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Abstract

We consider a new approach to the description of the collective behavior of complex
systems of mathematical biology based on the evolution equations for observables of
such systems. This representation of the kinetic evolution seems, in fact, the direct
mathematically fully consistent formulation modeling the collective behavior of biolog-
ical systems since the traditional notion of the state in kinetic theory is more subtle and it
is an implicit characteristic of the populations of living creatures.
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1. Introduction

The rigorous derivation of kinetic equations for soft condensed matter remains an open

problem so far. It should be noted wide applications of these evolution equations to the

description of collective processes of various nature [1–14], in particular, the collective behav-

ior of complex systems of mathematical biology [13–23]. We emphasize that the considerable

advance in solving the problem of rigorous modeling of the kinetic evolution of systems with a

large number of constituents (entities) of mathematical biology, in particular, systems of large

number of cells, is recently observed [20–26] (and see references cited therein).

In modern research, the main approach to the problem of the rigorous derivation of kinetic

equation consists in the construction of scaling limits of a solution of evolution equations

which describe the evolution of states of a many-particle system, in particular, a perturbative

solution of the corresponding BBGKY hierarchy [2–4].

In this chapter, we review a new approach to the description of the collective behavior of

complex systems of mathematical biology [17, 18] within the framework of the evolution of

observables. This representation of the kinetic evolution seems, in fact, the direct mathematically

fully consistent formulation modeling kinetic evolution of biological systems since the notion of

the state is more subtle and it is an implicit characteristic of populations of living creatures.

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



One of the advantages of the developed approach is the opportunity to construct kinetic

equations in scaling limits, involving initial correlations, in particular, that can characterize

the condensed states of soft matter. We note also that such approach is also related to the

problem of a rigorous derivation of the non-Markovian kinetic-type equations from underly-

ing many-cell dynamics which make it possible to describe the memory effects of the kinetic

evolution of cells.

Using suggested approach, we establish a mean field asymptotic behavior of the hierarchy of

evolution equations for marginal observables of a large system of interacting stochastic pro-

cesses of collisional kinetic theory [24], modeling the microscopic evolution of active soft

condensed matter [14, 15]. The constructed scaling limit of a non-perturbative solution of this

hierarchy is governed by the set of recurrence evolution equations, namely, by the dual Vlasov

hierarchy for interacting stochastic processes.

Furthermore, we established that for initial states specified by means of a one-particle distri-

bution function and correlation functions the evolution of additive-type marginal observables

is equivalent to a solution of the Vlasov-type kinetic equation with initial correlations, and a

mean field asymptotic behavior of non-additive-type marginal observables is equivalent to the

sequence of explicitly defined correlation functions which describe the propagation of initial

correlations of active soft condensed matter.

2. On collisional dynamics of active soft condensed matter and the

evolution of marginal observables

The many-constituent systems of active soft condensed matter [14, 15] are dynamical systems

displaying a collective behavior which differs from the statistical behavior of usual gases [2, 4].

In the first place, their own distinctive features are connected with the fact that their constitu-

ents (entities or self-propelled particles) show the ability to retain various complexity features

[14–18]. To specify such nature of entities, we consider the dynamical system suggested in

papers [13, 24, 29] which is based on the Markov jump processes that must represent the

intrinsic properties of living creatures.

A description of many-constituent systems is formulated in terms of two sets of objects:

observables and states. The functional of the mean value of observables defines a duality

between observables and states and as a consequence there exist two approaches to the

description of the evolution of such systems, namely in terms of the evolution equations for

observables and for states. In this section, we adduce some preliminary facts about dynamics

of finitely many entities of various subpopulations described within the framework of non-

equilibrium grand canonical ensemble [2].

We consider a system of entities of variousM subpopulations introduced in paper [24] in case of

non-fixed, i.e., arbitrary, but finite average number of entities. Every i th entity is characterized by:

ui ¼ ji; ui
� �

∈ J �U, where ji ∈ J � 1;…;Mð Þ is a number of its subpopulation, and ui ∈U⊂R
d is

its microscopic state [24]. The stochastic dynamics of entities of various subpopulations is
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described by the semigroup etΛ ¼ ⊕ ∞

n¼0e
tΛn of the Markov jump process defined on the space Cγ

of sequences b = (b0, b1, … , bn,…) of measurable bounded functions bn(u1, … ,un) that are sym-

metric with respect to permutations of the arguments u1 , … ,un and equipped with the norm:

∥b∥Cγ
¼ max

n ≥ 0

γn

n!
∥bn∥Cn

¼ max
n ≥ 0

γn

n!
max
j1,…, jn

max
u1,…, un

∣bn u1;…;unð Þ∣,

where γ < 1 is a parameter. The infinitesimal generator Λn of collisional dynamics (the Liouville

operator of n entities) is defined on the subspace Cn of the space Cγ and it has the following

structure [24]:

Λnbnð Þ u1;…;unð Þ≐
X

M

m¼1

‍ε
m�1

X

n

i1 6¼… 6¼im¼1

‍ Λ
m½ � i1;…; imð Þbn

� �

u1;…;unð Þ ¼

X

M

m¼1

‍ε
m�1

X

n

i1 6¼… 6¼im¼1

‍a m½ �
ui1 ;…;uimð Þ

ð

J�U

‍A m½ �
v;ui1 ;…;uimð Þ �

�

bn u1;…;ui1�1; v;ui1þ1;…unð Þdv� bn u1;…;unð Þ

�

,

(1)

where ε > 0 is a scaling parameter [28], the functions a[m](ui1, … ,uim
) ,m ≥ 1, characterize the

interaction between entities, in particular, in case of m = 1 it is the interaction of entities with an

external environment. These functions are measurable positive bounded functions on J �Uð Þn

such that: 0 ≤ a m½ �
ui1 ;…;uimð Þ ≤ a

m½ �
∗ , where a

m½ �
∗ is some constant. The functions A[m](v;ui1, … ,

uim
) ,m ≥ 1, are measurable positive integrable functions which describe the probability of

the transition of the i1 entity in the microscopic state ui1 to the state v as a result of the

interaction with entities in the states ui2 , … , uim (in case of m = 1 it is the interaction with an

external environment). The functions A[m](v; ui1
, … ,uim

) ,m ≥ 1, satisfy the conditions:
Ð

J�U
‍A m½ �

v;ui1 ;…;uimð Þdv ¼ 1,m≥ 1. We refer to paper [24], where examples of the functions

a[m] and A[m] are given in the context of biological systems.

In case of M = 1 generator (1) has the form
Pn

i1¼1 ‍Λ
1½ �
n i1ð Þ and it describes the free stochastic

evolution of entities, i.e., the evolution of self-propelled particles. The case of M =m ≥ 2 corre-

sponds to a system with them -body interaction of entities in the sense accepted in kinetic theory

[30]. The m-body interaction of entities is the distinctive property of biological systems in com-

parisonwithmany-particle systems, for example, gases of atomswith a pair-interaction potential.

On the space Cn the one-parameter mapping etΛn is a bounded ∗-weak continuous semigroup

of operators.

The observables of a system of a non-fixed number of entities of various subpopulations are

the sequences O = (O0,O1(u1), … ,On(u1, … ,un),…) of functions On(u1, … ,un) defined on

J �Uð Þn and O0 is a real number. The evolution of observables is described by the sequences

O(t) = (O0,O1(t,u1), … ,On(t,u1, … ,un),…) of the functions

On tð Þ ¼ etΛnO0
n, n ≥ 1,
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that is, they are the corresponding solution of the Cauchy problem of the Liouville equations

(or the Kolmogorov forward equation) with corresponding initial data O0
n:

∂

∂t
On tð Þ ¼ ΛnOn tð Þ,

On tð Þjt¼0 ¼ O0
n, n ≥ 1,

or in case of n noninteracting entities (self-propelled particles) these equations have the form.

∂

∂t
On t;u1;…;unð Þ ¼

X

n

i¼1

‍a 1½ �
uið Þ

ð

J�U

‍A 1½ �
v;uið ÞOn t;u1;…;ui�1; v;uiþ1;…unð Þdv:

�

�On t;u1;…;unð Þ

�

, n ≥ 1:

The average values of observables (mean values of observables) are determined by the follow-

ing positive continuous linear functional defined on the space Cγ:

Oh i tð Þ ¼ I;D 0ð Þð Þ�1 O tð Þ;D 0ð Þð Þ≐ I;D 0ð Þð Þ�1
X

∞

n¼0

‍

1

n!

ð

J�Uð Þn
‍du1…dun On tð Þ D0

n, (2)

where D 0ð Þ ¼ 1;D0
1;…;D0

n;…

� �

is a sequence of nonnegative functions D0
n defined on J � Uð Þn

that describes the states of a system of a non-fixed number of entities of various subpopulations

at initial time and I;D 0ð Þð Þ ¼
P

∞

n¼0 ‍
1
n!

Ð

J�Uð Þn ‍du1…dun D
0
n is a normalizing factor (the grand

canonical partition function).

Let L1
α
¼ ⊕ ∞

n¼0α
nL1n be the space of sequences f = (f0, f1, … , fn,…) of the integrable functions

fn(u1, … ,un) defined on J �Uð Þn, that are symmetric with respect to permutations of the

arguments u1 , … ,un, and equipped with the norm:

∥f ∥L1
α

¼
X

∞

n¼0

‍α
n∥f n∥L1n ¼

X

∞

n¼0

‍α
n
X

j1 ∈J

‍…

X

jn ∈J

‍

ð

U
n
‍du1…dun∣f n u1;…;unð Þ∣,

where α > 1 is a parameter. Then for D(0)∈ L1 and O(t)∈Cγ average value functional (2) exists

and it determines a duality between observables and states.

As a consequence of the validity for functional (2) of the following equality:

I;D 0ð Þð Þ�1 O tð Þ;D 0ð Þð Þ ¼ I;D 0ð Þð Þ�1 etΛO 0ð Þ D 0ð Þ
� �

¼

I; etΛ
∗

D 0ð Þ
� ��1

O 0ð Þ etΛ
∗

D 0ð Þ
� �

� I;D tð Þð Þ�1 O 0ð Þ;D tð Þð Þ,

where etΛ
∗

¼ ⊕ ∞

n¼0e
tΛ∗

n is the adjoint semigroup of operators with respect to the semigroup

etΛ ¼ ⊕ ∞

n¼0e
tΛn , it is possible to describe the evolution within the framework of the evolution of

states. Indeed, the evolution of all possible states, i.e. the sequence D(t) = (1,D1(t,u1), … ,Dn(t,

u1, … ,un),…)∈ L1 of the distribution functions Dn(t) , n ≥ 1, is determined by the formula:
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Dn tð Þ ¼ etΛ
∗

nD0
n, n ≥ 1,

where the generator Λ∗

n is the adjoint operator to operator (1) and on L1n it is defined as follows:

Λ
∗

nf n
� �

u1;…;unð Þ≐
X

M

m¼1

‍ε
m�1

X

n

i1 6¼… 6¼im¼1

‍

ð

J�U

‍A m½ �
ui1 ; v;ui2 ;…;uimð Þa m½ �

�

v;ui2 ;…;uimð Þf n u1;…;ui1�1; v;ui1þ1;…;unð Þdv� a m½ �
ui1 ;…;uimð Þf n u1;…;unð Þ

�

,

(3)

where the functions A[m] and a[m] are defined as above in (1).

The function Dn(t) is a solution of the Cauchy problem of the dual Liouville equation (or the

Kolmogorov backward equation).

On the space L1n the one-parameter mapping etΛ
∗

n is a bounded strong continuous semigroup of

operators [26].

For the description of microscopic behavior of many-entity systems we also introduce the

hierarchies of evolution equations for marginal observables and marginal distribution func-

tions known as the dual BBGKY hierarchy and the BBGKY hierarchy, respectively [26]. These

hierarchies are constructed as the evolution equations for one more method of the description

of observables and states of finitely many entities.

An equivalent approach to the description of observables and states of many-entity systems is

given in terms of marginal observables B(t) = (B0,B1(t,u1), … ,Bs(t,u1, … ,us),…) and marginal

distribution functions F 0ð Þ ¼ 1; F0,ε1 u1ð Þ;…; F0,εs u1;…;usð Þ;…
� �

∈L1
α
.

Considering formula (2), marginal observables and marginal distribution functions are intro-

duced according to the equality:

Oh i tð Þ ¼ I;D 0ð Þð Þ�1 O tð Þ;D 0ð Þð Þ ¼ B tð Þ; F 0ð Þð Þ,

where (I,D(0)) is a normalizing factor defined as above. If F 0ð Þ∈ L1
α
and B(0)∈Cγ, then at t∈ℝ

the functional (B(t), F(0)) exists under the condition that: γ >α�1.

Thus, the relationship of marginal distribution functions F 0ð Þ ¼ 1; F0,ε1 ;…; F0,εs ;…

� �

and the

distribution functions D 0ð Þ ¼ 1;D0
1;…;D0

n;…

� �

is determined by the formula:

F0,εs u1;…;usð Þ≐ I;D 0ð Þð Þ�1
X

∞

n¼0

‍

1

n!

ð

J�Uð Þn
‍dusþ1…dusþn D

0
sþn u1;…;usþnð Þ, s≥ 1,

and, respectively, the marginal observables are determined in terms of observables as follows:

Bs t;u1;…;usð Þ≐
X

s

n¼0

‍

�1ð Þn

n!

X

s

j1 6¼… 6¼jn¼1

‍Os�n t; u1;…;usð Þ uj1
;…;ujn

� �� �

, s≥ 1: (4)
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Two equivalent approaches to the description of the evolution of many interacting entities are

the consequence of the validity of the following equality for the functional of mean values of

marginal observables:

B tð Þ; F 0ð Þð Þ ¼ B 0ð Þ; F tð Þð Þ,

where B 0ð Þ ¼ 1;B0,ε
1 ;…;B0,ε

s ;…

� �
is a sequence of marginal observables at initial moment.

We remark that the evolution of many-entity systems is usually described within the frame-

work of the evolution of states by the sequence F(t) = (1, F1(t,u1), … , Fs(t,u1, … ,us),…) of

marginal distribution functions Fs(t,u1, … ,us) governed by the BBGKY hierarchy for

interacting entities [13, 24].

The evolution of a non-fixed number of interacting entities of various subpopulations within

the framework of marginal observables (4) is described by the Cauchy problem of the dual

BBGKY hierarchy [25]:

d

dt
B tð Þ ¼ Λþ

X∞

n¼1

‍

1

n!
½…½Λ, aþ�,…, aþ

|fflfflfflfflfflffl{zfflfflfflfflfflffl}

n�times

�B tð Þ, (5)

B tð Þjt¼0 ¼ B 0ð Þ, (6)

where on Cγ the operator a
þ (an analog of the creation operator) is defined as follows

aþbð Þs u1;…;usð Þ≐
Xs

j¼1

‍bs�1 u1;…;uj�1;ujþ1;…;us

� �
,

the operator Λ ¼ ⊕ ∞

n¼0Λn is defined by (1), and the symbol [�, �] denotes the commutator of

operators.

In the componentwise form, the abstract hierarchy (5) has the form:

∂

∂t
Bs t; u1;…; usð Þ ¼ ΛsBs t; u1;…; usð Þ þ

Xs

n¼1

‍

1

n!

Xs

k¼nþ1

‍

1

k� nð Þ!
�

�
Xs

j1 6¼…6¼jk¼1

‍ε
k�1
Λ

k½ � j1;…; jk
� � X

i1 6¼…6¼in ∈ j1;…;jkð Þ

‍Bs�n t; u1;…; usð Þ\ ui1 ;…; uinð Þð Þ,

(7)

Bs t;u1;…;usð Þjt¼0 ¼ B0,ε
s u1;…;usð Þ, s ≥ 1, (8)

where the operators Λs and Λ
[k] are defined by formulas (1) and the functions B0,ε

s , s ≥ 1, are

scaled initial data.

A solution B(t) = (B0 ,B1(t,u1) , … ,Bs(t ,u1 , … , us) , … ) of the Cauchy problem of recurrence

evolution Eqs (7), (8) is given by the following expansions [26]:
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Bs t;u1;…;usð Þ ¼
X

s

n¼0

‍

1

n!

X

s

j1 6¼… 6¼jn¼1

‍A1þn t; Y \Zf g;Zð Þ B0,ε
s�n

u1;…;uj1�1;uj1þ1;…;ujn�1;ujnþ1;…;us

� �

, s ≥ 1,

(9)

where the (1 + n)th-order cumulant of the semigroups {etΛk}t∈ℝ , k ≥ 1, is determined by the

formula [25]:

A1þn t; Y\Zf g;Zð Þ≐
X

P: Y Zf g;Zð Þ¼⋃‍iZi

‍ �1ð Þ Pj j�1 jPj � 1ð Þ!
Y

Zi⊂P

‍e
tΛ∣θ Zið Þ∣ , (10)

the sets of indexes are denoted by Y� (1, … , s), Z� (j1, … , jn)⊂Y, the set {Y\Z} consists from

one element Y\Z = (1, … , j1� 1, j1 + 1, … , jn� 1, jn + 1, … , s) and the mapping θ(�) is the

declusterization operator defined as follows: θ({Y\Z},Z) =Y.

The simplest examples of expansions for marginal observables (9) have the following form:

B1 t;u1ð Þ ¼ A1 t; 1ð ÞBε,0
1 u1ð Þ,

B2 t;u1;u2ð Þ ¼ A1 t; 1; 2f gð ÞBε,0
2 u1;u2ð Þ þ A2 t; 1; 2ð Þ Bε,0

1 u1ð Þ þ Bε,0
1 u2ð Þ

� �

,

and, respectively:

A1 t; 1; 2f gð Þ ¼ etΛ2 1;2ð Þ,

A2 t; 1; 2ð Þ ¼ etΛ2 1;2ð Þ � etΛ1 1ð ÞetΛ1 2ð Þ
:

For initial data B 0ð Þ ¼ B0;B
0,ε
1 ;…;B0,ε

s ;…

� �

∈Cγ the sequence B(t) of marginal observables

given by expansions (9) is a classical solution of the Cauchy problem of the dual BBGKY

hierarchy for interacting entities (7), (8).

We note that a one-component sequence of marginal observables corresponds to observables

of certain structure, namely the marginal observable B 1ð Þ 0ð Þ ¼ 0; bε1 u1ð Þ; 0;…

� �

corresponds to

the additive-type observable, and a one-component sequence of marginal observables

B kð Þ 0ð Þ ¼ 0;…; 0; bεk u1;…;ukð Þ; 0;…

� �

corresponds to the k-ary-type observable [25]. If in

capacity of initial data (8) we consider the additive-type marginal observables, then the struc-

ture of solution expansion (9) is simplified and attains the form

B 1ð Þ
s t;u1;…;usð Þ ¼ As t; 1;…; sð Þ

X

s

j¼1

‍bε1 uj

� �

, s≥ 1: (11)

In the case of k-ary-type marginal observables solution expansion (9) has the form
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B kð Þ
s t; u1;…; usð Þ ¼

1

s� kð Þ!

X

s

j1 6¼… 6¼js�k¼1

‍A1þs�k t, 1;…; sð Þ\ j1;…; js�k

� �	 


,
�

j1;…; js�k

� �

bεk u1;…; uj1�1; uj1þ1;…; ujs�k�1; ujs�kþ1;…; us

� �

, s ≥ k,

(12)

and, if 1 ≤ s < k, we have B kð Þ
s tð Þ ¼ 0.

We remark also that expansion (9) can be also represented in the form of the perturbation

(iteration) series [25] as a result of applying of analogs of the Duhamel equation to cumulants

of semigroups of operators (10).

3. A mean field asymptotic behavior of the marginal observables and

the kinetic evolution of states

To consider mesoscopic properties of a large system of interacting entities we develop an

approach to the description of the kinetic evolution within the framework of the evolution

equations for marginal observables. For this purpose we construct the mean field asymptotics

[9] of a solution of the Cauchy problem of the dual BBGKY hierarchy for interacting entities,

modeling of many-constituent systems of active soft condensed matter [26, 27].

We restrict ourself by the case of M = 2 subpopulations to simplify the cumbersome formulas

and consider the mean field scaling limit of non-perturbative solution (9) of the Cauchy

problem of the dual BBGKY hierarchy for interacting entities (7), (8).

Let for initial data B0,ε
s ∈Cs there exists the limit function b0s ∈Cs

w∗ � lim
ε!0

ε
�sB0,ε

s � b0s
� �

¼ 0, s ≥ 1,

then for arbitrary finite time interval there exists a mean field limit of solution (9) of the Cauchy

problem of the dual BBGKY hierarchy for interacting entities (7), (8) in the sense of the ∗-weak

convergence of the space Cs

w∗ � lim
ε!0

ε
�sBs tð Þ � bs tð Þð Þ ¼ 0, s ≥ 1,

where the limit sequence b(t) = (b0, b1(t), … , bs(t),…) of marginal observables is determined by

the following expansions:

bs t; u1;…; usð Þ ¼
X

s�1

n¼0

‍

ðt

0

‍dt1…

ðtn�1

0

‍dtn e
t�t1ð Þ Σ

s

k1¼1
‍Λ

1½ � k1ð Þ
X

s

i1 6¼j1¼1

‍Λ
2½ � i1; j1
� �

e
t1�t2ð Þ Σ

s

l1¼1, l1 6¼j1

‍Λ
1½ � l1ð Þ

…

e

tn�1�tnð Þ Σ

s

kn ¼ 1,

kn 6¼ j1;…; jn�1

� �

Þ

‍Λ
1½ � knð Þ

X

s

in 6¼ jn ¼ 1,

in, jn 6¼ j1;…; jn�1

� �

‍Λ
2½ � in; jn
� �

e

tn Σ

s

ln ¼ 1,

ln 6¼ j1;…; jn
� �

Þ

‍Λ
1½ � lnð Þ

b0s�n u1;…; usð Þ∖ uj1
;…; ujn

� �� �

, s ≥ 1:

(13)
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In particular, the limit marginal observable b 1ð Þ
s tð Þ of the additive-type marginal observable (11)

is determined as a special case of expansions (13):

b 1ð Þ
s t;u1;…;usð Þ ¼

ðt

0

‍dt1…

ðts�2

0

‍dts�1 e
t�t1ð Þ Σ

s

k1¼1
‍Λ

1½ � k1ð Þ
X

s

i1 6¼j1¼1

‍Λ
2½ � i1; j1
� �

e
t1�t2ð Þ Σ

s

l1¼1, l1 6¼j1

‍Λ
1½ � l1ð Þ

…

e

ts�2�ts�1ð Þ Σ

s

ks�1 ¼ 1,

kn 6¼ j1;…; jn�1

� �

Þ

‍Λ
1½ � knð Þ

X

s

is�1 6¼ js�1 ¼ 1,

is�1, js�1 6¼ j1;…; js�2

� �

‍Λ
2½ � is�1; js�1

� �

e

ts�1 Σ

s

ls�1 ¼ 1,

ls�1 6¼ j1;…; js�1

� �

Þ

‍Λ
1½ � ls�1ð Þ

�

b01 u1;…;usð Þ∖ uj1
;…;ujs�1

� �� �

, s ≥ 1,

for example,

b
1ð Þ
1 t;u1ð Þ ¼ etΛ

1½ � 1ð Þ b01 u1ð Þ,

b
1ð Þ
2 t;u1;u2ð Þ ¼

ðt

0

‍dt1
Y

2

i¼1

‍e t�t1ð ÞΛ 1½ � ið Þ
Λ

2½ � 1; 2ð Þ
X

2

j¼1

‍et1Λ
1½ � jð Þ b01 uj

� �

:

The proof of this statement is based on the corresponding formulas for cumulants of asymp-

totically perturbed semigroups of operators (10).

If b0∈Cγ, then the sequence b(t) = (b0, b1(t), … , bs(t),…) of limit marginal observables (13) is

generalized global in time solution of the Cauchy problem of the dual Vlasov hierarchy:

∂

∂t
bs tð Þ ¼

X

s

j¼1

‍Λ
1½ � jð Þ bs tð Þ þ

X

s

j1 6¼j2¼1

‍Λ
2½ � j1; j2
� �

bs�1 t;u1;…;uj2�1;uj2þ1;…;us

� �

, (14)

bs t;u1;…;usð Þjt¼0 ¼ b0s u1;…;usð Þ, s ≥ 1, (15)

where in recurrence evolution Eq. (14) the operators Λ
[1](j) and Λ

[2](j1, j2) are determined by

Formula (1).

Further we consider initial states specified by a one-particle marginal distribution function in

the presence of correlations, namely

f cð Þ � 1; f 01 u1ð Þ; g2 u1;u2ð Þ
Y

2

i¼1

‍f 01 uið Þ;…; gs u1;…;usð Þ
Y

s

i¼1

‍f 01 uið Þ;…

 !

, (16)

where the bounded functions gs� gs(u1, … ,us) , s ≥ 2, are specified initial correlations. Such

assumption about initial states is intrinsic for the kinetic description of complex systems in

condensed states.

If b(t)∈Cγ and f 01 ∈ L1 J � Uð Þ, then under the condition that ∥f 01∥L1 J�Uð Þ < γ, there exists a

mean field scaling limit of the mean value functional of marginal observables and it is deter-

mined by the following series expansion:
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b tð Þ; f cð Þ
� �

¼
X

∞

s¼0

‍

1

s!

ð

J�Uð Þs
‍du1…dus bs t;u1;…;usð Þgs u1;…;usð Þ

Y

s

i¼1

‍f 01 uið Þ:

Then for the mean-value functionals of the limit initial additive-type marginal observables, i.e.

of the sequences b 1ð Þ 0ð Þ ¼ 0; b01 u1ð Þ; 0;…

� �

[25], the following representation is true:

b 1ð Þ tð Þ; f cð Þ
� �

¼
X

∞

s¼0

‍

1

s!

ð

J�Uð Þs
‍du1…dus b

1ð Þ
s t;u1;…;usð Þgs u1;…;usð Þ

Y

s

i¼1

‍f 01 uið Þ

¼

ð

J�Uð Þ

‍du1 b
0
1 u1ð Þf 1 t;u1ð Þ:

(17)

In equality (17) the function b 1ð Þ
s tð Þ is given by a special case of expansion (13), namely

b 1ð Þ
s t; u1;…; usð Þ ¼

ðt

0

‍dt1…

ðts�2

0

‍dts�1 e
t�t1ð Þ Σ

s

k1¼1
‍Λ

1½ � k1ð Þ
X

s

i1 6¼j1¼1

‍Λ
2½ � i1; j1
� �

e
t1�t2ð Þ Σ

s

l1¼1, l1 6¼j1

‍Λ
1½ � l1ð Þ

…e

ts�2�ts�1ð Þ Σ

s

ks�1¼1, ks�1 6¼ j1 ;…;js�2ð Þ
‍Λ

1½ � ks�1ð Þ
X

s

is�1 6¼ js�1 ¼ 1,

is�1, js�1 6¼ j1;…; js�2

� �

‍Λ
2½ � is�1; js�1

� �

�e

ts�1 Σ

s

ls�1¼1, ls�1 6¼ j1 ;…;js�1ð Þ
‍Λ

1½ � ls�1ð Þ

b01 u1;…; usð Þ∖ uj1
;…; ujs�1

� �� �

, s ≥ 1,

and the limit one-particle distribution function f1(t) is represented by the series expansion:

f 1 t;u1ð Þ ¼
X

∞

n¼0

‍

ðt

0

‍dt1…

ðtn�1

0

‍dtn

ð

J�Uð Þn
‍du2…dunþ1 e

t�t1ð ÞΛ∗ 1½ � 1ð Þ�

�Λ
∗ 2½ � 1; 2ð Þ

Y

2

j1¼1

‍e t1�t2ð ÞΛ∗ 1½ � j1ð Þ
…

Y

n

jn�1¼1

‍e tn�1�tnð ÞΛ∗ 1½ � jn�1ð Þ�

�
X

n

in¼1

‍Λ
∗ 2½ � in; nþ 1ð Þ

Y

nþ1

jn¼1

‍etnΛ
∗ 1½ � jnð Þg1þn u1;…;unþ1ð Þ

Y

nþ1

i¼1

‍f 01 uið Þ,

(18)

where the operators Λ∗[i], i = 1, 2, are adjoint operators (3) to the operators Λ[i], i = 1, 2 defined by

formula (1), and on the space L1n defined as follows:

Λ
∗ 1½ � ið Þf n u1;…;unð Þ≐

Ð

J�U
‍A 1½ �

ui; vð Þa 1½ �
vð Þ�

�f n u1;…;ui�1; v;uiþ1;…;unð Þdv� a 1½ �
uið Þf n u1;…;unð Þ,

Λ
∗ 2½ � i; jð Þf n u1;…;unð Þ≐

Ð

J�U
‍A 2½ �

ui; v;uj

� �

a 2½ �
v;uj

� �

�

�f n u1;…;ui�1; v;uiþ1;…;unð Þdv� a 2½ �
ui;uj

� �

f n u1;…;unð Þ,

where the functions A[m] , a[m] ,m = 1 , 2, are defined above in formula (1).
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For initial data f 01 ∈ L1 J � Uð Þ limit marginal distribution function (18) is the Vlasov-type

kinetic equation with initial correlations:

∂

∂t
f 1 t;u1ð Þ ¼ Λ∗ 1½ � 1ð Þf 1 t;u1ð Þ

þ

ð

J�U

‍du2Λ
∗ 2½ � 1; 2ð Þ

Y

2

i1¼1

‍etΛ
∗ 1½ � i1ð Þg2 u1;u2ð Þ

Y

2

i2¼1

‍e�tΛ∗ 1½ � i2ð Þf 1 t;u1ð Þf 1 t;u2ð Þ,

(19)

f 1 t;u1ð Þ
�

�

t¼0
¼ f 01 u1ð Þ, (20)

where the function g2(u1,u2) is initial correlation function specified initial state (16).

For mean value functionals of the limit initial k-ary marginal observables, i.e. of the sequences

b kð Þ 0ð Þ ¼ 0;…; 0; b0k u1;…;ukð Þ; 0;…

� �

, the following representation is true:

b kð Þ tð Þ; f cð Þ
� �

¼
X

∞

s¼0

‍

1

s!

ð

J�Uð Þs
‍du1…dus b

kð Þ
s t;u1;…;usð Þgs u1;…;usð Þ

Y

s

i¼1

‍f 01 uið Þ ¼

¼
1

k!

ð

J�Uð Þk
‍du1…duk b

0
k u1;…;ukð Þ �

Y

k

i1¼1

‍etΛ
∗ 1½ � i1ð Þgk u1;…;ukð Þ

Y

k

i2¼1

‍e�tΛ∗ 1½ � i2ð Þ
Y

k

i¼1

‍f 1 t;uið Þ, k≥ 2,

(21)

where the limit one-particle marginal distribution function f1(t, ui) is determined by series

expansion (18) and the functions gk(u1, … ,uk) , k ≥ 2, are initial correlation functions specified

initial state (16).

Hence in case of k-ary marginal observables the evolution governed by the dual Vlasov

hierarchy (14) is equivalent to a property of the propagation of initial correlations (21) for the

k-particle marginal distribution function or in other words mean field scaling dynamics does

not create correlations.

In case of initial states of statistically independent entities specified by a one-particle marginal

distribution function, namely f cð Þ � 1; f 01 u1ð Þ;…;

Q

‍

s
i¼1f

0
1 uið Þ;…

� �

, the kinetic evolution of k-ary

marginal observables governed by the dual Vlasov hierarchy means the property of the

propagation of initial chaos for the k-particle marginal distribution function within the frame-

work of the evolution of states [4], i.e. a sequence of the limit distribution functions has the

form f tð Þ � 1; f 1 t;u1ð Þ;…;

Q

‍

s
i¼1f 1 t;uið Þ;…

� �

, where the one-particle distribution function f1(t)

is governed by the Vlasov kinetic Eq. [26]

∂

∂t
f 1 t;u1ð Þ ¼ Λ∗ 1½ � 1ð Þf 1 t;u1ð Þ þ

ð

J�U

‍du2Λ
∗ 2½ � 1; 2ð Þf 1 t;u1ð Þf 1 t;u2ð Þ:

We note that, according to equality (21), in the mean field limit the marginal correlation

functions defined as cluster expansions of marginal distribution functions [30, 33, 34] namely,

f s t;u1;…;usð Þ ¼
X

P: u1;…;usð Þ¼⋃i ‍Ui

‍

Y

Ui⊂P
g∣Ui ∣

t;Uið Þ, s≥ 1,
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has the following explicit form [27]:

g1 t;u1ð Þ ¼ f 1 t;u1ð Þ, (22)

gs t;u1;…;usð Þ ¼
Ys

i1¼1

‍etΛ
∗ 1½ � i1ð Þegs u1;…;usð Þ

Ys

i2¼1

‍e�tΛ∗ 1½ � i2ð Þ
Ys

j¼1

‍f 1 t;uj

� �
, s≥ 2,

where for initial correlation functions (16) it is used the following notations:

egs u1;…;usð Þ ¼
X

P : u1;…;usð Þ ¼ ⋃i‍Ui

‍

Y

Ui⊂P

‍g∣Ui ∣
Uið Þ,

the symbol ∑P‍means the sum over possible partitions P of the set of arguments (u1, … ,us) on

∣P∣ non-empty subsets Ui, and the one-particle marginal distribution function f1(t) is a solution

of the Cauchy problem of the Vlasov-type kinetic equation with initial correlations (19), (20).

Thus, an equivalent approach to the description of the kinetic evolution of large number of

interacting constituents in terms of the Vlasov-type kinetic equation with correlations (19) is

given by the dual Vlasov hierarchy (14) for the additive-type marginal observables.

4. The non-Markovian generalized kinetic equation with initial

correlations

Furthermore, the relationships between the evolution of observables of a large number of

interacting constituents of active soft condensed matter and the kinetic evolution of its states

described in terms of a one-particle marginal distribution function are discussed.

Since many-particle systems in condensed states are characterized by correlations we consider

initial states specified by a one-particle marginal distribution function and correlation func-

tions, namely

F cð Þ ¼ 1; F0,ε1 u1ð Þ; gε2 u1;u2ð Þ
Y2

i¼1

‍F0,ε

1 uið Þ;…; gεs u1;…;usð Þ
Ys

i¼1

‍F0,ε

1 uið Þ;…

 !
: (23)

If the initial state is completely specified by a one-particle distribution function and a sequence

of correlation functions (23), then, using a non-perturbative solution of the dual BBGKY

hierarchy (9), in [31, 32] it was proved that all possible states at the arbitrary moment of time

can be described within the framework of a one-particle distribution function governed by the

non-Markovian generalized kinetic equation with initial correlations, i.e. without any approx-

imations like in scaling limits as above.

Indeed, for initial states (23) for mean value functional (4) the equality holds

B tð Þ; F cð Þ
� �

¼ B 0ð Þ; F tjF1 tð Þð Þð Þ, (24)
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where F(t|F1(t)) = (1, F1(t), F2(t| F1(t)), … ,Fs(t|F1(t)),…) is a sequence of marginal functionals

of the state with respect to a one-particle marginal distribution function

F1 t;u1ð Þ ¼
X∞

n¼0

‍

1

n!

ð

J�Uð Þn

‍du2…dunþ1A
∗
1þn t; 1;…; nþ 1ð Þgεnþ1 u1;…;unþ1ð Þ

Ynþ1

i¼1

‍F0,ε1 uið Þ: (25)

The generating operator A∗
1þn tð Þ of series (25) is the (1 + n)-order cumulant of the semigroups of

operators etΛ
∗
n

	 

t ≥ 0

, n ≥ 1.

The marginal functionals of the state is defined by the series expansions:

Fs t;u1;…;usjF1 tð Þð Þ≐
X∞

n¼0

‍

1

n!

ð

J�Uð Þn

‍dusþ1…dusþn V1þn t; Yf g;X\Yð Þ
Ysþn

i¼1

‍F1 t;uið Þ, (26)

where the following notations used: Y� (1, … , s), X\Y� (s + 1, … , s + n) and the generating

operators V1þn tð Þ, n ≥ 0, are defined by the expansions [31]:

V1þn t; Yf g;X\Yð Þ≐
Xn

k¼0

‍ �1ð Þk
Xn

m1¼1

‍…

Xn�m1�…�mk�1

mk¼1

‍

n!

n�m1 �…�mkð Þ!

�bA1þn�m1�…�mk
t; Yf g; sþ 1;…; sþ n�m1 �…�mkð Þ

Yk

j¼1

‍

Xmj

k
j

2
¼0

‍…

Xk
j

n�m1�…�mjþs�1

k
j
n�m1�…�mjþs¼0

‍

Ysþn�m1�…�mj

ij¼1

‍

1

k
j
n�m1�…�mjþsþ1�ij

� k
j
n�m1�…�mjþsþ2�ij

� �
!

�bA
1þk

j

n�m1�…�mjþsþ1�ij
�k

j

n�m1�…�mjþsþ2�ij

t, ij, sþ n�m1 �…�mj þ 1
�

þk
j
sþn�m1�…�mjþ2�ij

,…, sþ n�m1 �…�mj þ k
j
sþn�m1�…�mjþ1�ij

�
,

(27)

where k
j
1 � mj, k

j
n�m1�…�mjþsþ1 � 0 and the evolution operators bAn tð Þ, n ≥ 1, are cumulants of

the semigroups of scattering operators etΛ
∗
kgεk

Qk
i¼1 ‍e

�tΛ∗ 1½ � ið Þ
n o

t ≥ 0
, k ≥ 1. We adduce some exam-

ples of evolution operators (27):

V1 t; Yf gð Þ ¼ bA1 t; Yf gð Þ≐ etΛ
∗
s gεs

Ys

i¼1

‍e�tΛ∗ 1½ � ið Þ
,

V2 t; Yf g; sþ 1ð Þ ¼ bA2 t; Yf g; sþ 1ð Þ � bA1 t; Yf gð Þ
Xs

i1¼1

‍

bA2 t; i1; sþ 1ð Þ:

If ∥F1 tð Þ∥L1 J�Uð Þ < e� 3sþ2ð Þ, then for arbitrary t∈ℝ series expansion (26) converges in the norm

of the space L1s [30].
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The proof of equality (24) is based on the application of cluster expansions to generating

operators (10) of expansions (9) which are dual to the kinetic cluster expansions introduced in

paper [35]. Then the adjoint series expansion can be expressed in terms of one-particle distri-

bution function (25) in the form of the functional from the right-hand side of equality (24).

We emphasize that marginal functionals of the state (26) characterize the processes of the

creation of correlations generated by dynamics of many-constituent systems of active soft

condensed matter and the propagation of initial correlations.

For small initial data F0,ε1 ∈ L1 J � Uð Þ [31], series expansion (25) is a global in time solution of

the Cauchy problem of the generalized kinetic equation with initial correlations:

∂

∂t
F1 t;u1ð Þ ¼ Λ∗ 1½ � 1ð ÞF1 t;u1ð Þ

þ
X

M�1

k¼1

‍

ε
k

k!

ð

J�Uð Þk

‍du2…dukþ1

X

j1 6¼ … 6¼ jkþ1 ∈

∈ 1;…; kþ 1ð Þ

‍Λ
∗ kþ1½ � j1;…; jkþ1

� �

Fkþ1 t;u1;…;ukþ1jF1 tð Þð Þ,
(28)

F1 t;u1ð Þjt¼0 ¼ F0,ε1 u1ð Þ: (29)

For initial data F0,ε1 ∈L1 J � Uð Þ it is a strong (classical) solution and for an arbitrary initial data

it is a weak (generalized) solution.

In particular case M = 2 of two subpopulations kinetic Eq. (28) has the following explicit form:

∂

∂t
F1 t; u1ð Þ ¼

ð

J�U

‍A 1½ �
u1; vð Þa 1½ �

vð ÞF1 t; vð Þdv� a 1½ �
u1ð ÞF1 t; u1ð Þþ

ð

J�U

‍du2

ð

J�U

‍A 2½ �
u1; v; u2ð Þa 2½ �

v; u2ð ÞF2 t; v; u2jF1 tð Þð Þdv� a 2½ �
u1; u2ð ÞF2 t; u1; u2jF1 tð Þð Þ

0

@

1

A,

where the functions A[k] and a[k] are defined above.

We note that for initial states (23) specified by a one-particle (marginal) distribution function,

the evolution of states described within the framework of a one-particle (marginal) distribution

function governed by the generalized kinetic equation with initial correlations (28) is dual to

the dual BBGKY hierarchy for additive-type marginal observables with respect to bilinear

form (2), and it is completely equivalent to the description of states in terms of marginal

distribution functions governed by the BBGKY hierarchy of interacting entities.

Thus, the evolution of many-constituent systems of active soft condensed matter described in

terms of marginal observables in case of initial states (23) can be also described within the

framework of a one-particle (marginal) distribution function governed by the non-Markovian

generalized kinetic equation with initial correlations (28).

We remark, considering that a mean field limit of initial state (23) is described by sequence (16),

a mean field asymptotics of a solution of the non-Markovian generalized kinetic equation with
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initial correlations (28) is governed by the Vlasov-type kinetic equation with initial correlations

(19) derived above from the dual Vlasov hierarchy (14) for limit marginal observables of

interacting entities [27]. Moreover, a mean field asymptotic behavior of marginal functionals

of the state (26) describes the propagation in time of initial correlations like established prop-

erty (22).

5. Conclusion

We considered an approach to the description of kinetic evolution of large number of

interacting constituents (entities) of active soft condensed matter within the framework of the

evolution of marginal observables of these systems. Such representation of the kinetic evolu-

tion seems, in fact, the direct mathematically fully consistent formulation modeling the collec-

tive behavior of biological systems since the notion of state is more subtle and implicit

characteristic of living creatures.

A mean field scaling asymptotics of non-perturbative solution (9) of the dual BBGKY hierarchy

(7) for marginal observables was constructed. The constructed scaling limit of a non-

perturbative solution (9) is governed by the set of recurrence evolution equations (14), namely,

by the dual Vlasov hierarchy for interacting stochastic processes modeling large particle

systems of active soft condensed matter.

We established that the limit additive-type marginal observables governed by the dual Vlasov

hierarchy (14) gives an equivalent approach to the description of the kinetic evolution of many

entities in terms of a one-particle distribution function governed by the Vlasov kinetic equation

with initial correlations (19). Moreover, the kinetic evolution of non-additive-type marginal

observables governed by the dual Vlasov hierarchy means the property of the propagation of

initial correlations (22) within the framework of the evolution of states.

One of the advantages of suggested approach in comparison with the conventional approach

of the kinetic theory [2, 3, 4] is the possibility to construct kinetic equations in various scaling

limits in the presence of initial correlations which can characterize the analogs of condensed

states of many-particle systems of statistical mechanics for interacting entities of complex

biological systems.

We note that the developed approach is also related to the problem of a rigorous derivation of

the non-Markovian kinetic-type equations from underlying many-entity dynamics which

make it possible to describe the memory effects of collective dynamics of complex systems

modeling active soft condensed matter.

In case of initial states completely specified by a one-particle distribution function and correla-

tions (23), using a non-perturbative solution of the dual BBGKY hierarchy (9), it was proved that

all possible states at the arbitrary moment of time can be described within the framework of a

one-particle distribution function governed by the non-Markovian generalized kinetic equation

with initial correlations (28), i.e. without any approximations. A mean field asymptotics of a

solution of kinetic equation with initial correlations (28) is governed by the Vlasov-type kinetic
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equation with initial correlations (19) derived above from the dual Vlasov hierarchy (14) for limit

marginal observables.

Moreover, in the case under consideration the processes of the creation of correlations gener-

ated by dynamics of large particle systems of active soft condensed matter and the propaga-

tion of initial correlations are described by the constructed marginal functionals of the state

(26) governed by the non-Markovian generalized kinetic equation with initial correlations (28).
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