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Abstract

Applications of density functional theory (DFT) calculations to organic chemistry are
shown, beginning with geometry optimization and the calculation of vibrational fre-
quencies, infrared (IR) intensities, and thermodynamic properties. The isotropic chemi-
cal shielding values and anisotropies relevant to nuclear magnetic resonance (NMR) can
be calculated using gauge-invariant atomic orbitals (GIAOs); the calculation of spin-spin
couplings is possible but time-consuming. For free radicals, hyperfine couplings and g
tensors pertaining to EPR can be obtained. Regarding UV/vis spectra, wavelengths and
oscillator strengths can be calculated by using a time-dependent Hamiltonian. In addi-
tion to gas-phase acidities, approximate pKa values can be obtained, provided that
solvation is taken into account. Several sets of substituent parameters have been calcu-
lated: Hammett σ and σ

+ parameters and inductive and mesomeric effects. Regarding
reaction mechanisms, geometries and energies of intermediates and transition structures
have been calculated for pericyclic reactions, nucleophilic aliphatic substitutions, elec-
trophilic aromatic substitutions, additions, and eliminations.

Keywords: density functional theory, spectroscopy, magnetic resonance, Hammett
parameters, reaction mechanisms, pericyclic reactions

1. Introduction

Focusing on density functional theory (DFT) calculations with Gaussian 09 [1] and the B3LYP/

6-311G(d,p) method, several applications to organic chemistry will be shown. After geometry

optimization, which yields the total energy, a frequency calculation can be done, yielding the

infrared spectrum (wave numbers and intensities) and, if requested, the Raman intensities and

the thermodynamic properties (enthalpy, entropy, and Gibbs free energy).

Using a time-dependent Hamiltonian, UV/vis spectra can be calculated (wave lengths and

oscillator strengths). Nuclear magnetic resonance (NMR) spectra can be calculated, providing
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isotropic shielding values as well as tensor data (anisotropies) of all magnetic nuclei, using

gauge-invariant atomic orbitals (GIAOs). The calculation of spin-spin coupling constants is

also possible but requires much more computational time. For free radicals, EPR data can be

calculated: isotropic hyperfine coupling constants, hyperfine tensors, and g tensors; in this

case, the restricted B3LYP method has to be replaced by the unrestricted UB3LYP method.

Substituent effects such as the σ parameters in the Hammett equation can also be estimated.

Although a calculation of changes in the charge distribution might seem to be a promising

method for that purpose, it was found that calculated 19F shielding values (“virtual NMR

experiments”) yielded much more convincing results. The calculation of gas-phase acidities

or basicities is straightforward, and the calculated data show a good correlation with experi-

mental data. However, the correlation with pKa values, which refer to aqueous solutions, is

very poor. A reasonable correlation was obtained by taking a few water molecules explicitly

into account, in addition to the bulk solvent properties of water.

Regarding organic reaction mechanisms, pericyclic reactions are particularly well amenable to

DFT calculations. Usually, the transition structure can be obtained which is characterized by a

single imaginary frequency, which belongs to the reaction coordinate. For many other reaction

types (substitutions, additions, eliminations, and rearrangements), at least an approximation

to the transition structure can be calculated. Moreover, starting with such a structure and

performing an optimization, the approximate dynamics of the reaction can be followed.

2. Geometries, energies, and thermodynamic data

2.1. Geometry optimization

As a starting point, a reasonable approximation to the geometry of the target molecule is

required. Preferably, the coordinate file should be given as Z matrix, and standard bond

lengths and angles may be used. A convenient tool for the generation of Z matrices is molden

[2]: in the Z-mat editor, start with methane, substitute by phenyl and finally by vinyl, and save

as Z matrix (GAMESS). Next, the input file for the quantum-chemical calculation has to be

created by supplementing the Z matrix file with the necessary parameters (see Appendix A).

After a successful calculation, the log file contains the energy (in Hartree) and the coordinates

of the optimized structure. Again, it is advantageous to use a tool such as molden for analyz-

ing the log file.

2.2. Calculation of thermodynamic properties

For a determination of the thermodynamic properties, it is necessary to calculate the (vibra-

tional) frequencies. In the Gaussian input file, the preliminary coordinates have to be replaced

by the optimized ones and the task “Opt” by “Freq”. (Actually, the request for “Freq Prop

Pop = Full” additionally provides useful information such as charges and dipole moment. By

default, the calculation is done for 298 K and 1.000 atm, but a different temperature or pressure

may be specified.)
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For the example molecule (p-methylstyrene), the salient results are as follows:

Most data are given in Hartree (see Appendix A), they refer to the formation from atomic

nuclei and electrons. It is fairly easy to calculate the energy of formation from the atoms by

subtracting the energies obtained for respective calculations of free atoms. In order to obtain

approximate values for standard enthalpies of formation, bond energies and possibly

enthalpies of phase changes (to the gas phase) have to be taken into account. It should be

mentioned that the accuracy of these data, i.e., the agreement with experimental data, is not

very good. It is advisable to restrain to energy (or enthalpy) differences of similar structures.

Alternatively, approximate enthalpies of formation can be obtained more easily from semiem-

pirical calculations (such as MNDO, AM1, or PM3).

Energies of some important free atoms (UB3LYP/6-311G(d,p) in Hartree): H,�0.502155930031; C,

�37.8559889346; N, �54.5985431427; O, �75.0853856058; F, �99.7538096003; P, �341.280503655;

S,�398.132082447; and Cl,�460.166160487.

Hence, the following energy of formation from the atoms is obtained for p-methylstyrene, C9H10,

ΔEf atomic = �348.887196�9 � (�37.8559889346)�10 � (�0.502155930031) = �3.161736288290

Hartree = �8301.139 kJ/mol.

Enthalpies required to generate free atoms from the elements in the standard state (kJ/mol) [3]:

H, 218.00; C, 716.67; N, 472.68; O, 249.17; F, 78.4; P, 314.55; S, 276.98; and Cl, 121.29.

These values have to be added to the above-given atomic energy of formation (ignoring

somewhat the difference between energy and enthalpy), yielding the following energy of

formation for our example: �8301.14 + 9 � 716.67 + 10 � 218.00 = 328.89 kJ/mol.

The energy can be converted to the enthalpy by means of Eq. (1), assuming the validity of the

ideal gas law; Δn is the change in the number of moles of gases:

SCF Done: E(RB3LYP) �349.054882687 AU

Zero-point correction 0.159885 (Hartree/particle)

Thermal correction to energy 0.167687

Thermal correction to enthalpy 0.168631

Thermal correction to Gibbs free energy 0.127033

Sum of electronic and zero-point energies �348.894997

Sum of electronic and thermal energies �348.887196

Sum of electronic and thermal enthalpies �348.886252

Sum of electronic and thermal free energies �348.927850

Total E (thermal) 105.225 kcal/mol

Total CV 30.240 cal/mol-K

Total S (entropy) 87.551 cal/mol-K
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∆H ¼ ∆Eþ ∆nRT (1)

∆H ¼ ∆Eþ ∆n� 2:479
kJ

mol
T ¼ 298:15 Kð Þ (2)

In the example, 1 mole of product molecules (in the gas phase) is formed from 19 moles of

atoms; therefore, Δn is �18 and the correction is �44.62 kJ/mol. Hence, the calculated enthalpy

of formation of p-methylstyrene in the gas phase is ΔHf
� = 284.27 kJ/mol.

The following experimental value for the enthalpy of formation of liquid p-methylstyrene is given

in the literature: ΔHf
�(l) = 114.6 kJ/mol [3]; adding the heat of vaporization of 47.6 kJ/mol [4],

ΔHf
�(g) = 162.2 kJ/mol for the gas phase. Thus, the calculated value deviates by about 120 kJ/mol.

By comparison, a semiempirical AM1 calculation yields an enthalpy of formation of ΔHf
� =

140.3 kJ/mol, in better agreement with experiment.

3. Spectroscopy

3.1. Vibrational spectroscopy: infrared and Raman

Vibrational frequencies and hence infrared (IR) and Raman spectra can be calculated (Gauss-

ian keyword “Freq”). In Gaussian 09, the infrared intensities are calculated by default, but the

Raman intensities can also be obtained (keyword “Freq = Raman”). The calculated frequencies

can be assigned to the respective molecular motions. The visualization of vibrations is easily

achieved by tools such as molden.

As an example, p-cyanobenzaldehyde will be considered (Figure 1). The experimental IR data

have been taken from the SDBS database [5]. The two most prominent features are the C]O

valence vibration at 1788 (exp. 1708) and the CN valence vibration at 2340 (2230) cm�1.

Figure 1. Calculated IR spectrum of p-cyanobenzaldehyde.

Density Functional Calculations - Recent Progresses of Theory and Application82



3.2. Nuclear magnetic resonance (NMR)

The calculation of isotropic chemical shielding values (σ) or shielding tensors requires some

kind of “scaling” of the orbitals, for instance, the use of gauge-invariant atomic orbitals

(GIAOs) [6]. In Gaussian 09, the keyword “NMR” automatically invokes the use of GIAOs,

and isotropic shielding values, anisotropies, and shielding tensors are calculated. In NMR

experiments, however, not the shielding values are measured, but chemical shifts, which refer

to some standard. For 1H, 13C, and 29Si NMR, tetramethylsilane (TMS) is used as a standard,

and the respective chemical shifts of the three kinds of magnetic nuclei are set to zero (δH-

1(TMS) = 0 ppm, δC-13(TMS) = 0 ppm, and δSi-29(TMS) = 0 ppm). Using the hybrid method

B3LYP/6-311(d,p), the following average shielding values are obtained for protons and for 13C

nuclei: σ(1H) = 31.3919 ppm and σ(13C) = 179.7024 ppm. The chemical shifts are then simply

obtained by subtraction:

δi ¼ σref � σi (3)

Using the abovementioned reference value for protons, the calculated chemical shifts are

generally too small by about 0.5 ppm. In a survey of 21 natural products, a better fit for 13C

nuclei, on the average, was obtained by using a reference value of 177.0 ppm instead [7].

For the example molecule p-methylstyrene, the following 1H and 13C chemical shifts (δ in ppm)

were calculated (using the above-given calculated shielding values for TMS as reference);

experimental 13C chemical shifts were taken from the NMRSHIFTDB database (Figure 2 and

Table 1) [8].

It is also possible to calculate NMR spin-spin coupling constants, i.e., J [Hz] (Gaussian key-

word “NMR = SpinSpin”), but at the expense of computational time. The results obtained with

the B3LYP hybrid functional are much better than those of HF ab initio calculations.

For p-methylstyrene, the following proton-proton spin-spin coupling constants J [Hz] were

calculated: J13,14 = 6.86, J15,16 = 7.09 (o), J14,15 = 1.29, J13,16 = 1.26 (m), J13,15 = 0.41, J14,16 = 0.28 (p),

Figure 2. 3D model and numbering scheme of 1-methyl-4-vinylbenzene.
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J17,19 = 14.72 (trans), J17,18 = 10.11 (cis), and J18,19 = �0.53 (gem). These values are in accordance

with those found in similar systems.

It should be mentioned that NMR data provide an excellent and sensitive test for the accuracy

of quantum-chemical calculations.

3.3. Electron paramagnetic resonance (EPR)

In the case of free radicals, unrestricted calculations have to be performed in which different

orbitals are assigned to α and β spins. Whereas unrestricted Hartree-Fock (UHF) calculations

yield poor results for hyperfine couplings (HFC) because of serious problems due to spin

contamination, calculations with the UB3LYP hybrid functional yield fairly acceptable results

[9]. The calculations yield Mulliken spin densities (better designated as spin populations),

isotropic HFC (Fermi contact coupling constants), and anisotropic hyperfine tensors. g values

and g tensors can also be calculated (in the Gaussian system, this requires the “NMR” key-

word). The g value is a dimensionless proportionality factor which relates the magnetic

moment to the angular momentum; the value for the free electron is ge = 2.00232, and only the

electron spin is involved. In molecules, contributions from orbital momentum have to be taken

into account, and the phenomenon becomes anisotropic. The calculated HFC and g values may

be compared with experimental data from EPR spectroscopy (electron spin resonance, also

called electron paramagnetic resonance) [10].

The method will be illustrated using the ubisemiquinone-Q1 radical anion as example, which

serves as a model compound for coenzyme Q10.

Figure 3 shows the calculated Mulliken spin densities and the calculated proton HFC of this

radical anion. The rotation of the long side chain is hindered; therefore, the two methylene

Pos. C calc C exp H calc H pred

1 129.7 128.6 6.67 7.39

2 140.2 136.5 – –

3 129.7 128.6 6.73 7.39

4 131.0 127.7 6.54 7.59

5 136.1 136.0 – –

6 122.8 127.7 7.24 7.59

7 18.7 20.0 1.71 2.41

8 139.7 136.3 6.07 6.72

9 109.8 112.8 4.70 5.25

9‘ 5.42 5.76

Table 1. Chemical shifts of p-methylstyrene (δ in ppm) (cf. Figure 2).
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protons are inequivalent. Comparison with experimental data (ethanol, 230 K, in parentheses)

[11]: 6.44 (5.84), methyl protons, and 3.56 (3.68) and 2.11 (2.17) MHz, methylene protons. The g

tensor has been measured by high-field EPR experiments [12]; again, the experimental values

are given in parentheses: gxx = 2.00826 (2.00646), gyy = 2.00601 (2.00542), gzz = 2.00207 (2.00222),

and giso = 2.00545 (2.00470).

3.4. Electron spectroscopy (UV/vis)

In Hückel molecular orbital (HMO) theory, electronic excitation may be viewed as excitation of

an electron from an occupied to an unoccupied orbital. The transition with the lowest energy,

i.e., the longest wavelength, involves the excitation from the highest occupied molecular

orbital (HOMO) to the lowest unoccupied molecular orbital (LUMO), although this transition

might be forbidden.

In DFT, however, the Kohn-Sham orbitals are not suitable for this procedure, and a time-

dependent Hamiltonian has to be used in the calculation (Gaussian keyword “TD”). The

calculation gives the energies and the wavelengths of the excitations, the oscillator strengths f,

and reports the orbitals which are involved. The vibrational fine structure and the conse-

quences of the Franck-Condon principle are not taken into account.

In the case of the symmetrical crystal violet cation, the HOMO is represented by two degener-

ate orbitals, and two excitations have the same wavelength, calculated as 504.7 nm (f = 0.806);

experimental data for the absorption maxima: 591.0 and 540.5 nm.

For further examples, see [13].
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Figure 3. Ubisemiquinone-Q1 radical anion. Left: Mulliken spin densities. Right: calculated HFC.
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4. Substituent effects

4.1. Hammett σ parameters

The Hammett σ parameters refer to the acidities of substituted benzoic acids which will be

considered in Section 4.3. Regarding electrophilic aromatic substitution (see Section 5.3), a mod-

ified set has to be used, at least for the para positions (σ+ parameters). The Hammett equation is

log
ki
k0

¼ σρ (4)

where ρ is the reaction parameter and k0 and ki are the rate constants for the unsubstituted and

substituted compounds, respectively. The σ/σ+ parameters for electrophilic aromatic substitu-

tion have been determined from the relative stabilities of the σ complexes as averages for the

following four reactions: protonation, bromination, nitration, and alkylation (by ethyl groups).

A linear fit of σ/σ+ (literature data [14]) versus calculated σ (DFT) was determined for 17

substituents both in meta and in para positions, yielding a squared correlation coefficient of

r2 = 0.932 (see Figure 4 and Table 2).

Figure 4. Plot of literature data for Hammett σ/σ+ parameters versus calculated values (DFT).
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4.2. Estimating inductive and mesomeric effects by virtual 19F NMR

The relative contributions of inductive (I) and mesomeric (M) effects might be inferred from a

comparison of the Hammett σ/σ+ parameters (see Section 4.1) for the para (I + M) and meta

(I + M/3) positions. Yet, a different approach is taken here. Using DFT, the obvious target to

look for should be the charge density distribution. However, it turned out that the Mulliken

charges, at least, did not yield satisfying results. Therefore, calculated isotropic 19F shielding

values were used as a probe of local charge density. As a suitable system, 4-substituted (E,E)-1-

fluoro-1,3-butadienes were chosen, in two conformations (Figure 5).

The geometries were optimized for the planar conformation, and the shielding values were

calculated for this conformation (0�) and for the orthogonal conformation with a dihedral

angle of 90� for the central single bond (see Figure 5). The relative shielding values σrel(
19F) at

90� should be proportional to the inductive (I) effect, and the differences of the relative

shielding values at 0� and at 90�, σrel(
19F)0��σrel(

19F)90�, should be proportional to the

mesomeric (M) effect. The reference compound is, of course, the unsubstituted compound

(R = H). These data were calibrated against the Hammett σ/σ+ parameters, yielding a slope of

�20.447, i.e., the data have to be divided by this factor. According to the sign convention of the

Hammett σ/σ+ parameters, electron-withdrawing groups (EWG, �I, �M) have a positive sign

(e.g., nitro and cyano), whereas electron-releasing groups (ERG, +I, +M) have a negative sign

(e.g., alkyl groups) (see Table 3).

Substituent σmeta DFT σmeta lit. σ
+ para DFT σ

+ para lit.

H 0.00 0.00 0.00 0.00

Methyl �0.11 �0.10 �0.37 �0.31

t-Butyl �0.23 �0.10 �0.47 �0.31

Phenyl �0.17 0.00 �0.67 �0.18

Hydroxy 0.09 0.13 �0.64 �0.92

Methoxy �0.06 0.05 �0.87 �0.78

Amino �0.29 �0.16 �1.38 �1.30

Dimethylamino �0.47 �0.10 �1.65 �1.70

Fluoro 0.39 0.35 0.00 �0.07

Chloro 0.39 0.40 0.06 0.11

Bromo 0.36 0.41 0.03 0.15

Nitro 0.78 0.73 0.88 0.79

Cyano 0.72 0.56 0.62 0.66

Trifluoromethyl 0.57 0.46 0.58 0.53

Acetyl 0.24 0.36 0.33 0.47

Carboxy 0.29 0.32 0.35 0.42

Sulfonyl 0.58 0.64 0.47 0.73

Table 2. Calculated (DFT) and literature data [14] for Hammett σ/σ+ parameters.
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Figure 5. 3D models of two conformations of 1-fluoro-5,5-dimethyl-1,3-hexadiene.

Substituent σI σM

H 0.00 0.00

Nitro 0.47 0.99

Cyano 0.35 0.57

Acetyl 0.16 0.69

Carboxy 0.16 0.75

Methoxycarbonyl 0.12 0.69

Trifluoromethyl 1.02 �0.29

Fluoro 0.39 �0.43

Chloro 0.33 �0.23

Bromo 0.30 �0.21

Methyl �0.04 �0.25

Hydroxy 0.18 �0.74

Methoxy 0.16 �0.74

Amino 0.01 �1.21

Dimethylamino �0.02 �1.17

Table 3. Calculated inductive (σI) and mesomeric (σM) effects (DFT) (see text).
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4.3. Acids and bases: pKa values

The calculation of gas-phase acidities is straightforward, but they do not correlate well with

experimental pKa values [13]. This situation is only partially improved by taking the bulk

properties of the solvent (water) into account (Gaussian keyword “SCRF = (Solvent = Water)”).

A much better approximation is obtained when additionally a few water molecules are taken

into account explicitly, e.g., two water molecules in the case of carboxylic acids (see Figure 6).

Thus, Gibbs free energies for benzoic acid and a series of substituted benzoic acids (15 sub-

stituents both in meta and in para positions) as well as the respective anions were calculated.

ΔG� = G�(anion) � G�(acid) was converted from Hartree to kJ/mol (see Appendix A), and log

Ka was calculated according to

∆G
�

¼ �2:3026 RT logKa (5)

pKa ¼ � logKa (6)

The relative pKa values were found to be quite reasonable but have to be scaled. Since the

difference log Ka (substituted benzoic acid)-log Ka (benzoic acid) should be equal to the

Hammett σ parameter, a linear fit of σ (literature data [14]) versus calculated Δ(log Ka) (DFT)

was determined, yielding a slope of 0.3437 and a squared correlation coefficient of r2 = 0.967

Figure 6. 3D models of dihydrates of benzoic acid and benzoate anion.
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(Figure 7). That means, the substituent effect on the calculated pKa value is overestimated by

about a factor of 3.

For the calculation of absolute pKa values, the considerable Gibbs free solvation energy of the

proton has to be taken into account (ΔG� =�1120.39 kJ/mol). The calculated Gibbs free energy of

the dissociation of benzoic acid in the gas phase is ΔG� = 1446.04 kJ/mol. For the hydration

(dihydrate model, vide supra), ΔG� = �47.35 kJ/mol and ΔG� = �302.76 kJ/mol are obtained for

benzoic acid and benzoate anion, respectively; in total, ΔG� = 1375.80 kJ/mol. Hence, the estimate

for the Gibbs free energy of the dissociation of benzoic acid in aqueous solution is ΔG� = 1446.04

� 1375.80 = 70.24 kJ/mol corresponding to a pKa value of 12.31 (exp. 4.19). To put it differently,

the model applied here accounts for about 96.7% of the true Gibbs free energy of solvation.

5. Reaction mechanisms

5.1. Pericyclic reactions

In a pericyclic reaction, σ or π bonds change concertedly (“simultaneously”) along a perimeter,

i.e., a cycle. They have first been studied theoretically by Woodward and Hoffmann (“the

Figure 7. Plot of Hammett σ parameters versus calculated relative log Ka values (DFT).
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conservation of orbital symmetry”) [15]. Typical examples are sigmatropic reactions such as

the Cope rearrangement, cycloadditions such as the Diels-Alder addition, or electrocyclic

reactions (ring closures or openings).

Pericyclic reactions are particularly well amenable to DFT calculations; the transition structure

can usually be obtained. The transition structure is a saddle point in the energy hyperspace, i.e.,

the energy has a maximum along the reaction path (the reaction coordinate), but is minimized

with respect to all other coordinates. This can be checked by a frequency calculation. Exactly one

frequency should be imaginary, namely, the one pertaining to the reaction coordinate. Thus, the

reaction dynamics can be visualized by looking at that vibration.

5.1.1. Cope rearrangement

The Cope rearrangement is a [3,3] sigmatropic reaction. As an example, the degenerate Cope

reaction of 1,5-hexadiene is shown (see Figures 8 and 9). The calculated activation energy is

129 kJ/mol (DFT).

5.1.2. Diels-Alder addition

The Diels-Alder addition is a [4 + 2] cycloaddition, a diene reacts with a dienophile to form

a (substituted) cyclohexene. As an example, the Diels-Alder addition of acrylonitrile to

cyclopentadiene leading to the endo-product is shown (see Figures 10 and 11). The calculated

activation energy is 40 kJ/mol, and the calculated reaction energy is �132 kJ/mol (DFT).

Figure 8. Scheme of the degenerate cope reaction of 1,5-hexadiene.

Figure 9. Cope reaction: 3D models of reactant, transition structure, and product.

N

N

+

N

Figure 10. Scheme of the Diels-Alder reaction between cyclopentadiene and acrylonitrile.
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5.1.3. Electrocyclic reactions

In an electrocyclic reaction, an unsaturated cycloalkane is formed from a conjugated polyene,

or the reverse reaction occurs. Here, only thermally allowed electrocyclic reactions will be

considered. For instance, cyclobutene is opened in a conrotatory manner to form 1,3-butadi-

ene. (The calculated activation energy is 149 kJ/mol, and the calculated reaction energy is

�39 kJ/mol, assuming that the most stable conformation of 1,3-butadiene is formed.) The

example shown here is the disrotatory ring closure of 1,3,5-hexatriene to form 1,3-cyclohex-

adiene (see Figures 12 and 13). Starting with the most stable conformer of 1,3,5-hexatriene, the

calculated activation energy is 252 kJ/mol, and the calculated reaction energy is �64 kJ/mol

(DFT).

Figure 11. Diels-Alder reaction: 3D models of reactants, transition structure, and product.

Figure 12. Scheme of the electrocyclic ring closure of 1,3,5-hexatriene.

Figure 13. Electrocyclic ring closure of 1,3,5-hexatriene: 3D models of reactant (two conformations), transition structure,

and product.
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5.2. Nucleophilic aliphatic substitutions

The most important mechanisms for nucleophilic aliphatic substitutions are the single-step SN2

mechanism with backside attack of the nucleophile and a trigonal-bipyramidal transition state

(for primary or secondary substrates) and the two-step SN1 mechanism with a carbenium ion

intermediate (for secondary or tertiary substrates). Since these are ionic reactions, the progress

in the gas phase may differ considerably from that in a polar solvent.

Considering first the degenerate SN2 reaction of fluoromethane with fluoride anion in the gas

phase, the most stable species is a cluster of these two particles, which is formed in an

exothermic reaction and calculated reaction energy �106 kJ/mol. The formation of the sym-

metric trigonal-bipyramidal transition state from this cluster requires an activation energy of

29 kJ/mol.

In the gas-phase reaction of chloromethane with fluoride anion (see Figures 14 and 15), the

calculated reaction energy for the formation of fluoromethane and chloride anion at infinite

distance is �198 kJ/mol. There is no activation energy for the forward reaction; the energy of

the trigonal-bipyramidal transition state is lower by 19 kJ/mol than that of the cluster of

chloromethane with fluoride. The most stable species is the cluster of fluoromethane with

chloride anion, and the activation energy of the reverse reaction, starting with this cluster,

would be 132 kJ/mol.

A typical example for an SN1 reaction is the reaction between tert-butanol and hydrogen chlo-

ride, yielding tert-butyl chloride and water (or the reverse reaction; see Figures 16 and 17). In the

gas phase, this reaction is slightly exothermic with a calculated reaction energy of �8 kJ/mol

(DFT). The concurrent elimination reaction (E1), yielding isobutene, water, and hydrogen chlo-

ride, is endothermic with a calculated reaction energy of 47 kJ/mol. For the reaction to proceed, it

is necessary to form the protonated alcohol. Only the formation of an ion pair of chloride and

protonated tert-butanol is conceivable, requiring an estimated activation energy of about 165 kJ/

mol. The formation of a free tert-butyl carbenium ion is not feasible, because the energy required

would be about 682 kJ/mol. The reaction should rather proceed by a backside attack similar to

Cl

H

H

H

F Cl

H

H H

ClF F

H

H

H

+
+

Figure 14. Scheme of an SN2 reaction.

Figure 15. SN2 reaction: 3D models of reactants, transition structure, and products.
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the SN2 reaction and stop at a cluster of tert-butyl chloride and water (reaction energy �19 kJ/

mol).

A true SN1 mechanism requires an efficient solvation of the intermediate carbenium ion by

polar solvent molecules.

5.3. Electrophilic aromatic substitutions

In gas-phase reactions of benzene with a reactive cationic electrophile such as H+, Br+, NO2
+, or

CH3CH2
+ (cf. Section 4.1), the reaction proceeds without any energy barrier to the σ complex

and stops there. Some kind of π complex is formed on the reaction path, but it is not a true

intermediate because it is not characterized by a local energy minimum.

In a more realistic scenario, the electrophile is a less reactive complex, e.g., of a halogen, an

alkyl, or an acyl chloride, with a Lewis acid such as aluminum chloride or iron(III) bromide.

Now, the reaction will usually stop at the π complex stage. In order to force the reaction to

proceed to the σ complex, a strongly activating substituent such as oxido (i.e., phenolate anion)

was introduced. After removal or replacement of this substituent, the optimization procedure

allowed the study of either the backward reaction or the forward reaction to the products,

possibly after a modification of the arrangement of the reaction partners.

As an example, the chlorination of benzene catalyzed by aluminum chloride will be considered

in detail (see Figures 18 and 19). The overall reaction in the gas phase, yielding chlorobenzene

and hydrogen chloride, is exothermic with a calculated reaction energy of �131 kJ/mol and a

Gibbs free reaction energy of ΔrG
� = �143 kJ/mol (DFT). The reaction involves three interme-

diates, π complex 1, σ complex, and π complex 2, which were calculated as local minima and

two transition structures, which could not yet be identified unambiguously. The crucial energy

barrier is most likely the transition state leading to the σ complex. Taking the energies of the

separated reactants as reference, the relative energies are as follows: �45 kJ/mol for π complex

1, approximately 208 kJ/mol for transition state 1,�80 kJ/mol for the σ complex, approximately
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OH2Cl Cl
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+
+H Cl
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Figure 16. Scheme of an SN1 reaction.

Figure 17. SN1 reaction: 3D models of reactants, intermediate, and products.

Density Functional Calculations - Recent Progresses of Theory and Application94



+H C l

Cl

Al

ClCl

Cl Cl+ +
Cl

Al

Cl
Cl

Cl
Cl

Cl H

Cl

Al

Cl
Cl

Cl

Cl

Cl

Al

Cl
Cl

Cl
H

+

Cl

Al

ClCl

Cl

Figure 18. Scheme of the AlCl3-catalyzed electrophilic substitution of benzene by chlorine.

Figure 19. Electrophilic chlorination of benzene. Top row: first π complex, approximate first transition structure, and σ

complex. Bottom row: approximate second transition structure and second π complex (of products).
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27 kJ/mol for transition state 2, �169 kJ/mol for π complex 2 (global minimum), and �131 kJ/

mol for the separated products.

5.4. Additions and eliminations

5.4.1. Electrophilic addition

As an example, the addition of bromine to cyclohexene will be considered, yielding trans-1,2-

dibromocyclohexane (see Figures 20 and 21). First, a π complex is formed (relative energy

�22 kJ/mol with respect to the separated reactants) and, next, a bicyclic bromonium ion, which

is more stable than the respective carbenium ion (by roughly 100 kJ/mol). Finally, the diaxial

conformer of trans-1,2-dibromocyclohexane is formed, which is actually more stable than the

diequatorial conformer by 7 kJ/mol. This finding is somewhat surprising and stands in contrast

to previous assumptions. Apparently, electrostatic repulsion favors the diaxial form, whereas

in monosubstituted cyclohexanes, the substituent prefers the equatorial position. The reaction

energy is �108 kJ/mol, and the Gibbs free reaction energy is �50 kJ/mol; this is due to the

unfavorable reaction entropy.

5.4.2. Elimination

In Section 5.2, it was already briefly mentioned that the reaction between tert-butanol and

hydrogen chloride might proceed as an elimination instead of a substitution. The mechanism

is E1, and isobutene (2-methylpropene) is formed as product (see Figures 22 and 23).

+

+

Br

Br

Br

Br

Br

Br
Br

Br

Figure 20. Scheme for the electrophilic addition of bromine to cyclohexene.

Figure 21. Electrophilic addition of bromine to cyclohexene: 3D models of reactants, π complex, bromonium ion, and

product.
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6. Conclusions and outlook

In the field of molecular chemistry, the use of DFT in combination with efficient software and

modern computer equipment allows the development of “virtual chemistry,” i.e., the predic-

tion of essentially all molecular properties and of reaction paths. To a certain extent, supramo-

lecular chemistry is also accessible to this method; molecular clusters and microdroplets of

solvents can be simulated. It stands to a reason, however, that computational time increases

heavily with molecular size (or cluster size). In the case of ab initio calculations, the propor-

tionality is to the fourth power of the size of the basis set; in DFT, the situation might be

somewhat better; computational time is proportional to roughly the third power of the number

of orbitals involved, judging from NMR calculations.

It should be pointed out that present-day DFT is only an approximate theory. Therefore, it is

necessary to check the quality of the computational results against experimental data.

A. Appendix

The following conversion factors have been used in this study: 1 Hartree (a.u.) = 2625.50 kJ/

mol, 1 cal = 4.184 J, and pK = ΔG� [kJ/mol] /5.708008 (at T = 298.15 K).

Computational details. For all computations in Chapters 2 to 4, Gaussian 09 was used B3LYP/

6–311(d,p) [1]. For most computations in Chapter 5, deMon2k was used [16]. For the
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Figure 22. Scheme for the E1 elimination of water from tert-butanol.

Figure 23. Elimination of water from tert-butanol: 3D models of reactants, approximate transition state, and π complex of

products.
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preparation of input files, i.e., the generation of Z matrices, and the visualization of the results,

molden [2] was of great help.

Sample Gaussian input file: methane

(The first line specifies the checkpoint file; the second the method and the task, in this case the

geometry optimization; the fourth the title, the sixth the total charge, here 0; and the multiplic-

ity, usually 1. Then, the Z matrix follows immediately.)
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