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Abstract

Renal transplantation is currently the best alternative for patients with end-stage renal dis-
ease. Immune responses activated against the allograft are a decisive factor in transplanta-
tion outcomes and patient survival. Although short-term graft and patient survival have 
improved significantly as a result of better donor matching systems, novel immunosup-
pressive agents and enhanced care, long-term outcomes remain unfavorable and reflect 
sub-clinical injury caused by chronic rejection. The immune system lies at the intersection 
of immunogenic tolerance and graft failure; thus, it is a major determinant of pathology in 
the context of renal transplantation. During the early stages of transplantation increased 
expression of cytokines has been observed in addition to increased expression of adhesion 
proteins and immune cells. This early inflammatory response does not necessarily end in 
graft rejection, although this will depend on the severity of the inflammation. Activation 
of Toll-like Receptors (TLRs), damaging molecular patterns (DAMPs), and other com-
ponents of innate immunity is key to the formation of atherosclerotic plaques and the 
development of autoimmune diseases. Initially the donor antigens are presented to the 
T lymphocytes of the recipient. This activation induces their proliferation, differentiation 
and cytokine production. Successful kidney transplant recipients need to develop immu-
nologic tolerance against donor antigens. In this chapter, we address some of the innate 
and adaptive immune mechanisms associated with kidney transplantation; emphasizing 
their role in allograft rejection.

Keywords: kidney, transplantation, immunopathology, graft rejection, immunology

1. Introduction

According to statistics from the United States Renal Data System (UNOS) and the U.S. 
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(OPTN), there are currently close to 100,000 people in the U.S. waiting for a lifesaving kid-

ney transplant. Only between January and May 2017, 14,075 kidney transplants took place 
in the United States; of which 11,702 organs came from deceased donors and 2373 came 
from living donors. Renal transplantation has become the treatment of choice for patients 

with end-stage renal disease (ESRD); though its success and widespread use are still limited 

by the availability of suitable organs and allograft rejection [1]. In recent decades, short-
term graft survival has improved significantly as consequence of better donor matching 
systems, novel immunosuppressive agents and enhanced care. Unfortunately, long-term 
outcomes remain unfavorable and reflect subclinical injury caused by antibody-mediated 
allograft rejection (ABMR) [2]. The immune system lies at the intersection between immu-

nogenic tolerance and graft failure and as such, it is a major determinant of pathology 
in the context of renal transplantation [3]. The immune system is a complex network of 

lymphoid organs, cells, and molecules responsible for body homeostasis and host defense. 
Although the main function of the immune system is to protect against external pathogens 

and molecules, the presence of foreign antigens on the donor organ also triggers innate and 
adaptive immune responses in the recipient that will largely determine graft performance 

and patient survival.

2. Activation of innate immunity in kidney transplantation

Innate immune responses are required for the activation of cellular and molecular mecha-

nisms behind the physiopathology of kidney transplantation [4]. During the early stages of 

transplantation, innate immunity is essential for the activation of the adaptive immune sys-

tem, whereas at later stages, innate components promote an inflammatory microenvironment 
that enhances allograft damage.

2.1. Cells of the innate immune system

The cellular components of innate immunity are phagocytic leukocytes (neutrophils, 
monocytes, eosinophils, and basophils), natural killer (NK) cells, and dendritic cells 
(DCs). Ischemic injury that occurs during organ transplantation promotes alloimmune 

responses including innate cell recruitment [5]. Infiltrating neutrophils release proteases, 
free radicals, and proinflammatory molecules such as interleukin 6 (IL-6), interleukin  
8 (IL-8), and tumor necrosis factor alpha (TNF-α) within the graft. It has been demon-

strated that a high neutrophil-lymphocyte ratio amplifies the inflammatory process during 
acute renal failure [6]. Furthermore, neutrophil-depleted mice and intracellular adhesion 
molecule 1 (ICAM-1) knockouts are more resistant to renal ischemic injury; suggesting that 
neutralizing neutrophil activity could increase transplant success rates by reducing early 

graft damage [7]. Macrophages are also an important source of interleukin 1 (IL-1), IL-6, 
transforming growth factor beta (TFG-β), interferon γ-induced protein 10 (IP-10), mono-

cyte chemoattractant protein 1 (MCP-1), and macrophage inflammatory protein 2 (MIP-2) 
during ischemia [8]. In the context of renal damage, monocytes are recruited within the 
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first few days thanks to C–C chemokine receptor type 2 (CCR2) and CX3C chemokine 
receptor 1 (CX3CR1) ligand release. Subsequently, these monocytes are transformed into 
macrophages able to phagocyte damaged cells and present peptides to alloreactive T cells 

in peripheral lymph nodes [8, 9]. There is NK cell recruitment after ischemia and during 
the early stages of renal transplantation [10, 11]. NK cells keep other cells in check for 
major histocompatibility complex (MHC) surface expression through killer Ig-like recep-

tors (KIR) [12]. In allotransplantation, lack of MHC Class I recognition triggers NK effec-

tor mechanisms, including perforin-dependent cell lysis and cytokine production [13]. NK 
cells seem to play an important role in the induction of acute renal damage and long-term 

graft survival as demonstrated in mice that exhibit abnormalities in recruitment of these 

cells and are more resistant to kidney damage [10, 11].

2.2. Role of pattern recognition receptors and damaging molecular patterns in renal 
transplantation

In the early 1990s, Janeway proposed that all innate immune cells had pattern recogni-
tion receptors (PRRs) that can discriminate between self-components and pathogens. Soon 
after, Polly Matzinger suggested that our immune system is designed to recognize signs of 
harm rather than to discriminate between self and nonself, which could explain how innate 
immune activation can occur under sterile conditions such as in allotransplantation [14]. 

Consequently, pathogen-associated molecular patterns (PAMPs) and DAMPs are designed 
to signal damage threats [15]. DAMPs and PAMPs arise in the allograft during pre- and post-
transplant periods; and activation of vascular PRRs such as TLRs, C-type lectin receptors, 
Nod-like receptors, and retinoic acid-inducible gene-I-like receptors can trigger production 
of proinflammatory cytokines [4].

The surgical process as well as ischemic injury, precondition for a systemic inflammatory 
reaction by releasing high mobility group box 1 (HMGB1) and heat shock proteins; as well 
as by increasing Toll-like receptor 4 (TLR4) expression in endothelial and peripheral blood 
cells [16]. The immunosuppressant cyclosporin A also induces HMGB1 release and promotes 
immune cell infiltration into the renal graft [17]. Furthermore, blocking HMGB1 reduced cel-
lular infiltrate, IL-6 and TNF-α production in kidneys subjected to ischemia, and decreased of 
MCP-1 which is reflected in reduced nephrotoxicity [18]. On the other hand, HMGB1 appears 
to play a protective role; the administration of recombinant HMGB1 prevents dysfunction, 
tissue damage, and inflammation in animals subjected to ischemia [19].

2.3. The complement system

The complement system is a set of membrane-anchored and serum proteins that work in a 

coordinated way to eliminate microorganisms or damaged cells. The functions of comple-

ment include opsonization, inflammation through secondary products that result from the 
degradation of anaphylatoxins and formation of the membrane attack complex (MAC). There 
are three known complement pathways: the classical pathway that depends on the previous 

binding of antibodies, the alternate pathway that depends on the spontaneous hydrolysis and 
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binding of C3 and the pathway of lectins that depends on the binding of proteins to carbo-

hydrates. Currently, there is evidence to suggest the participation of the three complement 
pathways during renal transplantation [20–22].

2.4. Innate-adaptive immunity interactions

Communication between innate and adaptive immunity largely depends on antigen presen-

tation. T and B cells express antigen-specific receptors (TCR and BCR). The signals elicited 
by the TCR and BCR are insufficient to achieve the proper activation state, and costimula-

tory molecules and cytokines provided by innate immune cells are necessary [4]. Although 

DCs are the most efficient APCs, neutrophils, basophils, and eosinophils also influence the 
outcome of adaptive immunity. Neutrophils can recruit IL-17-producing Th17 lympho-

cytes by releasing CCL2 and CCL20. Interestingly, patients with a history of chronic renal 
dysfunction showed a significant increase in IL-17 producing cells [23]. Basophils are nor-

mally activated by IL-3 or immunoglobulin binding in different renal structures; and are an 
important source of cytokines, thymic stromal lymphopoietin, leukotrienes and histamines 
which may influence the outcome of adaptive immune responses [24, 25]. Basophils express 

MCH Class II and are considered important regulators of T and B cell activation. Moreover, 
an increase in eosinophils in renal transplant, recipients has been proposed as a predictor 
of allograft success [26].

3. Adaptive immune responses

3.1. Allorecognition, T-cell activation, T cell–mediated cytotoxicity, and B lymphocytes

The term allorecognition refers to recognition of diverse forms of genes between a mem-

ber of the same species by T cells and involve Human major histocompatibility complex 

(MHC) glycoproteins. MHC is a family composed by the most studied antigens in trans-

plantation field. These antigens are widely known as human leukocyte antigens (HLA). 
The genes encoding HLA antigens are highly polymorphic, this feature represents a big 
obstacle in the study of mechanisms of graft rejection. Class I HLA are present in mem-

branes of the nucleated cell of humans and its function is to present small endogenous 

antigens to CD8 T lymphocytes. Class II are expressed on dendritic cells, macrophages,  
B cells, endothelial, and some types of epithelial cells. This T cell recognition event is the 
first step of graft rejection. There are two different ways in which T cells recognize allo-

antigens, i.e., direct and indirect. Direct recognition is when CD8+ and CD4+ T cells from 
the recipient recognize MHC class I and class II presented by APCs and donor peptides. 
Indirect recognition is mediated by specialized APCs form the recipient presenting to T 
cells [27]. Donor endothelial cells express molecules that stimulate T cells, these activated 
cells provide help to B cells resulting in the production of alloantibodies [28]. Although the 

most studied role of B cells is associated with alloantibodies and donor specific antibod-

ies, there are controversial opinions about the deleterious role of these antibodies and its 
association with poor graft outcomes [29].
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4. Immunotolerance in transplantation

The term immunotolerance implies the absence of recognition and renal graft attack by the 
immune cells of the recipient. One of the most important developments in the field of organ 
transplantation has been the use of immunosuppressive therapies that interfere with immune 

recognition and consequently delay graft rejection. Nonetheless, although immunosuppres-

sion is used, some immune adaptation may develop in the graft. To choose a clinically suc-

cessful immunosuppressive therapy, several factors must be considered: they must be easily 
applicable in clinical practice, there should be enough evidence of their effectiveness, they 
must be stable over time even in conditions where the immune system is altered, and their 
mechanism of action should not have cross-reactions with other therapies. As a final point, it 
should be possible to measure and control its levels in the transplanted patient [30]. Induction 

of tolerance can occur through various mechanisms that include thymic deletional, central 
and peripheral deletional, and nondeletional mechanisms.

4.1. Mechanisms of -cell tolerance

T cell tolerance in transplantation is a regulated process that ensures the tolerance and per-

manence of antigens, similarly to tolerance required for the maintenance of self-antigens [31]. 

It consists of several stages: deletion, anergy, suppression, and ignorance. Tolerance is main-

tained by several mechanisms initiating in the thymus, where T cells are chosen by negative 
selection. The main mechanism of transplanted antigens tolerance is through intrathymic dele-

tion of donor-reactive T cells [32]. Although there are additional mechanisms of peripheral 

tolerance, most T cells are eliminated by this mechanism. Peripheral deletion of T cells is an 
important mechanism of tolerance, in which CD4 T cells reactive to donor antigens show acti-
vation, as well as apoptotic cell death. Once the tolerance is given T cells cannot respond to 
antigens, a state known as anergy. A costimulatory block induces anergy and has been success-

fully applied for tolerance induction. The activation of the T cell requires at least two signals: 

an antigen-dependent T cell receptor-mediated signal 1 and an antigen-independent costimu-

latory signal 2 [33]. CD4 and CD25 T cell regulators are actively involved in the development of 
immunological tolerance toward the graft. Ignorance is another mechanism that occurs when 

donor antigens are not recognized by the lymphoid system of the recipient or when lympho-

cytes fail to invade the graft. However, this mechanism applies to nonvascularized grafts.

The aim of tolerance induction in renal transplantation is to block direct and indirect allore-

sponse pathways. In the first, it is necessary to establish the depletion of the recipient T cells 
and the activation of suppressor cells capable of regulating T cells. Some drugs can induce the 

death of alloreactive T cells. On the other hand, oral administration of allopeptides may also 
produce specific tolerance to corresponding alloantigens and generate specific production 
and activation of regulatory T cells.

4.2. Induction of immunologic tolerance

Tolerance induction requires alloreactive T-cell deletion in the thymus before these cells 

can be released to the periphery. Hematopoietic chimerism is a widespread method to 
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induce tolerance. Animal models have improved our understanding of this mechanism 

that ranges from tolerance induction through the injection of allogeneic cells into newborn 

mice to the use of adult irradiated animals injected with allogeneic donor bone marrow 

[34]. Tolerance induction at the peripheral systemic level needs to target mature T cells 

by blocking T cell molecules located on its surface, which have important roles in the acti-
vation of signaling pathways that impact cell function directly. To this end, antibodies 
directed against CD4 or CD8 or costimulatory molecules have been used. CD28 receptor 
blockade prevents proinflammatory cytokine production, as well as T cell survival and 
proliferation. It is also possible to interfere with the signaling pathways involved in T cell 

survival and proliferation, which is the case of the mTOR pathway inhibitor rapamycin. 
Clinical studies in humans have focused on graft tolerance induction by pretransplanting 

donor hematopoietic cells in human leukocyte antigen (HLA)-matched and mismatched 

kidney transplant recipients [35, 36].

4.3. Immunosuppressive therapy in renal transplantation

The discovery of effective immunosuppressive drugs has had great impact in the field of 
transplantation. Currently available immunosuppressive therapies focus on three main 

objectives: induction, maintenance, and treatment of rejection. For induction therapy three 
types of antibodies are used, the lymphocytes depleting agents, antithymocyte globulin 
and alemtuzumab, and basiliximab (nondepleting) [37]. Basiliximab, an IL-2 receptor 
antagonist and it is used in combination with other immunosuppressants, significantly 
reduces acute rejection in large clinical studies [38]. The use of antithymocyte antibodies in 

diseased donor recipients also reduces early acute rejection incidence. Nevertheless, its use 
has been associated with reversible leukopenia, thrombocytopenia, and cytomegalovirus 
infection [39].

The use of calcineurin inhibitors cyclosporine and tacrolimus has been key in reduc-

ing the risk of rejection and has greatly improved short-term graft survival outcomes. 

Unfortunately, in the long run they also help develop histological changes typical of 
nephropathy that diminish kidney graft function and increase risk of graft loss [40, 41]. 

A T cell costimulatory inhibitor called belatacept was introduced to avoid the deleteri-

ous effects of calcineurin inhibitors. In several studies, belatacept prevents acute rejection 
in renal transplantation comparable to cyclosporine [42]. Since the 1980s, several options 
have been developed to reduce kidney transplant rejection. Monoclonal muromonab-CD3/
OKT3, monoclonal interleukin-2 receptor (IL-2R) antibodies (daclizumab and zenapax), 
and antiproliferative agents (mycophenolate mofetil) are part of a large list of options 

currently available in renal transplantation [43]. Nevertheless, some transplant experts 
propose a reduction in the use of immunosuppressive drugs in order to reduce the neph-

rotoxicity that can also end in fibrosis and graft rejection. Additionally, some transplant 
recipients develop diabetes, cardiovascular disease, dyslipidemia associated to immuno-

suppressant therapies. For this reason, it is estimated that kidney grafts can function on 
average 10 years after the transplantation [44, 45].
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5. Graft rejection

Current immunosuppressant therapies have drastically reduced acute rejection events in kid-

ney transplant recipients [46, 47]. Unfortunately, there is still a high percentage of short- and 
long-term kidney graft loses secondary to ABMR [2]. Here, we will discuss the contribution 
of adaptive and innate immune cells; as well as antibodies, molecules from the complement 
system and chemokines to disease states that lead to kidney graft rejection (Figure 1).

5.1. T cell–mediated rejection

T cell mediated rejection (TCMR) is characterized by infiltration of the donor graft intersti-
tium by host CD4 and CD8 T effector and memory cells, macrophages, and dendritic cells; 
followed by epithelial dedifferentiation and tubulitis [48, 49] (see histopathological findings 
in Figure 2). TCMR is the predominant phenotype found in kidney transplant recipients with 
early rejection and it is still an important cause of graft dysfunction that when left untreated 

causes fibrosis, tubular atrophy, and irreversible nephron loss [50]. Genes expressed by effec-

tor T cells, APCs, and macrophages stimulated with IFN-γ are abundant in the transcriptomic 

signature of TCMR. These transcripts are mostly related to T cell receptor signaling, T helper 
differentiation and communication between adaptive and innate immune cells; highlighting 
the importance of these pathways in TCMR [51]. Cytotoxic molecules like perforin, granulysin,  

Figure 1. Mechanisms of ABMR and TCMR in kidney transplantation. Preformed and de novo DSAs, complement 
proteins, and antibody-dependent NK cell-mediated IFN-γ release and cytotoxicity have emerged as key immune 

players in the development of the microvascular damage characteristic of ABMR. Meanwhile, in TCMR the interaction 
of infiltrating T cells with intragraft APCs and macrophages triggers an inflammatory response dependent on TCR 
synapse and subsequent activation, and characterized by chemokine (CCL5) and cytokine (CXCL9, CXCL10, and 
CXCL11) release.
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Fas ligand, and granzyme A and B are also expressed in TCMR; though it has been demon-

strated that they are not directly linked to the mechanism of injury [48, 52]. Instead, TCMR 
is considered an inflammatory reaction initiated by the engagement of TCR on cognate T 
cells with its antigen on APCs [53, 54]. It has been suggested that a very small proportion 

of infiltrating T cells are able to establish a TCR-mediated interaction with the allograft [55]. 

However, this interaction is important in the establishment of TCMR inflammatory pheno-

type since it activates the effector T cell and APC, induces INF-γ secretion and further pro-

motes myeloid and T cell recruitment by inducing chemokines and adhesion molecules [56]. 

Interestingly, increased expression of immune checkpoints responsible for modulating T cell 
activation such as cytotoxic T-lymphocyte antigen 4, programmed death-ligand 1 and 2 have 
also been associated with TCMR; suggesting these molecules might be regulating some of 
the interactions between T cells and APCs within the graft microenvironment [51]. Moreover, 
evidence that the programmed cell death protein 1 (PD1) pathway may be critical in main-

taining tolerance and preventing TCMR comes from a report case in which administration of 
an anti-PD1 antibody to a kidney transplant recipient with metastatic cutaneous squamous-
cell carcinoma resulted in allograft rejection [57].

B cells are robust APCs that can readily capture, process and present antigen for T cell recogni-
tion. Still, the role of B cells in TCMR development was initially overlooked since studies in B 
cell-deficient mice reported similar rejection rates in skin and heart transplants, as well as efficient 
CD4 T cell priming [58, 59]. The first evidence of a possible role of B cells in TCMR came from 
a systematic study of gene expression patterns using DNA microarrays in biopsy samples from 
renal allografts that found a surprising association between dense CD20+ B cell infiltrates and 
both, steroid resistance and graft loss [60]. Although the prognostic significance of CD20+ B cell 
infiltrates in acute cellular rejection is a matter of debate, the presence of these B cell clusters in 
cases of pure TCMR and their close proximity to CD4+ T cells suggests they might have antibody-
independent functions in allograft rejection by acting as APCs [61–64]. Interestingly, reversible 
rejection episodes with monocytic infiltrates and scant T cells have been described in severely 
T cell-depleted patients, emphasizing the central role of macrophages in allograft rejection [65].

Figure 2. T cell-mediated rejection. The hallmark of TCMR is the infiltration of mononuclear cells to the interstitium and 
tubules. (A) Prominent intersticial inflamatory cell infiltrate. PAS 5×. (B) Higher magnification reveals infiltration of the 
tubular epithelium by mononuclear cells (tubulitis). PAS 40×. Courtesy of Dr. Claudia Mendoza-Cerpa, Laboratory of 
Pathology, IMSS-CMNO, Guadalajara; México.
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Macrophages in TCMR exert dual functions by promoting initiation and progression of kid-

ney injury through secretion of proinflammatory mediators and interaction with other cells 
in the graft; whilst also in charge of tissue remodeling and repair during the recovery phase 

[66, 67]. Interestingly, reversible rejection episodes with monocytic infiltrates and scant T cells 
have been described in severely T cell-depleted patients, emphasizing the central role of mac-

rophages in allograft rejection [65].

An increase in IFN-γ induces CCL5, CXCL9, CXCL10, CXCL11, and MHC class I and II 
expression; and is an important feature of TCMR [68, 69]. In the context of TCMR, IFN-γ has 

protective and proinflammatory functions as evidenced by IFN-γ-deficient recipient animals 
or donors lacking IFN-γ receptors or IFN-γ-regulated factor 1 [68, 70].

5.2. Antibody-mediated rejection

Evidence form multiple studies supports the humoral theory of transplantation strongly 

advocated by Dr. Paul Terasaki, in which antibodies are not only responsible for immedi-
ate hyperacute allograft rejection but can produce chronic vascular damage, fibrosis, and 
graft rejection months or even years posttransplantation [71]. Hyperacute allograft rejec-

tion occurs soon after the graft is perfused with blood of the recipient due to preformed 

Figure 3. Interstitial hemorrhage in hyperacute allograft rejection. Microphotography shows severe capillary injury 
with subsequent peritubular capillary disruption. Hematoxylin & eosin 10×. Courtesy of Dr. Claudia Mendoza-Cerpa, 
Laboratory of Pathology, IMSS-CMNO, Guadalajara; México.
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Figure 4. Antibody-mediated rejection. Two of the three criteria required for AMR. (A to C) Microvascular inflammation: 
glomerulitis, peritubular capilaritis, and intimal arteritis. PAS and H&E 40×. (D) Linear staining of C4d in peritubular 
capillaries IP 40×. Courtesy of Dr. Claudia Mendoza-Cerpa, Laboratory of Pathology, IMSS-CMNO, Guadalajara; México.

antibodies directed primarily at the vasculature of the donor organ [72]. These antibod-

ies activate the complement cascade and induce neutrophil infiltration, endothelial dam-

age, interstitial hemorrhage (Figure 3), edema, fibrin deposition, platelet aggregation, and 
thrombosis; causing the organ to fail within a few hours after transplantation. Hyperacute 

rejection used to be a frequent occurrence in transplantation before cross-match tests were 

designed to screen potential recipients for circulating anti-HLA antibodies to the prospec-

tive donor [73].

Antibody-mediated rejection (ABMR) pathogenesis involves mechanisms of graft injury 
caused by donor-specific anti-HLA antibodies (DSAs) and non-HLA antibodies; and has been 
associated with progressive decline in graft function and poor transplantation outcomes [74]. 

Molecular changes in the microvasculature characteristic of tissue remodeling and repair are 
common manifestations of ABMR, as well as neutrophilic infiltration and fibrosis (Figure 4) 

[50]. ABMR can be acute or chronic, and can also manifest in cases of mixed TCMR/AMBR 
rejection [2]. It is estimated that close to 20% of renal allograft recipients will develop de novo 

DSAs within 10 years posttransplant [75]. DSAs bind to allogenic HLA and non-HLA targets  
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expressed by graft microvasculature and induce antibody-dependent cell cytotoxicity, com-

plement activation and modulation of signaling pathways within vascular cells. These events 

promote the development of irreversible lesions that compromise graft function that eventu-

ally lead to rejection [76].

Complement activation is a well-established mechanism of ABMR [22, 77–79]. Although in 

some models, a causal relationship between antibody-mediated complement activation and 
graft damage has not been demonstrated [80]. DSAs bind to their targets on donor endothe-

lial cells where they cause complement activation, and membrane attack complex formation. 
Interestingly, DSAs also activate an endothelial proinflammatory gene program to support 
allograft injury through noncanonical NF-κB signaling [81]. The graft microvasculature limits 

antibody injury by inducing the expression of the complement inhibitors CD55 and CD59 
[82]. IgG subclasses exhibit variability in their hinge region that controls Fc region affinity 
for FcγRs and complement components [83]. Transcriptomic studies of ABMR biopsies have 
revealed an enrichment of endothelial, NK cells and IFN-γ-inducible transcripts. NK cells 
secrete IFN-γ upon FcγR crosslinking, a positive feedback mechanism that enhances HLA 
expression on endothelial cells and results in more DSA deposition and activation of local 

immunity [82].

6. Future directions

Improving kidney transplantation outcomes and patient survival is a challenging task. It is 

now clear that the cooperation between the innate and humoral arms of the immune sys-

tem plays complex roles in graft tolerance and rejection. For this reason, understanding the 
immune mechanisms responsible for graft rejection in allotransplantation has becomes essen-

tial in our quest to develop better diagnostic tools and immunosuppressant therapies that can 
successfully be translated into the clinic.
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