 μm into signal and idler modes around 3.11 μm. To compensate for material dis-
persion, we engineer the laser structure to emit in a higher-order transverse mode of the 
waveguide. The width of the latter is used as a degree of freedom to reach phase matching 
in narrow, deeply etched ridges, where the in-plane confinement of the QDs avoids non-
radiative sidewall electron-hole recombination. Since this design depends critically on the 
knowledge of the refractive index of In1−xGa

x
As

y
P1−y lattice matched to InP at wavelengths 

where no data are available in the literature, we have accurately determined them as a 
function of wavelength (λ = 1.55, 2.12 and 3 μm) and arsenic molar fraction (y = 0.55, 0.7 
and 0.72) with a precision of ±4 × 10−3. A pair of dichroic dielectric mirrors on the wave-
guide facets is shown to result in a continuous-wave optical parametric oscillator (OPO), 
with a threshold around 60 mW. Emission is tunable over hundreds of nanometers and 
expected to achieve mW levels.

Keywords: quantum dots, laser diode, near infrared, InGaAsP, tunable source, OPO

1. Introduction

The tunability of currently available integrated sources is limited to a few tens of nanometers 

at most, via temperature or current control. While this is not a problem for most applications, 

certain fields like wavelength division multiplexing and spectroscopy are in demand of sources 
with broader tunability and choice of spectral range. Spectroscopy, especially, requires wide-

band, continuously tunable sources with narrow emission lines. The 2–4 μm wavelength interval 

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
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is of particular interest since it contains various peaks of atmospheric and hydrocarbon mol-

ecules, with important applications in environmental monitoring, security, and medicine [1–4]. 

This spectral region is at the frontier between the emission ranges of diodes and quantum cas-

cade lasers (QCLs), and to date most existing sources around 3 μm, such as short-wavelength 

QCLs [5, 6] or GaSb diodes [7], are only available in laboratories. Interband cascade lasers (ICLs) 

are the only sources commercially available in this wavelength range, albeit at a high price [8–
10]. Moreover, the tunability range of all these devices is limited to a few tens of nanometers. As 

a consequence, individual laser diodes are used for each spectroscopic line of absorption, which 

increases the price of a complete diagnosis based on several lines. In this context, nonlinear optics 

offers a solution for widely wavelength tunable sources, bulky tabletop optical parametric oscil-
lators (OPOs) being commonly used to provide high-quality, tunable beams. Most miniaturized 

OPOs have been demonstrated in LiNbO
3
 [11, 12], but an OPO threshold has been achieved in a 

GaAs micrometric waveguide [13] with a potential span of 500 nm. Like GaAs, InP is an attrac-

tive material for its high χ(2) and mature technology, especially for emission at 1.55 μm.

Here we report on the design of an InGaAsP/InP QD laser diode emitting at 1.55 μm, opti-
mized for intracavity spontaneous parametric down conversion (SPDC) around 3.11 μm via 

modal phase matching. The use of QDs is justified by the choice of narrow, deeply etched 
structures insofar they have been shown to trap carriers and limit surface recombination [14], 

and narrow-ridge, low-threshold InAs/InP QD lasers have already been demonstrated [15]. 

In order to estimate the phase mismatch accurately, a precise knowledge of the refractive 

indices is critical at pump, signal, and idler wavelengths. While the index of InGaAsP lattice 
matched to InP is well known at 1.55 μm [16–20], to date only one publication deals with its 

measurement at longer wavelengths [21], and none exists at 3 μm. This makes it crucial to 

accurately characterize its refractive index up to 3.14 μm, outside of the scope covered by 
literature data.

2. Tunable source design

2.1. Laser diode design

We propose a 1.55 μm source optimized for SPDC around 3.11 μm. This design results from 

back-and-forth optimizations between optical and electrical simulations, to jointly facilitate 

electron-hole injection, increase the conversion efficiency, and reduce losses. The conduction 
band and composition profile of this structure are shown in Figure 1. To compensate for the 

material  dispersion, the laser diode is conceived so as to favor lasing on the TE20 mode (the 

second order in the direction of growth). To achieve this, the refractive index kept small in 

the center of the waveguide. As a  consequence, the TE20 mode confinement inside the active 
area is stronger than for the TE00 mode. Figure 2 shows the modes TE00 and TE20 supported by 

the waveguide at a wavelength of 1.55 μm. In order to achieve an efficient electron injection 
despite the conduction band increase in the core center, we reduce the series resistance with 

two strategies. Firstly, we introduce compositional gradients at the interfaces. Secondly, the 

waveguide core is only lightly doped. Figure 3 depicts the conduction band and doping pro-

file of the structure. An electrical simulation of this device using the software Nextnano yields 
a transparency current of 26 A/cm2 at the transparency threshold.
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2.2. Nonlinear properties

To achieve Type-II phase matching despite the error bars on the dispersion model and the 

fabrication tolerances, we use the ridge width as a crucial degree of freedom. Figure 4 shows 

the phase mismatch at degeneracy vs. ridge width and pump wavelength, defined as

   Δn = n  ( TE  20  , 1.55 μm) – [n  ( TE  00  , 3.11 μm)  + n  ( TM  00  , 3.11 μm) ]  /  2   (1)

where the refractive indices are provided by our experimental data, presented in Part 2, and 
an interpolation of literature data [20]. By changing the ridge width from 3 to 7 μm, we are 
able to achieve phase matching for pump wavelengths of 1.50–1.60 μm. Furthermore, a varia-

tion in phase mismatch of ±0.02 can be compensated for by setting the correct ridge size. The 

Figure 1. Conduction band and composition profile of the structure.

Figure 2. The first two even modes supported by the waveguide at λ = 1.55 μm.
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ridge width thus acts as a gross parameter to meet the phase-matching condition, which can 

be set after wafers have been grown and characterized.

During operation, temperature provides a supplementary degree of freedom to tune the 

pump wavelength and reach a wide range of frequencies. Figure 5 shows the wavelengths 

Figure 3. Conduction band and doping profile of the structure.

Figure 4. Phase mismatch in a deeply etched structure vs. ridge width and pump wavelength.
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of signal and idler emitted beams, for a source of ridge width 3.3 μm, emitting at a pump 
wavelength of 1.55 μm at 20°C. The dependency of quantum dots wavelength emission with 
temperature was assumed to be 0.5 nm/K from [22].

Figure 6 shows the profiles of the interacting modes, at a pump wavelength of 1.55 μm and 
signal and idler 3.11 μm. The expected conversion efficiency at a pump wavelength of 1.55 μm 
is 240% W−1 cm−2. For an intracavity power of 100 mW, this corresponds to a parametric gain 
of 0.5 cm−1. Since common InP QD lasers at 1.55 μm emit up to 20 mW outside the cavity with-

out facet coatings [23], the above hypothesis on the intracavity power is very reasonable. The 

losses experimented by the mode at 3.11 μm are mainly expected to stem from free-carrier 

Figure 5. Emitted wavelengths for a device of ridge width 3.3 μm, emitting at 1.55 μm at 20°C.

Figure 6. Field intensity of the three interacting modes in the SPDC process, at a pump wavelength of 1.55 μm.
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3.4. Results

A typical result of coupling measurement is shown in Figure 12. The position of the peaks is 

determined with a precision of 0.01°. Since the effective indices are a function of material index 
and thickness of the guiding layer, each measured value corresponds to a range of possible 

{material index, thickness} pairs. This is represented in Figure 13, where one line corresponds 

to the space of parameters that minimize the difference between measured and theoretical 
indexes. Since more than one effective index is measured, it is possible to determine the right 
pair {material index, thickness}, at the crossing point. Figure 14 shows the average difference 
between measured and effective indices. Waveguides support three modes at 1.55 μm, two at 

Figure 11. Optical setup for measuring the grating period.

Figure 12. Determination of the refractive index and thickness for a slab of In0.67Ga0.33As0.72P0.28 at λ = 1.55 μm. Each line 
shows the possible range of data corresponding to the measured value of the effective index of a given waveguide mode.
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Figure 14. Determination of the refractive index and core thickness for a slab of In0.67Ga0.33As0.72P0.28 on InP at a wavelength 

of 1.55 μm. This figure shows the mean difference between calculated and measured effective indices. Area width gives 
an estimation of the error.

Figure 13. Coupling measurement into a slab of In0.67Ga0.33As0.72P0.28 on InP at a wavelength of 1.55 μm.
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2.12 μm, and one at 3.14 μm. In order to derive the effective index at 3 μm, the guide thick-

nesses were estimated from the data at 1.55 μm (Table 1).

Figures 15–17 show the measured refractive indices as a function of As fraction, at wavelengths 

of 1.55, 2.12, and 3.14 μm. The data at 1.55 μm was compared to the model presented in [20]. At 

2.12 and 3.14 μm, no model being available in the literature, we trace the data against a linear 
regression versus the molar fraction of As(y). The refractive index of InP from [24] was taken 

into account. Figure 18 shows the refractive index versus wavelength, against a one-oscillator 

fit calculated from the Afromowitz model [25]. The fit parameters are presented in Table 2.

# PL peak (μm) da/a0 xGa yAs N (λ = 1.55 μm) N (λ = 2.1 μm) N (λ = 3.11 μm)

1 1.395 −0.0025 0.33 0.72 3.470 3.348

2 1.395 +0.002 0.33 0.72 3.472 3.349

3 1.395 n.m. 0.33 0.72 3.384

4 1.346 n.m. 0.35 0.70 3.445 3.333

5 1.346 −0.0017 0.35 0.70 3.444 3.330

6 1.346 n.m. 0.35 0.70 3.370

7 1.266 n.m. 0.24 0.55 3.391 3.289

8 1.266 +0.00078 0.24 0.55 3.325

The lattice mismatch was measured by X-ray diffraction. Ga and As fraction are deduced through the model presented in [26].

Table 1. Physical properties and measured indices of the studied samples.

Figure 15. Refractive index measured at 1.55 μm vs. y, compared to [20].
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3.5. Discussion

The accuracy of this measurement is determined by several factors.

• Values of the grating period were determined by repeated measurements with a precision 

of 0.1 nm. This leads to a 0.3 × 10−3 error bar on the effective index.

• The uncertainty due to sample misalignment can be estimated at 0.5 × 10−3. This may be 

explained by local variations of the resist filling factor and depth.

• In order to estimate the impact of the thin layer of photoresist on the effective indices, we 
performed a set of measurements on a sample covered with a thin photoresist grating. 

Then we etched it shallowly, removed the resist, and took a new set of data. The estimated 

thickness diminishes by 11 nm. This is in agreement with a profilometry of the etched grat-
ing depth, yielding 15 nm. The estimated core index is raised by 0.7 × 10−3, a value lower 

than the possible variation of twice the experimental error. Thus we conclude that the resist 

has a negligible impact on the effective indices.

• While the laser beam alignment and position of the sample with respect to the rotating 

stage are adjusted in each measurement, one could point out that the axis of the rotating 

motor could be slightly misaligned with respect to the vertical axis and introduce a system-

atic error. A simple observation of the height of the beam reflection as the motor rotates 
indicates that the angle could be at most of 0.5 mrad. This leads, after a calculation, to an 
error on the effective index of 3 × 10−5.

• Finally, incertitude on the composition is the most important. It is determined by the pho-

toluminescence and lattice mismatch of the samples, with a precision of ~1%, through 
the model described in [26]. This corresponds to an uncertainty on the effective index of  
4 × 10−3. The deviation of our measurements with respect to literature and to a linear fit is in 
the range of 10−2 to 2 × 10−2. This is in agreement with the observed variations of index due 

to the lattice mismatch observed in [16].

Figure 16. Refractive index measured at 2.12 μm vs. y (data plotted against a linear fit).
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Figure 17. Refractive index measured at 3.14 μm vs. y (data plotted against a linear fit).

Figure 18. Refractive index of InGaAsP lattice matched to InP vs. wavelength for y = 0.72, 0.70, and 0.55. A one-oscillator 
fit (Afromowitz model) is added.

yAs a b

0.72 −0.0156 0.1007

0.70 −0.0144 0.1014

0.55 −0.0143 0.1044

Table 2. Parameters of the Afromowitz model inferred from the index measurements: a and b are extracted by a linear 
regression from (n2–1)−1 = a E2 + b, where E is the wavelength energy in eV.
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