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Abstract

We review advances in the last few years on the study of the Faraday instability onset on
thermotropic liquid crystals of nematic and smectic A types under external magnetic
fields which have been investigated with a linear stability theory. Especially, we show
that thermal phase transition effects on nematics of finite thickness samples produce an
enhanced response to the instability as a function of the frequency of Shaker’s move-
ment. The linear stability theory has successfully been used before to study dynamical
processes on surfaces of complex fluids. Consequently, in Section 1, we show its exten-
sion to the study of the instability in the nematics, which set the theoretical framework
for its further application to smectics or other anisotropic fluids such as lyotropic liquid
crystals. We present the dispersion relationships of both liquids and its dependence on
interfacial elastic parameters governing the surface elastic responses to external pertur-
bations, to the sample size and their bulk viscosities. Finally, we point out the impor-
tance of following both experimental and theoretical analysis of various effects that
needs to be incorporated into this model for the quantitative understanding of the
hydrodynamics behavior of surface phenomena in liquid crystals.

Keywords: liquid crystals, parametric instability, surface hydrodynamics, phase
transition, nonlinear waves, complex fluids

1. Introduction

The Faraday wave instability emerges as a macroscopic nonlinear behavior of the dynamics at

interfaces of different liquids and vapor [1–22]. It appears when the vessel containing the

liquid is vibrated vertically with a given acceleration until the quiescent equilibrium interface

develops unstable surface waves. It has been observed in Newtonian fluids [6], but their most

interesting realizations occur in complex fluids where their viscoelastic responses are present

due to different time scales associated with the molecular relaxation processes [8, 16]. Therefore,
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it is important to determine how the onset of the Faraday instability is determined by the

underlying bulk fluid elasticity. The basic study of this phenomenon poses challenges to hydro-

dynamic and statistical theories that need to be adapted or developed to explain the onset of the

instability. The description of the Faraday instability has recently motivated the advance of new

experiments [23–26] and theoretical approaches for anisotropic fluids such as liquid crystals

[27–40]. Also, it seems that its comprehensive experimental and theoretical investigation may

have a major impact on the development of sensor technologies based on interfaces with

biological or chemical components of practical interest. Absorbed molecules at the interface

provide a surface coverage with absorbed molecular species that can present activity. Their

impact on the instability has not well been understood yet. Liquid crystals remain as an ideal

complex fluid where a controlled fine tuning of the cohesive energy of the absorbed molecules

of interest and the nematogen's bulk average orientations imposed by surface treatment of their

anchoring energy [41–46] can be experimentally reached. Reports on birefringent experiments

on a lyotropic suspension of fd virus describe the effect of bulk microrheology on the surface

wave [23]. The hysteresis of the wave amplitude under the harmonic external driving accelera-

tion, and how the imposed perturbation shear lowers the viscosity for increasing driving

impulse were observed. Such a rheological response of the liquid crystal led to a hydrodynam-

ically induced transition from isotropic to nematic phase change, which produces the formation

of patches at the deformed crest of the interface. In this chapter, we review recent work on the

Faraday instability on thermotropic liquid crystals, and the effect that a thermal phase transition

experienced by a nematic liquid crystal toward its isotropic state has on the instability onset.

Thus, we review our understanding of thermal phase transitions that produce enhanced

response on dynamical properties at the interface of thermotropic liquid crystals. The liquid

crystal is subjected to vertical vibrations of the container which induce hydrodynamics instabil-

ity on its surface. Temperature variations produce phase changes on liquid crystals [47]. We

present our results on the liquid crystal phase change effect in the dynamics of the Faraday

wave instability [39]. We focus our discussion on this coupled phenomenon on a hydrodynamic

level of description based on the Navier-Stokes equation for the field velocity response of the

liquid crystal. Our presentation incorporates the constitutive equation for taking into account

properly the heat transfer into the liquid crystal which drives the phase transition. Also, the

significant effects of various elastic parameters such as surface tension, bending modulus, and

interfacial elasticity of the interface on the sustained wave are discussed. Further discussion

shows how those elastic parameters determine the onset of the hydrodynamic instability

through the critical acceleration of the surface wave, which is temperature dependent when

the liquid crystal experiences a phase change. To set the theoretical framework, in Section 2 the

phenomenological free energy of layers and surface deformations and its dependence on the

elastic parameters are introduced. In Section 2.1, the hydrodynamic level of description of a

model nematic liquid crystal is made. This section includes the mean field viscous shear stress

tensor of the liquid crystal and the corresponding boundary conditions. In Section 2.2, we

discuss the case of model nematic with nematogens aligned perpendicular to an external

magnetic field but parallel to the surface. Such a model represents an isotropic liquid crystal

case. We further present an analysis of the critical acceleration as a function of temperature

variation from nematic up to the phase transition to the isotropic liquid crystal phase in Section

2.3. In Section 2.4, we analyze the dispersion relationship as a function of all elastic parameters
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for a specific temperature. We then present in Section 2.5 the dispersion relation of an isotropic

liquid. In Section 3, we discuss the occurrence of a parametric instability in smectic A liquids. In

Sections 3.1 and 3.2, the finite thickness layer dispersion relationships for sustained Faraday

surface waves in two configurations of the director on the magnetic field that orient the

nematogens are provided. In Section 4, we discuss the experimental results in the literature on

the phase transition effect on Faraday waves due to changes in particle concentration in a

lyotropic liquid crystal of fd virus. In Section 5, a conclusion paragraph is provided. Finally,

there is a list of the most relevant and updated list of references.

2. Thermotropic nematic liquid crystal layers

We consider a finite thickness layer of depth L of nematic fluid with its molecules been

oriented parallel to the liquid-air interface in the X-axis direction by an external magnetic field

H as shown in Figure 1.

The vector position giving the local elastic response of the interface has components ζ(x, y, t)

and ξ(x, y, t) to a normal and in-plane perturbations. Those deformation fields are determined

by a surface tension γ and interfacial shear elasticity ε produced by adsorbed surfactants at the

interface which lower the surface tension. Perturbations of the interface produce coupling of

vertical and lateral deformation whose strength is given by a parameter λ. A splay module

K determines the curvature distortion of the nematogen’s layers deformation, and a compress-

ibility modulus B yields its compression. The magnetic field orients the nematogens as they are

characterized by a magnetic susceptibility χa. Thus, the elastic-free energy of layers distortion

is given by [48]

Fbulk ¼
1

2

ð

d3 r B ∂xuð Þ2 þ K ∂
2
yuþ ∂

2
zu

� �2
þ χaH

2
∂yu
� �2

þ ∂zuð Þ2
h in o

: (1)

whereas the interface elastic-free energy may be written approximately as [49]

Fsurface ¼
1

2

ð

d2 r
γ ∂xζð Þ2 þ ∂yζ

� �2
� �

þ ε ∂xξð Þ2 þ ∂yξ
� �2

� �

þ κ0 ∂
2
xζþ ∂

2
yζ

� �2

�2λ ∂xξð Þ ∂
2
xζþ ∂

2
yζ

� �2

8

<

:

9

=

;

: (2)

The molecular field u(x, y, z, t) takes into account the bulk elastic deformation of the stack of

layers and which is caused by the acceleration, thermal fluctuations, and for smectics, also due

to the movement (permeation) of molecules between layers _u � vx ¼ λph, where λp, h is the

permeation length and molecular field, respectively, ∂β≔ ∂/∂β, β = x , y, z. If we consider the

Faraday wave on a liquid crystal that supports a monolayer, then the surface elastic response is

affected by surface tension, dilational, and coupling modulus as given in Eq. (2). Crilly et al.

[50] have shown using photon correlation spectroscopy experiments that the thermotropic

phase transition on monoglyceride monolayers that originate from the little molecular area

fluctuations can be accurately detected. They found that two surface elastic moduli can explain

the shear normal to the surface γ =γ0�π + iωγ
0

and the other governs dilational distortion in
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the interfacial plane ε = ε0 + iωε
0

. Both are complex quantities, with i
2 = � 1 and γ

0

, ε
0

viscous

coefficients of a monolayer of surfactants with pressure π. γ0 , ε0 are unperturbed values of

elastic parameters without the monolayer. The imaginary parts are dissipative processes.

However, Crilly et al. [50] showed that only the real parts of these moduli determine

completely the thermotropic phase change of the surfactant monolayer, thus, our expression

in Eq. (2) is valid to incorporate surface viscoelastic properties. The third elastic parameter λ

that couples normal and tangential elasticity seems not to be detected experimenlly yet. The

glycerol monooleate (GMO) monolayer has a phase transition temperature about 15.5
�

Cwhere

a lipid undergos an all-trans state at low temperature to a gauche conformation of the lipid

(pointing out the chain-melting transition) for temperatures greater than 15.5
�

C. We note,

however, that the liquid crystal methoxy benzylidine butyl aniline (MBBA) has a transition

temperature of 45
�

C [51]; therefore, one might expect a theory prediction for the effect of

thermotropic phase changes of lipid monolayers on the Faraday waves to occur prior to the

phase transition in the nematic-isotropic liquid. Such a study is possible to perform either

experimentally and theoretically. From the experimental viewpoint, Crilly et al. [50] measured

the elastic properties of the monolayer and provided results similar to those of Figures 2 and 3

(see Figure 1 of [50]), both well below and above the transition temperature as it is required in

the modeling approach that is presented in this review. However, the determination of the

Figure 1. Interface of nematic liquid crystal layer of thickness L and air. A magnetic field H orients the nematogens

parallel to the wave vector kwhich lies along the X-axis. Gravity modulation acts in the Z-axis direction. A vector position

with components (ξ, ζ ) designates the inplane and normal elastic deformation of the interface, respectively.
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elastic properties of GOM monolayer and their variation as a function of temperature as in

Figures 1–3 of paper [50], when the monolayer is deposited on surfaces of liquid crystals, are

still lacking, and their complete experimental measurement as a function of temperature

would be quite valuable. Such experimental studies would pave the way for models which

can be extended to understand thermotropic phase changes on monolayers and their impact

on liquid crystal surface dynamics. Presently, one can resort to several useful models that

study the surface hydrodynamics such as parametric instability, thermal capillary waves on

polymer solutions and gels [13, 52], and coarse-grained effective field theories [27] and atom-

istic simulation techniques [37] and lattice hydrodynamics [17]. These methods have been

demonstrated to provide a rich description of the effects of phase transition at interfaces of

liquid crystals. From the experimental side, there is an accumulated knowledge of prototype

systems that are now well characterized with tested experimental techniques. Those studies

provide accurate information on static (elastic parameters [50, 53]). Also, the time-dependent

properties (power spectrum of the intensity of scattered light) at interfaces of isotropic and

simple liquids supporting surfactant monolayers [54] have been reported. Those studies need

to be extended to include anisotropic liquids. An example of two such comprehensive exper-

imental studies was performed by Langevin [54] in the 1970s where a series of systematic

experiments on the variation of viscous and elastic parameters of some liquid crystals

Figure 2. From bottom up are the interpolated values of viscosities η3, surface tension γ, viscosity η
0

/η3 of MBBA as a

function of the nematic-isotropic phase transition temperature. These values were interpolated from the experimental

studies of [54].
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experiencing thermotropic phase change were reported, and the thorough experiments by

Earnshaw [55] on surfaces of water supporting monolayers of surfactants. These researches

provided tabulated comprehensive data of the elastic parameters and viscous properties on

bulk and in the plane of the interface in a wide range of temperatures and not only at a single

specific temperature of interest. Our phenomenological description of the elastic behavior of

the interface given in Eq. (2) relies on models developed for polymer solution surfaces with

absorbed non-active surfactants [49]. They are simple models that do not incorporate the

anchoring energy of nematogens on the liquid crystal side toward the lipid monolayer and its

strength of variation. A more reliable model that takes into account surface elasticity and the

modification of anchoring energy of nematogens due to absorption of lipids at surfaces was

developed in [34–36], and the application of this method to study theoretically the main

surface modes of thermal waves at surfactant-laden liquid-liquid crystal interfaces was made

in [33]. In reference [33], it was predicted that the thermal wave has a dispersion law that

involves energy dissipation through anisotropic coefficients due to compression of the surfac-

tant layer. And a new relaxation mode of the director appears due to the boundary condition

of anchoring at the interface in a perpendicular direction to the plane.

Figure 3. Interpolation of the entropy of deformation that contributes to Marangoni flow of nematogens during the

thermal phase transition of MBBA from nematic to isotropic phase as a function of transition temperature. These values

were interpolated from the experimental studies of [59].
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The experimental elucidation of thermotropic phase changes in monolayers of lipids deposited

on top of liquid crystals and its impact on interface-laden of liquid crystals is an open topic to

be investigated yet. A possible program for that task would involve the determination of the

variation of the surface area of mono- or bilayers of surfactants like GMO which may be

supported in isotropic, nematic, or smectic phases of liquid crystals. Moreover, the surface

tension and dilational modulus versus temperature in an ample range around the critical

temperature have been measured. Experimental techniques of photon correlation spectroscopy

and surface quasielastic light scattering have been used in this context for isotropic fluids.

Moreover, the entropy of formation of the film (see Figure 2 in Ref. [50] for temperature

gradient of surface tension), which is related to the Marangoni effect of diffusion of molecules

in the surface, should be measured correspondingly. Such experiments might observe the

phase transition in the film and also determine the surface viscosities ignored in our model of

Eq. (2). It is expected that the viscosities will help in clarifying the nature of the monolayer

phases [54–56]. A comprehensive experimental determination of the bulk Leslie viscosities of

the most known liquid crystals in an ample interval of temperatures near their critical phase

transition is scarce [53]. Their values can lead to the prediction of enhanced macroscopic

hydrodynamic response on the parametric surface dynamics of liquid crystals [39, 40], or

polymer melts [57]. A similar experimental program may be set up for studying lyotropic

liquid crystals to determine the viscosities and elastic parameters as a function of temperature.

Those thermodynamic parameters enter as inputs in models like the one developed in this

section. As an alternative to experimental measurements of bulk and interfacial viscoelastic

properties of liquid crystals, one can also resort to molecular dynamics simulation. This

computational technique allows the determination of the bulk and surface elastic parameters

for certain molecular models of liquid crystals where the nematogens are under pairwise

forces of the Weeks-Chandler-Andersen type, and the particles of ellipsoidal shape constitute

the colloidal suspensions. From the practical point of view, it is known that the viscoelastic

behavior of films of surfactants has very practical consequences, for instance, the electrical

properties of GOM films depend on the formation of pores arising from significant fluctuations

in the area near the phase transition [37, 38].

2.1. Parallel magnetic field to wave vector and along the X-axis

In this section, we present the hydrodynamic description of the velocity field of the center of

mass of an infinitesimal volume element containing nematogens and its corresponding bound-

ary conditions on a fluid-air interface [39]. We consider a nematic layer in contact with air,

which has an equilibrium interface that is located at position z = 0 and has a depth L and

infinite lateral extension in order to avoid viscous boundary layer effects due to the wall of

the container and also beneth the surface as it is shown in Figure 1. This model can be

generalized to liquid-liquid interfaces that separate two phases of a liquid crystal. To ignore

the finite size effect of the vessel, we assume that it has an infinite lateral extension. The fluid is

subjected to vertical cosine-like vibration with an acceleration g(t) = g� a cos(ωt), where a is

the acceleration of the shaker in a reference frame fixed to the container. ω is the angular

frequency of the oscillation and g being the gravitational acceleration. Because the director of
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the nematogens remains fixed by the magnetic field, their time variation is neglected in the

hydrodynamic equations. Under these conditions, a spatial ripple at the interface is generated

which propagates symmetrically in the X- and Y-axis directions. Therefore, it is sufficient to

consider that the surface wave propagates with wave vector k in the x-coordinate only and

independently of coordinate y. The static magnetic field H keeps the director n=(1,0,0) of the

nematogens in the X-axis direction oriented. Langevin calculated that thermal fluctuations

produce periodic distortions of the nematic director with frequencies of strength ωundulation =

(Kk2 +χaH �H)/η ≈ 9.9 Hz for MBBA nematic liquid with viscosity η. Both the frequency of the

mechanical excitation and that of inertial effects ωinertia =η/ρL
2 = 106ωundulation are larger than

the elastic frequency of director variations. ρ is the density of the nematic. Thus, the nematic

director dynamics is neglected in the hydrodynamic description of the generated surface wave.

Therefore, the governing equation of the fluid velocity v about the quiescent state of rest is

provided by the linearized Navier-Stokes equation which uses a reference frame that moves

attached to the container [58]

ρ
∂V

∂t
¼ ∇ � σ (3)

The total stress tensor of the liquid σ ¼ �pIþ σ0 þ σr � ρg tð Þbezbez has dissipative contributions
σ

0

due to the bulk viscous response and an elastic part σr given by the different elastic

parameters in the free energy (Eq. (2)). Here, the unit vector bez is directed along the Z-axis,

and the hydrostatic fluid pressure is p. The unit matrix Iβ ,δ = 1 if β = δ and zero otherwise. For

nematic liquids

σ0ij ¼ η
0

ninjV l0nln0 þ 2η2V ij þ 2 η3 � η2
� �

ninlV lj þ njnlV li

� �
(4)

where the shear viscosities η2, η3, and η
0

are defined in terms of the Leslie coefficients as

η3 ¼
α2þα5

2 � α2γ2= 2γ1

� �
, η3 ¼

α4

2 , η
0 ¼ α1 þ γ2

2=γ1, where γ1 =α3�α2, and γ2 =α3 +α2. The strain

rate Vij = (∂iVj + ∂jVi)/2 has components i , j , l , o = x , y, z. For frequencies that are much less than

the first sound frequency of the liquid, it holds the incompressible condition

∇ � V ¼ 0: (5)

In the experiment, a constant and vertical gradient of temperature that produces Marangoni

flow with the rate of change of local temperature T variation given by the linearized heat

diffusion equation [39] is applied from top to the bottom of the vessel

∂T

∂t
¼ AVz þ α ∂

2
xT þ ∂

2
zT

� �
(6)

where A = � 3
�

C/mm is the temperature gradient per unit length with the heating occurring

from the air side. At the bottom solid wall T = 0
�

C. The balance of the normal and tangential

shear stresses at the interface z = 0 defines the boundary conditions to be

σzz ¼ 0, σxz ¼ 0, σyz ¼ 0 (7)
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Normal interface displacements are balanced by the elastic force obtained from Eq. (2)

σrzz ¼ f z ¼ γ ∂
2
x þ ∂

2
y

� �

ζþ λ ∂
2
x þ ∂

2
y

� �

ξ: (8)

The tangential forces at the interface result from the Marangoni instability due to surface

tension variation with temperature, and the in-plane elastic deformation which are obtained

from Eq. (2) as

σrxz ¼ f x ¼
dγ

dT
∂xT � A∂xζ½ � � ε ∂

2
x þ ∂

2
y

� �

ξþ λ ∂
2
x þ ∂

2
y

� �

ζ, σryz ¼ 0: (9)

In this last equation, elongational deformation ε and the coupling with normal deformation

through the elastic parameter λ are included. This is the case when one needs to study

interfaces that support mono- and bilayers of surface-active surfactants. Because the normal

displacement is small compared with the wavelength, one can approximate the velocity field

with the rate of surface deformations through the components of the vector that locates the

interface positions as follows (see Figure 1):

∂tζ ¼ Vz, ∂tξ ¼ Vx at z ¼ 0,κ∂zT ¼ 0: (10)

In the last equality, κ is the thermal conductivity of a thermally insolated surface with fixed

flux. At the botton of the container z = � L, there is no slip of fluid

V ¼ 0 (11)

moreover, there is no penetration of the wall

∂zVz ¼ 0: (12)

In the application that follows below, we do not consider the effect of the coefficients ε and λ and

will be made zero. From the first two conditions of Eq. (7) and with help of Eq. (8), we obtain

η3 ∇
2
⊥
� ∂

2
z

� �

Vz ¼
dγ

dT
∂
2
x T � Aζ½ � (13)

From the second identity of Eq. (7), and from Eq. (8) together with Eq. (9), we obtain

ρ∂t � η2∇
2

� �

∇
2Vz ¼ η3 � η2

� �

∇
2
∂x∂zVx � ∂

2
xVz

� �

þ η
0

∂
2
x∂x∂zVx: (14)

Now taking the divergence with the gradient operator ∇⊥≔ (∂x, ∂y) of the Navier-Stokes

(Eq. (3)) moreover, using the divergence of Eq. (4) yields

∇
2
⊥
p ¼ ρ∂t � η2∇

2 � η3 � η2
� �

∂
2
x

� �

∂zVz þ η3 � η2
� �

∇
2
⊥
þ ∇

2
� �

∂xVx þ η
0

∂
2
x∂xVx (15)

We now replace this expression in the z component of the total stress tensor σ and take its

Fourier transform ~u ¼
Ð

d2reik∙ru, i2 = � 1 with the result (from now on, we will not use ~u for

any transformed function but just simply u)
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∂t þ ν3 þ 2ν2ð Þk2 � ν2∂
2
z

� �

∂zVz ¼ � ν3 � ν2ð Þ �2ik3 þ ik∂2z
� �

Vx þ ν
0

ik3Vx � g tð Þk2ζ�
γ

ρ
k4ζ: (16)

As a consequence, the Fourier transformed form of Eq. (13) is

ν3 k2 þ ∂
2
z

� �

Vz ¼
k2

ρ

dγ

dT
T � Aζ½ �, (17)

whereas Eq. (14) takes the form

∂t � ν2 ∂
2
z � k2

� �� �

∂
2
z � k2

� �

Vz ¼ ν3 � ν2ð Þ �∂
2
z þ k2

� �

ik∂zVx þ k2Vz

� �

þ ν
0

ik3∂zVx, (18)

With υj≔
ηj
ρ , j ¼ 2, 3, ν0≔η0=ρ. Similarly, Eq. (6) becomes

∂T

∂t
¼ AVz þ α ∂

2
zT � k2T

� �

, (19)

The acceleration g(t) is a function with period 2π/ω, and according to Floquet theory the

solution of Eqs. (5) and (16)–(19) is the superposition ζ tð Þ ¼
P

∞

n¼�∞ ζn exp μnt
� �

[6]

where the modes μn = s + i(n +αr)ω. The quantities ζn , s ,αr are real numbers. There are two

types of waves Harmonic with frequency equaling the external forcing frequency and deter-

mined by αr = 0,with ζn equaling its complex conjugate and subharmonic with αr = 1/2, with

ζn ¼ ζ∗n�1. The velocity Vz also has a similar Floquet expansion that is substituted in Eqs. (5)

and (18) providing the equation for each component of the velocity amplitude Vzn

∂
4
z þ bn∂

2
z þ cn

� �

Vzn zð Þ ¼ 0, (20)

where bn ¼ �
μn

ν3
þ k3 2þ ν

0

ν3

� �h i

, cn ¼ k2
μn

ν3
þ k2

h i

: A trial solution of Eq. (20) in the form vzn(z)

~ em(k)z ,C =m2 simplifies Eq. (20) to C2 + bnC + cn = 0. We denote the two possible modes

Cj≔m2
j , j ¼ 1, 2 which lead to the solution of Eq. (20) in the form

Vzn zð Þ ¼ Pn cosh zm1ð Þ þQn sinh zm1ð Þ þ Rn cosh zm2ð Þ þ Sn sinh zm2ð Þ: (21)

The coefficients Pn ,Qn ,Rn ,Sn in this solution are derived by the substitution of Eq. (21) in

Eqs. (10)–(12) (we recall ξ =λ = 0 here). Finally, the use of Eq. (21) in Eq. (16) yields the surface

amplitude of deformation ζn

Mnζn ¼ a ζn�1 þ ζnþ1ð Þ (22)

with

Mn ¼
2

k

w2
0 þ

m1

k
μn þ k2 3ν3 þ ν

0
� �

� ν3m
2
1

h iQn

ζn
þ

þ
m2

k
μn þ k2 3ν3 þ ν

0
� �

� ν3m
2
2

h i Sn
ζn

8

>

>

<

>

>

:

9

>

>

=

>

>

;

�
2

k
Dn, (23)
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moreover, the capillary frequency w2
0≔gkþ γk3

ρ : The coefficients are

Qn ¼
ζnμnA1

m2
1 �m2

2

� �

1þ k2α
μn

� �

de

A1 ¼ �m2 k2 þm2
1

� �

�m2 k4
A

μnη3

dγ

dT
þ 1

� 	

þ k2m2
1


 �

α

μn

þ

k2 þm2
2 þ k4

A

μnη3

dγ

dT
þ 1

� 	

þ k2m2
2


 �

α

μn

� 

�

m2 cosh Lm1ð Þ cosh Lm2ð Þ �m1 sinh Lm1ð Þ sinh Lm2ð Þð Þ,

Sn ¼
ζnμnB1

m2
1 �m2

2

� �

1þ k2α
μn

� �

de

de≔�m2 cosh Lm2ð Þ sinh Lm1ð Þ þm1 cosh Lm1ð Þ sinh Lm2ð Þ,

B1 ¼ �m1 k2 þm2
2

� �

�m1 k4
A

μnη3

dγ
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Eq. (22) is the first of our most significant results. It permits the calculation of the wave amplitude

modes ζn as dictated by the viscoelastic properties of the nematic liquid and the hydrodynamic

fluid velocity. It does not depend on adjustable free parameters and includes the Marangoni

numberMa= (A/μnη3)dγ/dT that takes into account the thermal instability induced by the heating

process applied to the nematic layer. All the material parameters that appear in Eq. (22) have

already been reported by the experimental work of other authors [58] and that we are going to use

further in the subsequent text. In contrast for a system of semi-infinite thickness, we obtained

M∞

n ¼
2

k
w2

0 �
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(25)
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where the coefficients

A2 ¼ k4 A
μnη3

dγ
dT þ 1

� �

þ k2m2
1, B2 ¼ k4 A

μnη3

dγ
dT þ 1

� �

þ k2m2
2 and B3 =μn + (3ν3 + ν')k

2.

2.2. Magnetic field in the Y-axis direction with wave vector along the X-axis

In this section, we consider a nematic liquid layer of thickness L with the average director of

nematogens n=(0,1,0) oriented in the Y-axis direction by the magnetic field and the wave

propagates with wave number k in the X-axis. Thus, there is no coupling of the director with

the flux. The hydrodynamic Navier-Stokes equation is the same as an isotropic liquid with a

single viscosity η≔ η3 = η2. The components of the viscous stress tensor in Eq. (4) now read [53]

σ0xx ¼ 2η∂xVx, σ
0
zz ¼ 2η∂zVz, σ

0
zx ¼ η ∂xVz þ ∂zVxð Þ: (26)

Moreover, the forces normal to the interface and in the plane are, respectively, the same as in

Eqs. (8)–(9) of Section 4. The boundary conditions are the same as in Eqs. (10)–(12), and the

heat diffusion equation (Eq. (13)) is still valid. Consequently, the same method of section a

results in the following eigenvalue equation for the mode amplitude of the wave:

Mi
nζn ¼ a ζn�1 þ ζnþ1ð Þ, (27)

with
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n ¼

2

k
w2

0 þ ν q2n þ k2
� �Qi

n

ζn

� 

þ 4νqn
Sin
ζn

, (28)
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(29)

2.3. Thermal phase transition effect on surface dynamics

In this section, we study the critical acceleration, and wave number of the Faraday wave at the

interface of nematic liquid crystal and air as a function of temperature. We use the real material

parameters reported in the literature of nematic methoxy benzylidine butyl aniline liquid

crystal that experiences a thermal nematic-isotropic phase transition [58]. We now explain

how we calculated the wave properties just mentioned. These properties ac , kc need to be

determined in the nematic phase and then in the isotropic phase of the liquid. Notice that the
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critical parameters are obtained in separate plots of the driving acceleration a for the onset of

Faraday waves versus wave number. The lowest value of a = ac in the lower branch in that plot

for a given k yields their critical values, so we need to first see this plot, the so-called instability

tongue because of its shape, to know what it is the corresponding minimum value of a and

associated wave number. One of such plots is given in Figure 4 of the neutral stability curve.

This picture was obtained using Eq. (27) for a semi-infinite medium of nematic and tempera-

ture of TNI�T = 3
�

C from the nematic-isotropic transition temperature and the experimental

data for MBBA η3 = 0.0163 Pa s, γ = 0.03853 N/m, ρ = 1.03881� 103 kg/m3 [58]. The main wave

sustained by the interface is of subharmonic type.

For the pure nematic state, we first solved numerically Eqs. (22)–(24) with s = 0 ,αr = 1/2 for

n = 22 modes using the real materials data of the nematic MBBA obtained from interpolations

of the experimental data which are provided in Figures 2 [58] and 3 [59]. Experiments with

laser light scattering from the interface of MBBA performed by Langevin [54, 58] show that the

nematic state has two viscosities η
0

, η3, the surface tension α and the interface structural

entropy dγ/dT as the only necessary data to characterize fully the phase transition. MBBA has

the critical temperature of Tc ≈ 45
�

C, and above this temperature the anisotropy of the viscosity

disappears. This was confirmed experimentally by Langevin who found that in the isotropic

state of the liquid the intensity of scattered light is well characterized by a single bulk viscosity

η = η3 = η
0

and the same elastic parameters above. In both cases, the density of the liquid crystal

was the same and equal to the constant value ρ = 1.03881� 10�3 kg/m3 as required by the

Figure 4. Neutral stability curve of Faraday waves of subharmonic type for a semi-infinite layer of nematic in contact

with an air interface. The use was made of the real material parameters of MBBA η3 = 0.0163 Pa s, γ = 0.03853 N/m,

ρ = 1.03881� 103 kg/m3, and temperature TNI�T = 3
�

C from the phase transition.
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incompressibility condition (Eq. (5)). We used a liquid layer of thickness L = 4.5 mm. Thus, for

the isotropic phase we used the hydrodynamic equations which are similar to those of a simple

liquid derived in this section. The critical parameters were numerically calculated from

Eqs. (27)–(29) for the isotropic branch. The result of such a procedure is depicted in Figure 5.

Figure 5 shows the transition of the main sustained waves which are of subharmonic type,

from low up to high temperatures across the critical temperature. One can observe that there is

a significant variation of (ac , kc) due to their discontinuous behavior at the critical temperature

of phase transition. Figure 5a and b depict kc, and Figure 5c yields ac, versus the nematic-

isotropic transition temperature T�Tc at two values of the external frequency ω. For ω = 20π

Hz, the plots of Figure 5a and cwith symbol Ο correspond to the inclusion of Marangoni flow.

For a higher frequency ω = 40πHzwe used symbol ● in Figure 5b and c andMarangoni flow is

included too. However, in Figure 5 the plots with symbol ⋆ do not include Marangoni flow.

We used the viscosities and surface tension in all the ranges of temperature variations as

shown in Figures 2 and 3. When the Marangoni number is included Ma = (A/μnη3)dγ/dT in

Eqs. (22)–(24) and (27)–(29), the critical acceleration and wave number (ac, kc) roughly coincide

with their values when Ma = 0 is neglected. The same results are obtained if the anistotropy of

the thermal diffusivity is taken as either α∥ or α⊥; therefore in the plot of Figure 5 only α∥ for

the nematic side and αiso for the isotropic branch are used. On the other hand, from Figures 2

and 3 we can observe that the vertically applied temperature gradient of A = � 3
�

C/mm on top

of MBBA produces major changes in the magnitude of viscosities, surface tension, and on

thermal diffusivity. However, the single parameter, the gradient of surface tension dγ

dT
, which

is related to Marangoni flow, does not affect the Faraday wave. This phenomenon occurs for

instance at ω = 40Hz in Figure 5. We note from Figure 5 that (ac , kc) display the same discon-

tinuous behavior as the viscous and elastic parameters do across the thermal phase transition

temperature. However, a different mechanism for discontinuity of these critical parameters

was measured experimentally by Huber et al. [57] during the surface freezing of a polymer

monolayer made of tretraconazole melt. They found that a decrease of temperature leads to the

formation of a monolayer at the interface of polymer-air that changed the surface tension but

without an observable quantitative change of bulk viscosity. As a consequence, a high flow

velocity gradient close to the surface at a characteristic temperature during the cooling down

process from the high temperature regime is produced. Such an effect was accurately con-

firmed with a Faraday wave calculation by those authors and it is similar to our results here.

We note that an exact match of the experimentally measured power spectrum of scattered light

by thermal fluctuations of the nematic-air interface with a theoretical calculation ignoring

Marangoni flow and for constant temperature suggests that a monolayer of nematogens does

not form at the interface of MBBA. Unlike the MBBA liquid, the critical parameters of the

Faraday instability at the interface of the liquid-vapor of CO2 [6] do not display discontinuous

behavior as in the liquid crystal study.

2.4. Dispersion relation of an MBBA liquid layer with the inclusion of Marangoni flow

In Figure 6, the dispersion relation of the real MBBA (Figure 6a) together with an ideal model

of a nematic (Figure 6b and c) as calculated from Eqs. (22)–(24). The real MBBA liquid
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(Figure 6a) presents a minimum of ac ≈ 0.455 g at oscillaton frequency ω = 55π Hz for a layer

thickness of L = 4.5 mm. In this picture, the Marangoni flow was included, whereas the ideal

model of nematic has a higher viscosity η3 = 0.163 Pa than the real one, and its thickness is

Figure 5. Calculated critical parameters of the Faraday wave during a thermal phase transition of nematic MBBA. In

Figure 5, the critical wave number kc (5a, 5b) and acceleration ac (5c) as a function of the transition temperature are

plotted. Two cases of frequency of excitation were used, ω = 20π Hz with symbol Ο, (5a, 5c), ω = 40π Hz symbol ● and

white stars (5b, 5c). The nematic layer depth is L = 4.5 mm. SymbolsΟ and ● include Marangoni flow, and it is neglected in

the plot with a star symbol. The material parameters used across the thermal phase transition are those given in Figures 2

and 3.
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Figure 6. Dispersion relation of subharmonic waves of nematic MBBA at the fixed transition temperature TNI�T = 3
�

C

for layer thickness of L = 4.5 mm (6a) and L = 2.5mm for (6b, 6c). Inset in Figure 6a depicts the critical acceleration

calculated using the real parameters of MBBA and inclusion of Marangoni flow was made. Pictures in Figure 6b and c

are for a model of nematic with 10 times the viscosity of the real nematic and neglect Marangoni flow and its critical

acceleration is given in 6c. The left and right vertical lines in the insets of panels b and c depict the critical accelerations
ac
g ¼ 38:12, 51:13 which occur at wave vectors kc = 1.9284 , 0.6312 mm¯1 and frequencies ω = 135π , 215π Hz, respectively.
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Figure 7. Dispersion relation of subharmonic waves of the isotropic nematic for low nematic depths L = 4.5 , 2.5 mm,

Figure 7a and b, respectively. Other parameters are as in Figure 6. Figure 7a includes Marangoni number and uses real

data of MBBA, whereas Figure 7b is for a model nematic with 10 times the real viscosity with no Marangoni flux. The

insets correspond to the critical acceleration versus frequency.
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almost half the size of the real MBBA L = 2.5 mm without Marangoni instability. The ideal

model shows a monotonously increasing critical acceleration versus frequency (Figure 6b

and c). A similar minimum value of ac was detected in silicon oil and water system. From

Figure 6b and c, it can be seen that the harmonic type wave length λc versus frequency shows a

bifurcation. First, λc decreases continuously as the frequency starts growing until a value

ω ≈ 165π Hz is reached and suddenly the wave length makes a jump to a new value of the

samemagnitude λc = 12.12 mm; it has at the starting value of the stimulus excitationω ≈ 20πHz.

The inset in Figure 6b shows this transition in a regime of critical acceleration depicted with

the small vertical lines. The discontinuities in wave length have been documented also to

appear in viscoelastic fluids, in Newtonian liquids, and for silicon water oil systems.

2.5. Dispersion relation of isotropic liquid crystal layer with the inclusion of Marangoni

flow

In this case, the dispersion relation is calculated from Eqs. (27)–(29). Figure 7 presents the

dispersion relation, whereas the insets depict the curve of the critical acceleration as a function

of frequency for two systems; one with a layer thickness of L = 4.5 mm, Figure 7a that includes

Marangoni flow, and the second one for L = 2.5 mm with Ma = 0 as shown in Figure 7b. The

same pattern of behavior as in Figure 6 is obtained.

3. Thermotropic smectic A liquid crystal layers

3.1. Smectic order parameter, wave vector, and magnetic field directed along the X-axis

direction

In this section, we discuss the Faraday instability in smectic A liquid crystal layers [40]. We

consider a smectic liquid crystal of average thickness L and infinite lateral extension in contact

with a vapor. The nematogens are oriented by an external magnetic field in the X-axis as

depicted in Figure 8.

The stack of layers deformation is given by Eq. (1), whereas the elastic response of the interface

is given by Eq. (2). The governing hydrodynamic equations of the velocity, viscous stress

tensor, and the boundary conditions were reported in Refs. [40, 53]. Following their use and

with the help of the methods of Section 2, we derived the following recursive equation of the

amplitude of deformation ζn:

Mnζn ¼ a ζn�1 þ ζnþ1ð Þ (30)
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2
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In this eigenvalue equation, we ignored the elongational elasticity and coupling between in-

plane and normal elastic deformations. A plot of the Faraday stability curve is given in Figure 9

Figure 8. Model of the deformation of a smectic A liquid crystal layer of thickness L due to the external perturbation. The

liquid crystal has a free interface with air. The nematogens are oriented by a magnetic field H in the X-axis direction and

parallel to the interface surface. The velocity flow given by the wave vector k is parallel to the external field.
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Figure 9. Plot of the acceleration versus wave number response of the surface wave sustained at the interface of a smectic

A liquid-air for two frequencies and fixed room temperature. The configuration of the nematogens is given in Figure 8.

The material parameters are provided in Section 3.1 and are typical of smectic A.
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where the driving acceleration is plotted regarding the wave number. This picture shows us

that parametric instability can be generated in shallow layers of smectic liquid crystals when it

is excited with low frequencies. The magnitude of the normalized acceleration a/g falls well in

the range of resolution of accessible experimental techniques that have been used before to

Figure 10. Neutral stability curve of Faraday wave at the interface of Sm A and air. There is no applied magnetic field.

The nematogens are oriented in layers parallel to the interface and the flow velocity is in the X-axis direction. The material

parameters used are given in the main text. Note that subharmonic waves are plotted with symbol ∗, whereas harmonic

waves are depicted with ∘. This plot and that of Figure 9 show that small depth Sm A liquid crystal layers can sustain

parametric waves for excitation frequencies of typical experiments.
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study other fluids. The material parameters used to make this plot correspond to typical

smectic liquids: K = 10�11 N, B = 106 N/m2, L = 10�4m, λp = 10
�14 m4/Ns, ρ = 103 kg/m3, η3 = 1 P,

η3 = η2, η
0

= 10�2η3, χa = 10
�8 kg/(m s2 G), H = 3000 G, the magnetic field that keeps fixed the

orientation of nematogens, and γ = 0.033 N/m. In particular, Figure 9a points out that the

excitation frequency a/g ≈ 0 for the low frequency ω = 6π Hz, that is, infinitesimal accelerations,

can excite subharmonic waves in a similar manner as it occurs in inviscid ideal fluids.

3.2. Smectic A layers parallel to the surface and no magnetic field

In this case, we derived the modes of the surface amplitude of deformation ζn that satisfies the

eigenvalue Eqs. (27)–(29) with the function

Mn ¼
2

k
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0 þ
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ffiffiffiffiffi
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p
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þ

ffiffiffiffiffi
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p
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� 	
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ffiffiffiffiffi

S1
p

� �

� 

: (31)

The curly brackets in the above expression for Mn with the value n = 0 yield the well now

dispersion relationship of thermal capillary waves reported by other authors. In Figure 10, we

depict the stability curve of external acceleration versus wave number at a fixed frequency of

oscillation for the given material parameters; K = 10�10 N, B = 104 N/m2, layer thicknesses

L = 0.03 , 0.05 m, frequency ω = 18π Hz, λp = 10
�14 m4/(N s), ρ = 103 kg/m3, and viscosities and

surface tension as in Section 3.1 earlier. We can observe that parametric surface waves also can

evolve in this configuration of smectic A liquid. In a forthcoming manuscript, we will evaluate

this parametric instability when the smectic phase can develop from the nematic phase as a

thermal transition.

4. Lyotropic liquid crystal

In the previous section, we investigated how the bulk microstructure of the liquid crystal can

modify the parametric instability through a thermal phase change. Now, we describe phase

changes produced by particle volume fraction variations. Using birefringent measurements,

Ballesta et al. [23] demonstrated a hydrodynamic phase change from isotropic to the nematic

ordering of particles in a colloidal suspension. For the first time in the Faraday instability that

occurs at the interface of air-colloidal suspension made of fd virus, they found that Faraday

waves induce local nematic ordering of the nematogens in the wave crest when the colloid

concentration is increased and close to the isotropic-nematic critical concentration. Such

regions of nematic ordering become more permanent as the concentration is raised, and finally

large areas of stable nematic patches that follow the wave flow are developed. This phenome-

non was interpreted as a change in the local viscosity from its unperturbed value and

decreases as a function of shear generated by the surface movement, which may reach high

values of 100 Hz. A consequence of such shear thinning of viscosity is the appearance of

hysteresis in the amplitude of the normal direction of the surface deformation as a function of

the driving acceleration. Their analysis of the hysteretic behavior of the wave amplitude

required them to use the Cross model of viscosity for bulk Newtonian fluids. Whereas for

interpreting the intensity of observed birefringent experiments, it was necessary to use the
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viscosity, and order parameter of a model of rod-like suspension of particles in the isotropic

phase [60]. A recent complete numerical simulation of the hydrodynamic equations governing

the Faraday waves was developed by Perinet et al. [61] for a system formed by two immiscible

fluids with the supporting fluid forming a shallow layer smaller than its boundary layer. These

authors confirmed a hysteresis of the amplitude of the surface deformation as a function of the

driving acceleration. They conclude that the wave amplitude bifurcates into two different

waves. The hysteresis of the lower amplitude wave is attributed to a change of the shear stress

in the fluid that results from variations in the fluid flow that produce a balance of hydrostatic

and lubrication stresses.

Unlike lyotropic liquids, a successful continuum mean field model for thermotropic nematics

has allowed the description of the rheology of the bulk of confined layers of nematics under

oscillatory shear. Such a model has predicted shear thinning of the viscosity as a function of the

oscillation frequency of the imposed shear. The extension of this study to understand the shear

thinning effect on viscosity in the experiments of Ref. [23] seems feasible. A different perspec-

tive is obtained with computer simulations as those made by Germano et al. [38]. These

researches have shown through molecular dynamics simulations on a molecular model of bulk

ellipsoids with pair interaction of Weeks-Chandler-Andersen type as they say “nematic fluids

may adopt inhomogeneous steady states under shear flow” [38]. Thus, shear flow modifies the

molecular ordering in the liquid crystal producing changes in macroscopic viscosities like

shear thinning and thickening and shear banding similarly as that found by Ballesta in their

experiment of fd virus suspension under parametric instability. However, those simulations

cannot be compared directly with the experiments of Ballesta [23]. Germano et al. [38] were

interested in the capillary waves spectrum at the interface formed during the transition from

nematic to isotropic. However, they did compare their simulations with a theory of Landau-De

Gennes type for the free energy of the interface which incorporates an average director parallel

to the interface. They found isotropic capillary waves that propagate at long wavelengths

governed by the macroscopic surface tension. At short wavelength, however, the surface

tension becomes anisotropic and depends on the wave vector. In a recent series of papers by

Popa-Nita et al. [27–31], they developed a Landau-De Gennes theory to describe the capillary

waves originating from thermal fluctuations, and at the interface of a ternary mixture of liquid

crystal, colloid, and impurities. They considered both homeotropic (perpendicular to the

interface) and also the variation of the nematic director. As in the Germano et al. method,

Popa-Nita uses a free energy of the liquid crystal that predicts the bulk phase diagram, and

additionally a Cahn-Hilliard equation was incorporated for taking into account the diffusion of

impurities and colloids inside the liquid crystal. For such a mixture, they predicted the surface

tension to decrease with the presence of colloids, whereas the impurities enhance its strength.

Also, the temperature of the bulk phase transition is lowered on the pure liquid crystal

nematic-isotropic transition temperature. The interfaces so formed experience thermal fluctua-

tions. With the help of this approach, Popa-Nita were able to find that there are two regions of

propagating capillary waves as it was also observed by Germano et al. in their simulation

work. In the first region of long wavelengths, there is dissipation produced by shear flow and

the ternary mixture behaves like an isotropic fluid which can be described by a single effective

bulk viscosity. The hydrodynamic equations of the velocity field underlying that dispersion

relation depends on the respective viscosity for each of the two phases formed which are
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separated by a sharp interface. With appropriate boundary conditions on each thermodynamic

phase, the dispersion relation of the capillary waves was predicted. The generated wave

depends on the average effective constant surface tension of the nematic and isotropic inter-

face. The propagating ripple depends on one viscosity and the compression and bending

modulus of the surface. The second region corresponds to a diffuse gap of particles close to

the interface and corresponds to low values of wavenumber. This wave is dominated by the

relaxation of the order parameter and the surface tension which is dependent on the density

variation within the diffuse zone and the inhomogeneous distribution of nematogens inside it.

The boundary conditions consist of the matching of the velocity field inside the diffuse zone

with that from the bulk isotropic and nematic regions. The theoretical model of Popa-Nita [27–

31] might be useful to study Faraday waves in interfaces of phase-separated regions of liquid

crystals as a function of the concentration of particles. Presently, the phase transition on bulk

phases of liquid crystals constitutes a large body of knowledge [62], but its effect on the

dynamical responses of parametric waves on the interfaces so formed in the transition is still

an open subject of research.

5. Conclusion

We reviewed recent results underlying the hydrodynamics description of Faraday waves under

a thermal phase transition in thermotropic nematic liquid crystals. The numerical evaluation of

the effect of phase change on the critical acceleration at the onset of the instability points out its

pertinent experimental observation with birefringence or surface light-scattering techniques.

Consequently, other liquid crystals can be studied with this theoretical approach. In Section 4,

one such experimental example of a lyotropic liquid crystal of fd virus was mentioned. Also, a

correction to the conceptual framework of Sections 2 and 3 to include the effect of variations of

volume fraction of particles that can lead to a phase transition can be considered in this case.
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