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Abstract

A combination of lipid bilayer and cross-linked polymer network is the logical step 
in development of polymeric and liposomal nanoscopic systems to provide the 
natural level of functionality. From liposomal systems, lipobeads borrow the well-
developed methods for preparation, diversity of lipids to control the properties of a 
lipid bilayer, biocompatibility of the lipid bilayer, possibility to vary size and mor-
phology (passive targeting), availability of the external surface for attachment of 
various ligands (active targeting), encapsulation efficiency of both hydrophilic and 
hydrophobic molecules. Mechanical stability of the lipid bilayer and environmental 
responsiveness of the whole structure are the properties that hydrogel core brings to 
the new construct. The reports reviewed in this chapter demonstrate that lipobeads 
of nanometer and micrometer sizes can be prepared in different media, retain their 
stimuli responsiveness under physiological conditions, exhibit both reversible and 
irreversible aggregation, can be loaded with both small and high molecular weight 
molecules. As a platform for drug delivery systems, lipobeads have already been 
loaded with chemotherapeutics, malaria vaccine, and dermatological agent pro-
viding different controlled release profiles without leakage. Consecutive multistep 
triggering, new schemes of drug release, combined drug delivery, vesobeads, proteo-
lipobeads, enzyme-containing lipobeads, and hemi-lipobeads are the directions for 
their future development.

Keywords: liposomes, nanogels, supramolecular assembly, lipobeads, preparation, properties, 
application

1. Introduction: why lipobeads?

In accord with our understanding of complex biological mechanisms prevailing in situ, the 

arrangement of a lipid bilayer/hydrogel assembly—the lipid vesicles filled with polymeric 

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



networks (Figure 1) achievable experimentally in laboratory—could be a logical step in the 

development of polymeric and liposomal-beaded nanoscopic systems.

In the last several decades, different terminology, such as supramolecular biovectors (SMBVs), 
lipid-coated microgels, lipobeads (LB), gel-filled vesicles, lipogels, gel core liposomes, micro-

gel-in-liposomes, hydrogel-supported lipid bilayer, and nanolipogels particles (nLG), has 

been utilized to describe these lipid membrane/hydrogel structures. In this chapter, we use 

the term “lipobeads” for the spherical bipartite structures made of a hydrogel core enclosed 

within a lipid bilayer.

Actually, the bicompartmental structure of lipobeads mimics natural arrangements of living 

cells. Just look at the cell envelopes for all three main domains of life (eubacteria, archaea, and 

eukaryotes). They represent a successive organization of the macromolecular networks (cyto-

plasm, cell wall, capsule, etc.) and lipid bilayers (cell bilayer membranes and internal mem-

brane system), which Nature uses to provide workability, multifunctionality, and dynamism 

of living cells of different types.

Evidently, the first synthetic lipid vesicles filled with hydrogel (lipobeads) were reported in 
1987, when a successful polymerization within liposomes had been accomplished [1] and micro-

spherules of agarose-gelatin gels filled with gold particles had been mixed with liposomes in 
the course of their preparation [2]. In 1989, a concept of supramolecular biovectors (SMBVs) 
was filed as a patent application [3]. The SMBV system was prepared from polysaccharide gel 
fragments obtained by disruption of a gel of chemically cross-linked maltodextrins and sub-

sequently phospholipidated. In 1994, the SMBVs were reported as new carriers of active sub-

stances, such as interleukin-2 (IL-2) [4]. In 1995, lipobeads with Ca-alginate hydrogel core were 

obtained as a byproduct of a method for the preparation of Ca-alginate hydrogel nanoparticles 

using the internal compartment of liposomes [5]. In 1996, the spherical hydrogel/lipid bilayer 

constructs for the first time were named as “lipobeads,” and it was shown that a lipid bilayer 
was formed on the surface of hydrogel polymer beads upon the addition of phospholipids, if 

their surface had been modified with the covalently attached fatty acids [6]. Lipobeads with 

an environmentally sensitive hydrogel core prepared by hydration of lipid films with micro-

gel suspension were described as drug delivery systems in 1998 [7]. In the early 2000s, photo-

polymerization within liposomes was used for preparation of the so-called synthetic polymer 

complements with imprinted recognition sites [8] and the environmentally responsive nanogels 

[9]. The latter work contributed toward the characterization of the compatibility of nanogels 

Figure 1. Schematic of a spherical lipid bilayer/hydrogel assembly (lipobead).
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and phospholipid bilayer leading to spontaneous phospholipidation of nanogels [10]. Further 

studies on lipobeads development were devoted either to new methodologies including differ-

ent compositions of hydrogel core or different agents which could be loaded into the lipobeads.

The chapter has a comprehensive view on (1) synthetic feasibility, functionality and charac-

terization of lipobeads (Sections 2 and 3) and (2) their potential applications as precursors 
for novel encapsulated and combined drug delivery systems, as microbiochemical reactors, 

and as an experimental model to study the origin of life (Section 4). It is a useful source of 
references for the researchers from both academia and industry, who deal with the aforemen-

tioned areas of applications. It may be predicted that in the future, the demand in this infor-

mation will rise dramatically because of a growing interest, especially, in the encapsulated 

drug delivery systems with tiny bioscopic mechanisms of drug release.

2. Strategies of lipobeads preparation

Two general methods available to date for preparation of artificial bilayer-coated hydrogel 
particles (lipobeads, giant, or nano) are sketched in Figure 2.

The first one (Figure 2A) uses the liposomal interior as a chemical reactor for the formation of 

hydrogel by polymerization [1, 8–22]. In this method, lipid bilayer should be sealed enough 

to retain the concentration of pregel components and strong enough to withstand the steps 

preventing polymerization in the surrounding medium.

The second one (Figure 2B) is based on the formation of lipid layers around hydrogels after 

microgel/liposome mixing. In this case, lipid bilayer adsorption on the surface of hydrogel 

particles prepared separately was promoted via Coulombic attraction between the charged 
microgels and oppositely charged lipids [7, 23, 24], hydration of lipid films with micro- or 
nanogel suspension [2, 3], introduction of hydrophobic anchors at the microgel surface 

around which adsorbing lipids may assemble [6, 25–28], centrifugation of microgels onto a 

lipid film [29], microfluidic flowing [21], and emulsification [30–32].

In both cases, it is the stability, fluidity, and permeability that are the main properties of a 
lipid bilayer, which should be governed in the course of lipobeads engineering.

2.1. Effectors of the lipid bilayer fluidity, stability, and permeability

Stability and permeability of a lipid bilayer depend on its fluidity, which can vary with tem-

perature and phospholipid composition. Bilayers undergo a change from liquid to gel (solid) 
state at the so-called lipid (or order-disorder) phase transition temperature (T

t
) characteristic 

to a phospholipid used (Figure 3).

Therein, the shorter the length of hydrocarbon chains, the lower is the T
t
, a long hydrocar-

bon chain at sn-1 position and a short chain at sn-2 position on glycerol exhibit a lower T
t
 

than that of a phospholipid with the opposite arrangement, presence, and position of double 

bonds in the hydrocarbon chain makes T
t
 lower than that of the saturated analogue; a bulky 

Lipobeads
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head group confers the lipid a lower T
t
 than it would be with a smaller head group, the phos-

pholipids with negatively charged head groups favor a lower T
t
 than that of an uncharged 

phospholipid. Ionic conditions can modulate this effect, for example, presence of cations in 
the surrounding water increases T

t
.

In the liquid-crystalline “disordered” state, the membrane is fluidic, namely: (i) both alkane chains 
and head groups of phospholipids are more flexible than in the solid “ordered” state, (ii) the area 
lipids occupy becomes greater by changing from a 0.48 nm2/head group to 0.7 nm2/head group, 

that is, bilayer expands, (iii) lateral diffusion of phospholipids in the plane of the bilayer and rota-

tion of lipid molecules around C─C bonds accelerate, and (iv) transverse “flip-flop” migration of 
lipids from one monolayer to the other side of the bilayer becomes more probable.

Figure 2. Two methods for lipobeads preparation: (A) formation of hydrogel core by polymerization within vesicle 
interior and (B) mixing of separately prepared lipid vesicles and hydrogel particles (microgels or nanogels).

Figure 3. Structure of lipid bilayer below and above the order-disorder transition temperature.
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The factors affecting the lipid phase transition temperature are crucial for lipobeads engineer-

ing. Indeed, one can expect the lipid bilayer to be more elastic (favorable for formation of unil-

amellar membrane) and less sealed (unfavorable for gelation within liposomal interior) above 

T
t
 than below T

t
. It is known that stability and permeability of naturally occurred membranes 

can be varied by balancing composition of cholesterol and alcohols. Particularly, cholesterol 

strongly interacts with phospholipids and inhibits the passive permeability of lipid membrane 

to water and small electrolytes and nonelectrolytes. The extent of “sealing” directly depends on 

the amount of cholesterol present, up to moderate levels of cholesterol. However, at very high 

levels of cholesterol, pure cholesterol phase separates out and leads to an increased leakage 

through interfacial lipids and unstable aggregates of cholesterol. On the contrary, the insertion 

of anesthetic molecules, such as alcohols, into the membrane increases the membrane fluid-

ity at a given temperature by depression of the lipid order-disorder transition temperature. 

Additionally, sphingolipids are commonly believed to protect the cell surface against harmful 

environmental factors by forming a mechanically stable and chemically resistant outer leaflet 
of the plasma membrane.

2.2. Polymerization within liposomal nano-/microreactors

In general, preparation of lipobeads using vesicle interior as microreactors includes a number 

of crucial steps, as shown in Figure 2A.

First of all, encapsulation of hydrogel-forming components into liposomes can result from 

hydration of lipid cast film formed upon solvent evaporation [1, 2, 5, 9, 11, 13, 14, 16, 32], elec-

troformation [12, 22, 33, 34], or rapid phase evaporation [19, 20]. The size of liposomes ensures 

the final size of lipobeads. Depending on the size, lipobeads can be classified into two groups: 
nanolipobeads (<1000 nm) and giant lipobeads (>1 μm). Nanolipobeads should be used in 

realistic drug delivery systems, whereas giant lipogels permit a direct study of structural 

functionality of the hydrogel/lipid bilayer assemblies, cargo loading, and release mechanisms 

[12] using optical microscopy.

For 100-nm lipobeads, the liposomal formulations have to be sonicated [1, 9] or extruded 

through a nanopore filter of a needed pore size [5, 8, 11, 14, 16, 19, 32]. Another approach 

to control the size of pre-lipobeads is based on hydrodynamic focusing of a stream of the 

liposome precursor solution by the flow of a hydrogel-forming solution within a microflu-

idic device [21]. Although the microfluidic-directed approach and electroformation are very 
elegant methods, they are hardly suitable for a scaled production of lipobeads with regards 

to pharmaceutical applications.

If the ultimate goal was to engineer the giant lipobeads greater than 1 μm, the gentle hydra-

tion of a phospholipid cake [17, 36] or a hybrid agarose/lipid film [unpublished], electrofor-

mation [12, 22, 33, 34], emulsification [32], and reverse phase evaporation [1, 13, 30] were used 

without any agitation of the lipid formulations.

Typical lipid formulations for preparation of lipid vesicles filled with the hydrogel-forming 
solution are shown in Table 1.

Lipobeads
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Second, when a suspension of vesicles filled with the hydrogel-forming solution is prepared, 
it is important to prevent cross-linking or polymerization outside those vesicles. This has 

been done by several methods, such as a 5- to 20-fold dilution [9, 11, 12, 14, 16, 22, 33, 34], gel  

Lipid formulation Method for 

prelipobead 

preparation

Size Ref.

Main phospholipid T
t

Other components

EPC −10°C Cholesterol Reverse phase 

evaporation, 

sonication

~600 nm [1]

— Lipid film hydration, 
sonication

~150 nm [9]

— Detergent removal or 
extrusion

~200 nm [13]

— Emulsification 1–40 μm [32]

Cholesterol Reverse phase 

evaporation

~1–2 μm [30]

— Lipid film hydration, 
extrusion

~100 nm [14]

DOPC/cholesterol ~100 nm [19]

NH
2
-PEG-DSPE/

cholesterol

~120 nm [11]

Cholesterol 0.2–1 μm [8]

— 100–200 nm [37]

DOPC −22°C — Electroformation 10–30 μm [12]

0.2–100 μm [22, 34]

DPPC 42°C — Lipid film hydration, 
extrusion

~800 μm [5]

Cholesterol/DCP Hydrodynamic 

focusing in 

microfluidic device

150–300 nm [21]

SOPC, neutral 6°C DOTAP, positively 
charged

Lipid film hydration, 
extrusion

~350 nm [16]

Soybean polar lipid 
extract: PC (45.7%), 
PE (22.1%), PI 
(18.4%), PA (6.9%), 
others (6.9%)

? – Lipid film hydration 10–50 μm [17]

HSPC 52°C Cholesterol Lipid film hydration 2–200 μm [36]

Abbreviations: DCP: dihexadecyl phosphate, DOPC: 1-2 dioleoyl sn-glycero 3-phosphocholine, DOTAP: dioleoyl 
trimethylammoniumpropane (positively charged), DPPC: 1,2-dipalmotyl-snglycero-3-phosphatidylcholine, DSPE: 
1,2-distearoyl-sn-glycero-3-phosphoethanolamine, EPC: Egg chicken l-α-phosphotidylcholine, HSPC: Hydro Soy l-α-

phosphotidylcholine, PA: phosphatidic acid, PC: phosphocholine, PE: phosphatidylethanolamine, PEG: polyethylene 
glycol, PI: phosphatidylinositol, SOPC: 1-stearoyl-sn-glycero-3-phosphocholine.

Table 1. Lipid formulations used for preparation of lipobeads by polymerization within lipid vesicles.
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filtration [1, 21], centrifugation and dialysis [5, 13, 20, 30], or introduction of polymerization 

scavengers (e.g., ascorbic acid [19]) into the extravesicular space. In addition, hydrogel-form-

ing solution as well as cross-linker and initiator can be microinjected directly into the internal 

compartment of a giant unilamellar phospholipid vesicle (GUV) [17].

The third step is gelation of the hydrogel-forming solution entrapped within the closed lipid 

bilayer. Thermal and ionotropic cross-linking are the examples of physical cross-linking reac-

tions. Some hydrogel cores were made of polysaccharides when temperature changes [2, 5, 

32]. Indeed, agarose [5] and κ-carrageenan [32] are the temperature-sensitive polysaccharides 

which structure in aqueous solutions undergoes a transition from a random-coil conformation 

to the cross-linked double helixes upon cooling. Agarose is not biodegradable, but its combina-

tion with gelatin can bring biodegradability [38]. Gelatin is a thermoresponsive protein, form-

ing a reversible cross-linked network by cooling a water-based solution of the polymer below 

35°C. The hydrogel can be liquefied by heating it to physiological temperatures. Interestingly, 
κ-carrageenan, an anionic polysaccharide carrying one sulfate group, can be cross-linked both 
thermally (upon cooling) and ionotropically in the presence of divalent or monovalent cations 

[38]. Similar to alginate, the degradation of carrageenan hydrogels is driven by the exchange 
of ions with the surrounding fluids. In the course of ionic cross-linking within interior of 
vesicles, the sections of the polymer backbone carrying the charge bind with ions of opposite 

charge. For example, when multivalent cations (e.g., Ca2+) were added to a water-based algi-

nate [5] or poly(ethylene dioxythiophene)/poly(styrene sulfonate) [17] solutions, they bound 

adjacent polymer chains forming ionic interchain bridges that caused a cross-linking. The pH-

driven cross-linking inside liposome was carried out by lowering the pH of aqueous solution 

of poly(acrylic acid) carrying carboxyl groups [20, 30].

The greatest portion of works on gelation within liposomal reactor used photopolymeriza-

tion to generate a strong covalently cross-linked hydrogel [1, 9, 11, 14, 16, 22, 33, 34, 39]. The 

monomer and cross-linker depends on the hydrogel core properties required for different 
applications, as shown in Table 2.

Finally, the formulation has to be washed from unreacted chemicals using centrifugation and/

or dialysis. In the course of this step, the required medium external to the lipobeads can be 

introduced. For example, lipobeads could be dispersed in distilled water [13, 30, 36], buffers 
with pH varied from 7.0 to 7.8 [1, 8, 9, 11, 14, 16, 17, 19–21, 30], or aqueous solutions of sucrose 

[12, 24, 33, 34]. If necessary, the prepared lipobeads can be dried by gentle evaporation in 

temperature gradient to be stored at 4°C.

2.3. Hydrogel/liposome mixing

From the general scheme of hydrogel/liposome mixing (Figure 2B), one can conclude that 

hydrogel particles and liposomes should be prepared separately, therein the final size of 
lipobeads will be defined by the size of hydrogel particles prepared before mixing with 
liposomes. It has been demonstrated microscopically [40, 41] that hydrophobic modification 
of the nanogels is not required for spontaneous formation of the bilayer on their surface. 

Together with the other studies [42], these findings presume that hydrogel/lipid bilayer is an 
energetically favorable structure.

Lipobeads
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Lipid formulations used for preparation of lipobeads by hydrogel/liposome mixing are sys-

temized in Table 3. Phospholipid with different T
t
 were employed to prepare conventional 

liposomes mostly by the lipid film hydration followed by sonication or extrusion in a variety 
of buffers at pH 7.0–7.6 and deionized water. Nonetheless, the experiments on giant lipobeads 
show [36, 41] that injection of ethanol solution of phospholipid into hot water is a promising 

method for preparation of lipidic formulations, which may allow one to exclude the time-

consuming steps of lipid film formation and hydration and reduce the time for the scaled 
fabrication of lipobeads from days to hours.

There are only a few reports (Table 4) that deal with nanogels to prepare lipobeads on the 

nanometer scale: one group employed a high pressure homogenizer to crash bulk poly-

saccharide hydrogel down to nanosized particles [39, 42], the other group used nanogels 

extracted from liposomal reactors [9, 10, 26, 27]. In principle, emulsion polymerization 

Monomer. Cross-linker Initiator Prevention of 

macroscale 
gelation

Property of hydrogel 

core

Ref.

PAAm MBA ACVA + TEMED GPC Not specified [1]

PSA BAA ACVA GPC Not specified [8]

Anchored and 

nonanchored 

PNIPA-VI

MBA DEAP Dilution 25-fold Temperature and pH 

sensitivity

[9]

Anchored PNIPA TEGDM DEAP Dialysis Temperature 

sensitivity (probably)

[13]

PNIPA or PAAm MBA DEAP Dilution 20-fold Temperature sensitive [14]

PNIPA MBA DEAP Gel filtration Temperature 

sensitivity

[21]

dex-HEMA HEMA IC2959 Dilution 10-fold Enzymatically 

degradable 

(dextranase)

[16]

PAA MBA IC2959 Radical 

scavenging by 

AA

pH sensitivity 

(probably)

[19]

PNIPA MBA DEAP Dilution Temperature, pH, pI 

sensitivity

[22, 33, 34]

PLA-PEG-PLA Diacrylate IC2959 Dilution 5-fold Biodegradable [11]

PAAm MBA DEAP Dilution 20-fold 
by glucose 

solution (2.8 M)

Enzymes entrapment, 

storage, protection, 

and release

[37]

Abbreviations: ACVA: 4,4′-azobis(4-cyanovaleric acid); BAA: bis-acrylamido acetate; DEAP: 2,2′-diethoxyacetophenone; 
dex-HEMA: dextran hydroxyethyl methacrylate; GPC: gel permeation chromatography; IC2959: Irgacure 2959; MBA: 
N,N-methylenebisacrylamide; PAA: polyacrylic acid; PAAm: polyacrylamide; PEG: polyethylene glycol; PLA: polylactide; 
PNIPA: poly(N-isopropylacrylamide); PSA: sorbitol acrylate; TEMED: N,N,N′,N′-tetramethylethylenediamine; TEGDM: 
tetraethylene glycol dimethacrylate; VI: 1-vinylimidazole.

Table 2. Composition and properties of hydrogel core of lipobeads prepared by polymerization within lipid vesicles.
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enables preparation of hydrogel particles with a diameter less than 150 nm. However, there 

is a problem of complete removal of the residual materials. In the absence of an added sur-

factant, the method is called precipitation polymerization. With the latter two methods, the 
lipobeads of 1-μm diameter are produced [2, 7, 23, 25, 28, 31]. To prepare giant lipobeads 

with a diameter up to 100 μm, the inverse suspension polymerization (ISP) method is com-

monly applied [6, 24, 35, 43–45].

Liposomes can be brought into contact with hydrogel particles by mixing hydrogel parti-

cles and liposomes, addition of hydrogel particles into dried lipid film before hydration or 

Lipid formulation Lipid vesicles preparation Medium (pH) Ref.

Main phospholipid T
t

Other components

DOPC
DOPG

−22°C
−18°C

Cholesterol/triolein w/o emulsion, organic 

solvent evaporation

5% dextrose 
HEPES (pH 7.4)

[2]

EPC

DPPC
−10°C
42°C

Cholesterol Injection of ethanol 

solution of PL in water, 

homogenization

PBS (pH 7.4) [3, 

4, 

40]

EPC −10°C – Lipid film hydration, 
sonication or extrusion

HEPES (pH 7.4) [6]

DPPC/DPPG
SOPC/DOPG

42°C/41°C
6°C/−18°C

– Tris (pH 7.0) [7]

EPC/DMPE −10°C/50°C Cholesterol HEPES (pH 7.0) [44]

EPC −10°C PS/cholesterol HEN (pH 7.4) [45]

DMPC/DPPC 24°C/42°C – PBS (pH 7.4) [36]

EPC −10°C PS/cholesterol HEN (pH 8.0) [46]

PE 63°C Olein oil/cholesterol HEPES (pH 7.4) [47]

SOPC
SOPC
DOPE

6°C
6°C
−16°C

DOPA(−)
DOTAP(+)
DOTAP(+)

Water [23]

POPC −2°C – TRIS (pH 7.2) [28, 

48]

DOPC
DOPG

−22°C
−18°C

DOTAP(+) HEPES (pH 7.6) [24]

HSPC 52°C – w/o/w microemulsion Water [32]

HSPC 52°C Cholesterol Injection of ethanol 

solution of PL in hot water, 

sonication

Water [37, 

42]

Abbreviations: DMPC: 1,2-dimyristoyl-snglycero-3-phosphatidylcholine, DMPE: 1,2-Dimyristoyl-sn-glycero-3-
phosphoethanolamine, DOPA: dioleoyl glycerol phosphate (negatively charged), DOPC: 1-2 dioleoyl sn-glycero 

3-phosphocholine, DOPE: dioleoyl glycerol phosphoethanolamine (neutral), DOPG: dioleoylphosphatidylglycerol, 
DOTAP: dioleoyl trimethylammoniumpropane (positively charged), DPPC: 1,2-dipalmotyl-snglycero-3-
phosphatidylcholine, EPC: Egg chicken l-α-phosphotidylcholine, HSPC: Hydro Soy l-α-phosphotidylcholine, 

PE: phosphatidylethanolamine, PL: phospholipid, POPC: 1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, PS – 
phosphatidylserine, SOPC: 1-stearoyl-sn-glycero-3-phosphocholine.

Table 3. Lipid formulations used for preparation of lipobeads by hydrogel/liposome mixing.

Lipobeads
http://dx.doi.org/10.5772/intechopen.70056

57



hydration of the lipid film by aqueous suspension of hydrogel particles. The formation of 
lipid bilayer around hydrogel particles can be enhanced by shaking, vortexing, pipette agita-

tion, centrifugation, freezing-thawing, heating-cooling, or their combination. The fusion of 

liposomes will be more advanced at temperatures higher than the T
t
 of the phospholipid 

used. Moreover, depending on the electrostatic interaction between bilayer and hydrogel, 

the liposomes can adsorb on the particles surface, diffuse inside, or/and fuse on the surface 
with formation of lipobeads [24]. Usually, free liposomes are washed out by centrifugation or 

removed by ultrafiltration or dialysis. Finally, the lipobeads can be dispersed in a buffer with 
pH ranged from 7 to 8 or distilled water.

2.4. Modification of hydrogel core and lipid bilayer

To the great extent, the major methods for lipobeads’ synthesis (polymerization within lipo-

somal interior and liposome/hydrogel mixing) and further functionalization are analogous 

to those used for engineering their compartments—conventional nanogels and lipid bilayers.

Hydrogel bead composition Method of bead preparation Size Property of hydrogel beads Ref.

Agarose-gelatin cross-linked by 

cooling

Emulsification ~1–5 μm Degradable [2]

Cross-linked polysaccharide 

fragments

Extrusion in high-pressure 

homogenizer

30–60 nm Temperature, pH, pI: core/
bilayer interactions

[39]

Acylated PVA cross-linked by 
freeze-thaw

ISP 1–100 μm – [46]

PMAA-NPMA cross-linked by 

MBA
ISP ~6 μm pH sensitivity [7]

Anchored PDMAA cross-linked 
by E-BIS

ISP 5–600 μm –

Antibody-antigen 

interaction [45]

[35, 

43–45]

dex-HEMA-MAA (−) or dex-
HEMA-DMAEMA (+)

Emulsification 2–5 μm Degradable [23]

Acylated PVA cross-linked by 
freeze-thaw

ISP ~80–100 

μm

– [46]

Anchored PNIPA/P(NIPA-AA) 

core-shell cross-linked by MBA
Precipitation 

polymerization

~0.3–2 μm Temperature, pH sensitivity [25, 28]

Sodium hyaluronate-PEGDA Emulsification 1–15 μm Drying/wetting [31]

PAAm-allylamine (+) or PAAm-

AMPS (−) cross-linked by MBA
ISP 1–100 μm Electrostatic liposomes/MG 

interactions

[24]

Abbreviations: AA: ascorbic acid, AMPS: 2-acrylamido-2-methyl-1-propanesulfonic acid, dex-HEMA: dextran hydro-

xyethyl methacrylate, DMAEMA: dimethylaminoethyl methacrylate, E-BIS: N,N′-ethylene-bis(acrylamide), ISP: inverse 
suspension polymerization, MAA: methacrylic acid, MBA: N,N-methylenebisacrylamide, NPMA: 4-nitrophenyl metha-

crylate, PAAm: polyacrylamide, PDMAA: polydimethylacrylamide, PEGDA: poly(ethylene glycol) diglycidyl ether, 
PMAA: polymethacrylic acid, PNIPA – poly(N-isopropylacrylamide), PVA: polyvinyl alcohol.

Table 4. Composition and properties of hydrogel particles for lipobeads prepared by hydrogel/liposome mixing.
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2.4.1. Hydrogel core

Polymeric nanogels can be synthesized by three straightforward methods: (i) cross-linking 
polymer chains within already formed nanoparticles using, for example, emulsion polymer-

ization technique [47–49], (ii) polymerization within the liposomal interior followed by the 

lipid bilayer removal [9], and (iii) photolithographic fabrication of submicrometer hydrogel 

particles using the PRINT technique [50, 51] or step and flash imprint lithography (S-FIL) [52] 

as an alternative nanoimprint photolithographic approach.

To engineer the stimuli-responsive nanogels (Figure 4), a molecule of interest can be conju-

gated to the polymer network through a cleavable tether, so that when the tether is cleaved, 

the drug is allowed to diffuse into the nearby medium. Alternatively, if different molecules are 
trapped within an environmentally sensitive polymer network with or without environmen-

tally responsive cleavable linkers, the network either changes its volume (swells/shrinks) or 

degrades when the environmental conditions change, allowing the molecules to be released. 

For example [53], the doxorubicin-loaded, pH- and redox-sensitive poly(oligo(ethylene gly-

col) methacrylates-ss-acrylic acid) nanogels exhibited strong internalization by human hepa-

tocellular carcinoma cells (Bel7402) under reduced opsonization and phagocytosis. Herein, 
the intracellular glutathione (GSH) triggered the release of doxorubicin from the nanogels 
into cytosol for subsequent entering the nucleus.

Figure 4. A futuristic view on a stimuli-responsive nanogel with entrapped or/and tethered molecules of interest.
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2.4.2. Lipid bilayer

Specific functionality and entrapment of both hydrophilic and hydrophobic molecules into a 
liposomal interior are the two main objectives of the liposomal system development. Eventually, 

four types of liposomal systems can be distinguished (Figure 5), namely: classical “plain” lipo-

somes, “stealth” liposomes, ligand conjugated liposomes, and stimuli-sensitive liposomes.

The studies on “plain” (traditional) liposomes revealed the difficulty in loading of some types 
of molecules and leakage of contents from the liposomal interior [54–58]. The further devel-

opment of the “plain” liposome systems aimed at overcoming these obstacles. In particular, 

to reduce leakage from liposomes, phospholipids with a higher phase transition temperature 

[59] were used, and cholesterol [60] and sphingomyelin [61] were incorporated into the lipid 

bilayer to make it more solid at temperatures of application.

Loading and retention of molecules of interest within liposomes are the molecule dependent 

processes. For example, weak bases were loaded in response to pH gradients [62–66]. Some mol-
ecules, such as doxorubicin, exhibited good retention properties under conditions enhancing 

their precipitation inside liposomes [67–69], whereas retention of highly hydrophobic molecules, 

like paclitaxel, was still a challenge [70, 71] until they were converted into the weak bases [72].

Furthermore, the pharmaceutical studies revealed that (i) serum proteins effected on release 
of drug molecules entrapped into liposomes, (ii) liposomes were cleared very rapidly from  

Figure 5. Four evolutionary steps of lipid bilayer modification and functionalization.
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circulation by uptake into the cells of the mononuclear phagocyte system (MPS), predomi-
nantly in the liver and spleen [73, 74], and (iii) there existed both cellular and intracellular 

barriers to liposomal delivery [75]. The so-called “stealth” liposomes were developed by sta-

bilizing liposomes with protective polymers (e.g., polyethylene glycol, PEG) [76] in order 

to increase their circulation time within a biologically active environment, such as blood. 

In addition, the clearance of liposomes from the body was found [74, 80] to be slower, if 

they contained neutral or slightly negative phospholipids and their size was around 100 nm. 

Therefore, the rate of molecules’ release should be optimized [77–79].

Ligand-conjugated liposomes were built to target specific cells, intracellular organelles, tumor 
microenvironment, and/or facilitating receptor-mediated endocytosis (attachment of antibodies, 
folate, transferrin, tyrosine kinase, vascular endothelial growth factor, introduction of fusogenic 

lipids, and membrane-active peptides). In particular, three ways to facilitate the intracellular 

drug delivery include (i) introduction of fusogenic lipids or membrane active peptides into 

liposomal bilayer enhances fusion or even disruption of cell/organelle membrane and thereby 

improves cytoplasmic delivery of drug [81–85], (ii) utilization of macrophages for natural endo-

cytosis of drug-loaded liposomes [86], and (iii) receptor-mediated endocytosis of ligand-targeted 

liposomal drug carriers into the intracellular compartment (see reviews [87–90]).

The release of liposomal contents can be triggered either remotely by heat, radiation, and 

ultrasound or locally by pH, enzymes, and redox triggers (see review [91] and references 

therein). For these purposes, the lipid bilayer can be modified with stimuli-sensitive phos-

pholipids, polymers, cleavable tethers, and linkers, as shown in Figure 5. Recently, the lipid 

bilayer consisting of molecules of the temperature-sensitive phospholipid 1-palmitoyl-2-hy-

droxy-sn-glycero-3-phosphocholine (MSPC) and decorated with gold nanorods was shown 
to become more permeable for the pain blocking molecules (tetrodotoxin) without a tissue 

burn when exposed repeatedly to a low intensity near-infrared irradiance [92].

2.5. Encapsulation strategies

2.5.1. Loading during gelation within liposomal interior

Unfortunately, little work has been done so far to test loading capability of lipobeads pre-

pared by polymerization within the lipid vesicles [11, 14, 15, 20, 30]. Typically, a hydrophobic 

cargo was either incorporated within lipid bilayer at the step of lipid vesicle formation or 

copolymerized with hydrogel core as an anchor, whereas a hydrophilic cargo was added as 

a component of the hydrogel-forming solution and incorporated into the intravesicular space 

before gelation started [9, 11, 13].

The main challenge of the scheme when a load is introduced into the aqueous phase followed by 

rehydration of a lipid film and further polymerization within a liposomal reactor might be the 
damage to the loading molecules by toxic ingredients of the hydrogel-forming solution (if any) 

and/or high temperature and UV radiation initiating polymerization. This approach can be espe-

cially problematic for encapsulation of proteins, because of denaturation. Nonetheless, it has been 

reported that antigen model (BSA) [30] or combination of protein antigen (Pfs25) and oligonucle-

otide sequence (CpGODN) encapsulated into pH-cross-linked PAA hydrogel core of lipobeads 
remain intact and active [20]. Moreover, encapsulation efficiencies of lipobeads were shown to be 
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by 10% higher than those for liposomal carriers. A high encapsulation efficiency of lipobeads has 
been demonstrated also for hemoglobin [14, 15], which withstands the conditions of free radical 

polymerization and UV radiation. The other example of successful coencapsulation of hydrophilic 
proteins (IL-2) and small hydrophobic molecules (TGF-receptor-I inhibitor, SB505124) into the 
biodegradable hydrogel core of lipobeads has been presented in [11]: encapsulation efficiencies 
were 80 and 36%, respectively, and UV polymerization did not compromise bioactivity of both 
immunomodulators. Recently, PAAm lipobeads with a good encapsulation efficiency (37%) of 
enzymes (bovine Cu, Zn-superoxide dismutase, and bovine milk lactoperoxidase) were synthe-

sized to prove that the UV irradiation used for interior gelation did not cause any reduction in the 
enzymatic activity of the proteins [37].

2.5.2. Loading of lipobeads prepared by hydrogel/liposome mixing

In the case of lipobeads prepared by hydrogel/liposome mixing, hydrophilic cargos usually 

are introduced into the interior of hydrogel particles, whereas hydrophobic ones—into the 

lipid bilayer of liposomes before their mixing. Some molecules can penetrate through the 
lipid bilayer into the hydrogel core.

Back in 1987, the 200–600-nm agarose-gelatin nanogels were filled with colloidal gold par-

ticles prior to mixing with liposomes to form lipobeads [2]. Since colloidal gold particles 
are very adsorptive for proteins and peptides, their encapsulation into hydrogel core can 

increase the loading capacity of lipobeads. The cytokine Interleukin-2 (IL-2) plays an impor-

tant role as an immunostimulator and can be relevant as a treatment by itself for cancer and 

HIV. However, the difficulties faced today with IL-2 are its toxicity and short half-life. To 
resolve these problems, this protein was bound to the lipobeads (polysaccharide hydrogel 

nanoparticles coated with lipid bilayer) [4, 93]. In principle, the lipobeads can be loaded with 

a number of entities just by their incubation in the corresponding solutions, for example, 

Ca2+ ions and drug mimicking molecules [8], adenosine triphosphate (ATP) [35], and dextran 

(1.5–3.0 kDa) [44]. Herein, it was found that permeability of the lipid membrane was similar 

to the free bilayer. To incorporate transmembrane proteins into the peripheral membrane of 

lipobeads, the hydrogels core particles were mixed and incubated with liposomes containing 

the proteins of interest within their lipid bilayer [45].

The only chemotherapeutic drug—doxorubicin—was loaded into lipobeads [6, 43]. Encapsulation 

was performed before lipobeads formation by soaking the dry hydrogel particles in a drug-dis-

solved solution. The drug diffuses inside in the course of the polymer network swelling and 
mesh size increase. Further mixing of hydrogel particles with liposomes encapsulates the drug 

into the lipobeads. As a result, the unbelievably high doxorubicin concentration of ~2 M, which 

is 10-fold the concentration in liposomes [94], was achieved.

A lecithin-based microemusion method was proposed for fabrication and loading of single-core 

or multicore lipobeads [31]. The loading efficiency of caffeine into thus prepared sodium hyal-
uronate lipobeads was obtained to be 30%. A concentration of natural moisturizing factor close 
to the one present in corneocytes (15%) was encapsulated into the lipobeads, which acquire an 
enhanced water retention ability similar to corneocytes. This makes them potential for applica-

tions in cosmetics and dermatology.
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Encapsulation of a protein drug into hydrogel particles before lipobeads formation can be 

performed either by formation of a hydrogel particle in the presence of a protein drug or by 

incubation of the preformed hydrogel particles in a protein solution. The first approach again 
could be problematic due to a danger of protein denaturation. The second approach is limited 

by the size-exclusion effect resulting in a lower loading concentration of proteins. However, 
encapsulation of proteins into microgels is a promising tool to increase the amount of drug 

loaded in a prelipobead (loading capacity) by using the “intelligent” properties of polymer 

networks (swelling/shrinking ability in response to stimuli) [95].

3. Hydrogel core swelling/collapsing and lipobeads properties

The three-dimensional polymer network within a closed lipid bilayer (liposome) can be con-

sidered as a gigantic single molecule stabilized by chemical (covalent bonds) or/and physical 

(ionic bonds, entanglements, crystallites, charge complexes, hydrogen bonding, van der Waals, 

or hydrophobic interactions) cross-links. The hydrogel core is also an open container with semi-

permeable boundaries, across which water and solute molecules can move whereas charged 

(ionizable) groups fixed on the network chains cannot move (Figure 4). Herein, the network 

of cross-linked polymers exhibits both liquid-like and solid-like behavior [96–99]. Therefore, 

because of its high water content and elastic nature similar to natural tissue, hydrogel core 

within a liposome is solid enough to support lipid bilayers and liquid enough to keep the mem-

brane intact and functional.

Besides the mechanical stability that hydrogel core provides to the lipid bilayer, the stimuli-
sensitivity of the polymer network can be used for managing the environmental responsive-

ness of lipobeads.

3.1. A variety of possible hydrogel cores

Depending on the composition of a gel/solvent system, the polymer and cross-linking chem-

istry, nanogels swell or shrink discontinuously or continuously, reversibly or irreversibly in 

response to many different stimuli (temperature, pH, ion concentration, electric fields, light, 
reduction/oxidation, enzymatic activity, etc.) [47, 100–105]. In general, various types of hydro-

gels based upon either natural (e.g., hyaluronic acid, collagen, chondroitin sulfate, alginates, 

fibrin, and chitosan) and synthetic polymers made of neutral (e.g., 2-hydroxyethyl methacry-

late, N-alkylmethacrylamides, N-alkylacylamides, and N,N-dialkylacrylamides), acidic (e.g., 

acrylic acid, metacrylic acid, and 2-acrylamido-2-methyl propane sulfonic acid), or basic (e.g., 

N,N-dialkylaminoethyl methacrylate, 1-vinylimidasole, and methacryloyoloxyethyltrialkyl-

ammonium bromide) monomers have been prepared, studied, and used in numerous appli-

cations (bioseparation, tissue engineering, sensing and molecular recognition, drug and gene 

delivery, controlled release, artificial muscles, and flow control).

3.1.1. Temperature-sensitive volume change

Typically, the thermoresponsive hydrogels are classified as having either positive or negative 
volume phase transition with a characteristic temperature (TV) [106]. Hydrogels exhibiting 
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positive volume phase transition (“thermophilic” hydrogels) swell upon heating. In contrast, 

hydrogels exhibiting negative volume-phase transition (“thermophobic” hydrogels) collapse 

upon heating. The “thermophobic” hydrogels have been studied the most, and a popular 

example is poly(N-isopropylacrylamide) (PNIPA) [107]. In contrast, “thermophilic” behavior 

in water is not very common for synthetic polymeric materials and likely, because of that, lipo-

beads with a “thermophilic” hydrogel core have not been attempted yet. Nevertheless, a num-

ber of “thermophilic” hydrogels showing a positive thermosensitive volume change have been 

already fabricated [108–110]. Chitosan cross-linked with glutaraldehyde was found to exhibit 

the swelling behavior in aqueous media at physiological temperatures and pHs [111]. The graft 

copolymerization of mixtures of acrylamide (AAm) and acrylonitrile (AN) with Gum ghatti 
(Gg) and cross-linking with MBA resulted in a hydrogel capable of twofold swelling when tem-

perature raised from 30 to 40°C in distilled water [112]. The interpenetrating polymer networks 

(IPN) composed of poly(acrylic acid) (PAAc) and poly(acrylamide(AAm)-co-butyl methacry-

late (BMA), as well as the random poly(AAm-co-AAc-co-BMA) hydrogels cross-linked with 
MBA also increased their volume (~2.5-fold) within the 30–40°C range in water [113]. Positive 

thermosensitivity with a twofold swelling ability in the range from 30 to 45°C was reported 
for a nonionic chemically cross-linked gel made of N-acryloylglycinamide as a monomer 

and MBA as a cross-linker [109]. An abrupt increase in volume to the similar extent within 

the interval of 30–40°C was observed in the polyzwitterionic hydrogels consisting of N,N′-
dimethyl(methacroylethyl)ammonium propanesulfonate or N,N′-dimethyl(acrylamidopropyl) 
ammonium propanesulfonate cross-linked with EGDM [114]. The gels with positive volume 

transitions at physiological temperatures, pH and in the presence of salt can be useful in biolog-

ical or biomedical applications. However, in all abovementioned cases, under physiological pH 

and salt concentrations, the hydrogels either do not show thermophilic behavior at all or the 

transition temperature shifted to the nonphysiological values. Nonetheless, recently, hydro-

gels based on the cross-linked poly(allylurea-co-allylamine) (PAU) copolymers were prepared 

to unveil a fast and pronounced “thermophilic” increase in volume within the physiological 

ranges of temperature, pH, and concentration of salt [110].

Thus, first and foremost, a temperature range where the hydrogel shrinks or swells intrinsi-
cally depends on the chemical nature of the polymer constituting its network. Herein, the 

volume changes in a water-swollen hydrogel can be either continuous or discontinuous, as a 

function of environmental stimuli. If the system remains totally miscible at given thermody-

namic conditions, one can expect continuous volume transition. On the contrary, if changes in 

chemical nature of the polymer network, solvent quality, or environmental stimulus “push” 

the system into a two-phase (unstable) region of the solubility phase diagram, one can expect 

that properties of the hydrogel, most notably its volume, change discontinuously. In addition, 

the studies [115–117] show that increased cross-linking may significantly decrease swelling 
ability of hydrogel, especially, below TV, but has a little effect on the value of TV.

Figure 6 demonstrates that temperature-sensitive shrinking ability of hydrogels depends on 

their microstructure and method of preparation: the granular hydrogel (A) exhibits a con-

tinuous volume decrease with temperature, whereas the denser hydrogels (B and C) exhibit 
more abrupt changes in volume within the 35–45°C range. Interestingly, the granular struc-

ture of the PNIPA hydrogels prepared by thermal polymerization in water (A) can be broken 

down into separate submicroscopic domains by means of sonication (data not shown). On 
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the  contrary, sonication does not affect the structure of “dense” hydrogels prepared either 
by thermal polymerization in dimethyl sulfoxide (DMSO) (B) or by photopolymerization in 

water (C).

It has been shown [118] that incorporation of a small amount of ionizable groups into the 

nonionic gel network drives the volume phase transition from continuous volume changes 

toward discontinuous one (Figure 7). Moreover, an increase in the portion of sodium acrylate 

with carboxylic groups on the PNIPA network allowed one to vary the TV from 34 to 42°C 
with the increasing extent of swelling ability below the transition temperature.

Figure 6. Shrinking abilities SV and SEM images of the microstructures of PNIPA hydrogels prepared by thermal 
polymerization in water (A) or DMSO (B), and by UV polymerization in water (C) (scale bar = 5 μm).

Figure 7. The degree of swelling of the poly(N-isopropylacrylamade-co-sodium acrylate) gel in water as a function of 

temperature. Numbers are the molar fractions of sodium acrylate in the preparations. Data were adopted from [118].
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3.1.2. Ionic sensitivity of hydrogels

Figure 7 also suggests that incorporation of charged (anionic, cationic, or both) groups on the 

polymer network makes the volume transition temperature and degree of swelling dependent 

on pH and ionic strength. Indeed, the poly(N-isopropylacrylamide-co-methacrylic acid) (PNIPA-

MAA) microgel particles [119] at pH 3.4 exhibited a decrease in TV from 33.5 to 28°C with an 
increase in MAA content, whereas at pH 7.5, the higher MAA content resulted in the higher 

TV. In weakly charged PNIPA hydrogels, addition of ionizable groups on the polymer network 

pronounced the volume changes when temperature crossed TV [118, 120, 121]. The experimental 

studies [122] revealed that distribution of ionic groups in the network affects the temperature of 
volume change transition.

The type of ionizable groups on the polymer networks makes the maximum swelling ability of 

a gel strongly dependent on pH. For example, the anioic PNIPA-MAA microgels exhibited the 

maximum swelling in the range of pHs from 6.5 to 10 [119], whereas for the cationic PNIPA-VI 
nanogels, the maximum swelling ratio was observed in the range of pHs from 6 to 3.5 [123]. 

It becomes even more intriguing if the so-called polyampholyte hydrogels are designed [124] 

by addition of both cationic (VI) and anionic (AA) groups on the network. The polyampholyte 
gel was in a shrunken state near the isoelectric point (pH ~ pI), and it swelled at both higher 

and lower pHs. It is interesting that such designed polyampholyte gels can work like bioche-

momechanical systems in which the enzymatically induced pH changes control the volume of 

polyampholyte network or, in opposite direction, the pH sensitive volume changes control the 

activity of enzymes immobilized into the gel [125].

There are experimental evidences [126–130] that different monovalent (Li+, Na+, K+, and Cs+) 

and divalent (Ca2+, Mg2+, Sr2+, and Ba2+) ions are able to promote deswelling effects in hydrogels 
of different chemical nature. Interestingly, at the same molar ratios of divalent to monovalent 
cations (~1 mM/30 mM), the similar volume changes were observed in biological polyelectro-

lyte systems during physiological processes like nerve excitation, muscle contraction, and cell 

locomotion [131–137].

3.1.3. Surfactants as effectors of hydrogel volume change

The extensive theoretical and experimental [138–145] studies have shown that the addition 

of anionic, cationic, and nonionic surfactants to the solution containing a gel can also influ-

ence the TV and swelling degree of hydrogels depending on their hydrophobicity and charge 

of the polymer network. In general, addition of anionic or cationic surfactant to the solution 

of nonionic hydrogel increases TV as well as the swelling range, whereas the nonionic surfac-

tant does not affect TV or volume change. The surfactants with ionic head groups when bind 

to the nonionic polymer networks convert the neutral hydrogels to polyelectrolyte gels and 

elevate TV due to introduction of additional osmotic pressure by ionization. The changes in the 

volume phase transition are also dependent on the length of hydrophobic tail of ionic surfac-

tants and the critical concentration of micelle formation [142]. It was also found [144] that the 

amount of an ionic surfactant bound onto the swollen network of the nonionic PNIPA hydro-

gel was much greater than that to the collapsed one. On the contrary, the amount of nonionic  
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surfactant bound onto the collapsed network of the PNIPA gel was greater than that on the 

swollen one. Moreover, the changes in TV with the amount of the anionic surfactants (e.g., 

sodium dodecyl sulfonate) were more pronounced than for cationic ones (e.g., dodecylamine 

hydrochloride). Interestingly, the concentration of anionic surfactant (e.g., sodium dodecy-

lbenzene sulfate) bound within the PNIPA hydrogel was found to be higher in the vicinity 

of the gel surface, whereas a central region of the gel may not contain any bound surfactant 

molecules [145]. Thus, peripheral layers could be in a more swollen state with a higher TV in 

comparison to the central hydrogel core.

3.1.4. Light-sensitive hydrogels

Photosensitive hydrogels with incorporated photosensitive molecules into the gel network 

have been reported as well. For example, the gels with incorporated leucocyanide and leu-

cohydroxide [146] underwent volume changes upon irradiation and removal of ultraviolet 

light resulted from ionization reaction and internal osmotic pressure initiated by UV light. 
Significant volume changes in hydrogels were also induced by visible light [147]. However, 

the mechanism of volume transition was different—it was due to direct heating of the 
polymer network by light. Nevertheless, more recent reports [148] showed that a focused 

laser beam was able to induce reversible shrinking in polymer gels due to radiation forces, 

rather than local heating, modifying the weak interactions in the gels. Herein, gel shrinkage 

was observed up to several tens of micrometers away from the irradiation spot. The light-

induced contraction was also found in acrylamide gels, which are not temperature sensitive. 

In hydrogels with temperature-sensitive volume phase transitions, such as PNIPA gel, it was 

found that the radiation force of the laser beam not only induces the volume phase transition 

but also lowers the transition temperature TV by about 10°C at an irradiation power of 1.2 W 
(λ = 1064 nm).

The fact that the volume change initiated by light is extremely fast seems of great importance 

for the development of the light-sensitive lipobeads. One could predict that the photosensi-

tive hydrogel cores will also receive an increasing scientific and technological attention due 
to their capability of serving as the so-called shape-memory polymeric systems [149]. Being 
exposed to the light with lower wavelengths, the shape-memory materials become deformed 

and their temporary shape is fixed due to cross-linking. When irradiated with higher wave-

lengths, they recover their initial shape because of the cross-links cleavage.

3.1.5. Electrical field-induced volume change

Back in the 1950s, it was found that contraction, oscillation, and bending of polyelectrolyte 
gels can be induced electrically [150–152]. In particular, gels prepared from polymers and 

copolymers that contain ionizable groups exhibited remarkable contraction when placed 

between a pair of electrodes connected to a direct current source. Polymer gels containing 

no ionizable groups showed no volume change under electrical field applied. The extent 
and rate of volume change of the polyelectrolyte gels were shown to increase with increas-

ing electrical field [153]. An increase in the ionic strength (e.g., an addition of NaCl) also 

increases the rate of gel shrinkage, whereas an addition of organic solvent (e.g., acetone or 
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ethanol) decreases both the extent and the rate of shrinking. In different types of hydrogels, 
an electrically activated volume changes were associated with the induction of the medium 

pH change by the electric field [154], the electrically initiated volume phase transition [155], 

and the so-called electrokinetic phenomena—ion transport of counter-ions in the electric 

field [156].

3.2. Lipobeads by hydrogel/liposome mixing

Success in formation of lipobeads by hydrogel/liposome mixing (see references from Tables 3 

and 4) is an experimental confirmation of the main property of hydrogel and lipid bilayer—
their compatibility. Indeed, the phospholipid bilayer spontaneously self-assembled around a 

nanogel once extracted from a lipobead (Figure 8a) and mixed with liposomes (Figure 8b) to 

form a secondary lipobead (Figure 8c) [10].

Moreover, spontaneous formation of the lipid bilayer on the surface of nonanchored micro-

gels was shown microscopically for liposomes made of different phospholipids with or 
without cholesterol [36, 41]. Figure 9 represents both laser scanning confocal (Figure 9A, 

A′, A”) and scanning electron microscopy (Figure 9B, B´) images evidencing the fusion of 

liposomes on the hydrogel surface to form a lipid membrane around porous PNIPA-co-FA 

microgels.

Unilamellarity, continuity, and nonleakiness of the lipid bilayer formed upon microgel/liposome 

mixing were proven for the micrometer-sized, hydrophobically modified, pNIPAM/p(NIPAM-
co-AA) core-shell hydrogel spheres [25, 28]. It was also demonstrated by Dynamic Light 
Scattering (DLS) and Atomic Force Microscopy (AFM) [40] that hydrophobic modification of 
the nanogels is not required for spontaneous formation of the bilayer on their surface.

Interesting behavior of the lipobeads was observed when their hydrogel cores change its vol-

ume. It was shown (Figure 10) that a collapse of the hydrophobically modified PNIPA microgels 
within the lipid bilayer caused a shape change of the lipobeads from sphere (below TV) to a small 

Figure 8. Atomic force microscopy images (amplitude data) of a PNIPA-VI nanogel (a), EPC liposomes (b), and result of 
their mixture—lipobead flattened on mica surface. Scale bars = 100 nm.
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central core with high curvature protrusions (above TV), consisting of the excess lipid bilayer 

which still adjoin the lipid bilayer remaining bound to the hydrogel via hydrophobic anchors 

[25, 28]. Importantly, these changes were found to be reversible, and the bilayer remained intact 

and impermeable.

Figure 9. The bright field (A) and confocal laser scanning (A′, A″) microscopy images of PNIPA-co-FA hydrogel 
microspheres mixed with the liposomes made of HSPC with cholesterol (molar ratio 9:1): Green image (A′) originated 
from fluorescein-o-acrylate (FA) covalently attached to the PNIPA network within the core. Red image (A″) originated 
from rhodamine B covalently attached to the heads of PE. Scanning electron micrographs of the PNIPA-co-FA microgel 
before (B) and after (B′) mixing with liposomes (scale bars = 20 μm).

Figure 10. Fluorescence images of a giant anchored PNIPA lipobead below (left) and above (right) Tv. Red images 

originated from 0.05 mol% RhodB-PE component within the lipid bilayer. The images were adopted from [25, 28].
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3.3. Lipobeads by polymerization within liposomal interior

3.3.1. Lipobeads with hydrophobically modified nanogels

As shown by DLS, the size distribution of lipobeads with hydrophobically anchored PNIPA-VI 
nanogels became bimodal when temperature was raised to 40°C: the position of the first peak 
corresponded to the initial size of lipobeads at 25°C, while the second peak was assigned to 
the aggregates of lipobeads. The further cooling back to 25°C restored the original unimodal 
size distribution of lipobeads, indicating reversibility of anchored lipobeads aggregation. 

Figure 11 sketches the behavior of lipobeads resulted from the anchored hydrogel collapsing.

Presumably, the aggregation reduces the hydrophobic/hydrophilic imbalance caused by col-

lapsed nanogels within lipobeads. The reversible dissociation of the lipobead aggregates may 

evidence that anchored lipobeads do not fuse. The only explanation is that the hydrophobic 

chains of anchored PNIPA-VI nanogels penetrate into the lipid bilayer and stabilize the lipo-

somal membrane against fusion.

On the contrary to the hydrophobically modified giant lipobeads (Figure 10), the anchored 

PNIPA-VI nanolipobeads did not reveal a size change under temperature or pH variations, as 
shown by DLS [9]. Probably, on the nanometer scale, a highly curved lipid bilayer is too stiff 
to follow the collapse of the hydrogel core. This effect remains to be proven.

3.3.2. Lipobeads with nonmodified nanogels

In contrast to the hydrophobically modified lipobeads, the unanchored lipobeads exhibited 
the unimodal size distribution recorded by DLS at 40°C. The single peak was significantly 
shifted toward a greater average diameter than that at 25°C. This observation indicated that a 
more pronounced aggregation occurred in this case. After cooling back to 25°C, the bimodal 
size distribution of lipobeads was observed. The presence of two peaks indicated that not all 

aggregates of lipobeads did break up into elementary lipobeads. This pattern of the lipobeads 
behavior with temperature suggests that the aggregation of lipobeads at elevated tempera-

tures can be irreversible, if lipid bilayers fuse to form a “giant” lipobead containing several 

nanogels as sketched in Figure 12. Herein, the aggregation of unfused lipobeads is reversible 

(see processes 1 and 2).

Figure 11. Schematic presentation of the anchored lipobeads and their aggregation in the course of hydrogel core 
shrinking. AFM image (amplitude data) of an aggregate is shown in the insert. Scale bar = 100 nm. The anchored 
lipobeads reversibly disaggregate when hydrogel swells back.
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The effect of temperature on shape and size of lipobeads was studied [34] using the giant 

(not nano-) nonanchored PNIPA lipobeads prepared by polymerization within giant vesicles. 

As shown microscopically, the giant lipobeads retained their spherical shape when hydrogel 

core collapsed at high temperature and swelled back after cooling. Their size was found to 

change reversibly, so that after six cycles of heating/cooling around the volume transition 

temperature, the lipobeads remained undamaged. The authors postulated that the membrane 

was coupled to the gel during the volume change, although the study of mechanisms of the 

gel core/lipid membrane interactions are still in demand.

4. Special applications and new perspectives

4.1. Lipobead-based drug delivery systems

To figure out which properties make lipobeads attractive for the next generation of drug deliv-

ery systems, it is worthwhile to consider first their fate in the body once being administered.

4.1.1. From injection to internalization of lipobeads into the cells

Different administration routes including intravenous, intramuscular, pulmonary, and topical 
could be suitable to deliver drugs by lipobeads. However, the peripheral intravenous injection 

seems the most reliable and reproducible route for their administration. Once entering the 

bloodstream after intravenous injection, lipobeads, similar to liposomal or polymeric delivery 

systems, should withstand a number of environmental (physiological and physicochemical) 

attacks on the way to targeted organs. The bloodstream is a complex environment of the serum 
(proteins, electrolytes, etc.) and immune system (macrophages, proteins of complement sys-

tem, etc.) components, so that interaction of those components with lipobeads could result 

in either leakage of their content or their removal from the blood circulation as exogenous 

pathogens. As it was reported for liposomes, the proteins of complement system were able to 

produce lytic pores and enhance the release of liposomal content [157], whereas blood lipo-

proteins destabilized liposomes to enhance the leakage of their payload [158]. The opsonins 

and dysopsonins are another blood proteins, which could be responsible for recognition of 

Figure 12. Schematic presentation of the nonanchored PNIPA-VI lipobeads and their aggregation when hydrogel core 
shrinks. In the course of the liposomal membrane fusion, the collapsed nanogels can aggregate to form a giant lipobead. 

The processes 1 and 2 are reversible, whereas process 3 is the irreversible one. AFM image (amplitude data) of an 

aggregate is shown in the insert. Scale bar = 2 μm.
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lipobeads and their enhanced uptake by the mononuclear phagocyte system (MPS) cells (neu-

trophils, monocytes, and macrophages) [159–162].

The effect of physicochemical factors (size, charge, hydrophobicity, surface morphology, and 
composition) on lipobeads’ leakage in and clearance from blood is not known and should be 

the other target for the future study of lipobeads as a drug delivery system. Nonetheless, even 

just a few results available on the drug-encapsulated lipobeads (pegylated [11] or not [20]) 

have already demonstrated their noticeably better stability, biodistribution, nontoxicity, and 
therapeutic activity than those for liposomes.

Once reaching the heart, the blood with lipobeads is pumped up to organs. Undoubtedly, 

the mechanical stability of lipobeads in the blood flow will be higher than that of liposomes, 
since in this construct, a lipid bilayer is supported by hydrogel core and can be strength-

ened even more by anchoring. The capillaries with a diameter ranging from 2 to 10 μm 

constitute the first sieving constraint for the lipobead size. The particles of the size between 
0.4 and 3 μm would mainly be captured by the liver macrophages. The lipobeads greater 

than 200 nm [75] would preferentially be filtered by the spleen. The smaller limit comes 
from the fact that particles less than 40 nm [162] should undergo clearance through metabo-

lism in the liver and excretion through kidneys. Therefore, the diameter of lipobeads is 

supposed to be in a relatively narrow range from 50 to 180 nm for a longer retention in 

the bloodstream. Interestingly, it has been proven that formulations of lipobeads were the 

most reproducible in this range of sizes especially if prepared by polymerization within a 

liposomal reactor (see Table 2).

This range of sizes looks appropriate for lipobeads to exit systemic circulation. To reach 

interstitial space, lipobeads must cross a thin inner membrane of squamous endothelial 

cells provided by the capillaries. In normal capillaries, the endothelial cells form uninter-

rupted linings with typical gaps of 5–10 nm in size. In capillaries associated with patholo-

gies such as tumor and inflammation, the gaps between endothelial cells were reported 
to vary from 100 to 780 nm for different types of cancer [163]. Due to rapid and imbal-
anced vessel formation, the tumor neovasculature is chaotic, extremely heterogeneous and 

“leaky” [164]. The enhanced vascular permeability of the tumor capillaries is the first factor 
contributing to the phenomenon referred as the enhanced permeation and retention (EPR) 

effect [165, 166]. The second factor of the EPR effect, an enhanced retention of lipobeads in 
the interstitial space, can be expected due to a poor lymphatic drainage in the tumor tissue, 

which results in a slower clearance of drug carriers and their accumulation in the interstitial 

space [167]. Biodistribution experiments have already performed in mice bearing a distant 
subcutaneous tumor and in mice with metastatic lung melanoma to show accumulation 

of drug-loaded lipobeads both in the area surrounding the tumor and within the tumor 

itself [11]. Therein, the payload is evident in the interstitial spaces between the tumor cells 

outside the vasculature.

In the interstitial space, lipobeads passively or actively target the cellular surface. Strategies 
of active cell targeting which has been proposed for liposomal carriers [86–88] could be appli-

cable to lipobeads as well.
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The internalization of lipobeads into the cells can proceed via several mechanisms [168, 169] 

sketched in Figure 13. Phagocytosis provides the so-called “cell eating” mechanism by which 

larger lipobeads can be taken into and degraded within the cells. Using pinocytosis, the cells 

internalize the fluid surrounding the cell simultaneously with all substances (“cell drinking” 
mechanism), so that if lipobeads are in the fluid phase area of invagination, they would be 
taken up to form pinosomes inside. Different endocytic pathways can be distinguished in 
accord with the specific molecular regulators (not shown in Figure 13), such as the clathrin-

mediated endocytosis, dynamin-dependent and dynamin-independent mechanisms, as well 

as receptor-mediated endocytosis. In addition, the mutual fusion of cell membrane and lipid 

bilayer of lipobeads [170] can occur at the cell surface with internalization of just the drug-

loaded nanogels. Understanding the cellular entry of lipobeads, their intracellular trafficking, 
drug release, and therapeutic action mechanisms are the future topics for studies on lipo-

beadal drug delivery systems.

4.1.2. New mechanisms of drug release

A drug release profile (the amount of drug released into the bloodstream over time) depends on 
the properties of the drug itself and drug carrier system. Even a few available examples of drug-

encapsulated lipobeads showed that the additional element in their structure, the hydrogel core, 

significantly prolongs the release time for both high molecular weight (e.g., proteins) and small 
molecule (e.g., doxorubicin) drugs as compared to conventional liposomes and uncoated hydro-

gel particles. The characteristic time for release of 50% (D
50

) of BSA (Mw 66 kDa) from 1-μm 
lipobeads (~11 days) is 10-fold of that from 1-μm liposomes (~1 day) [20]. For a lighter protein 

interleukin-2 (IL-2, Mw 17 kDa) [22], D
50

 equals 8, 16, and 52 h for nanogels (∅150 nm), lipo-

somes (∅100 nm), and lipobeads (∅120 nm), respectively, indicating the slower release of the 

protein drugs from lipobeads. In comparison, the characteristic time (D
50

) for release of doxoru-

bicin from uncoated microgels (~∅6 μm) was estimated [6, 43] to be about 1.5 min, whereas the 

release of doxorubicin from lipobeads was not detected at all within this time scale.

Figure 13. Possible mechanisms of lipobeads’ internalization into the cell.
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Different applications require different release profiles, and bicompartmental structure of 
lipobeads brings more options to change the concentration profile of a released drug from a 
steep rise (burst release) and a cyclic variations (pulsatile release) to a gradual increase up to 

the value within the therapeutic window is reached (sustained or controlled release). Of par-

ticular importance is the capability of lipobeads to provide a better-sustained release, which 
is the most desirable but more difficult mode to achieve and maintain.

Let us consider the novelty the hydrogel core can bring with regard to drug release mechanisms. 

Undoubtedly, an advanced property of polymer networks is their responsiveness to environ-

mental stimuli. Depending on possible responses of the hydrogel core (swelling, contraction, and 
degradation), three mechanisms of drug release from lipobeads could be developed in the future.

In the “sponge-like” mechanism (Table 5), hydrogel core initially is in a swollen state. Nevertheless, 

encapsulated drug molecules release for a prolonged period as compared to conventional lipo-

somes. When the environment changes (temperature, pH, etc.), the polymer network shrinks, so 

that the hydrogel core, like a squeezed sponge, releases the loaded drug into the space between 

gel and lipid membrane, and the drug diffuses through the membrane outside the lipobead. This 
mechanism provides a slow gradual drug release in response to temperature change, for example. 

The characteristic time of the drug diffusion through the lipid bilayer could be projected to hours.

In the “poration” mechanism, the hydrogel core initially is a shrunken state, and drug molecules 

are trapped more tightly within the polymer network. Their release can be even more suppressed 

Mechanism Scheme Characteristic time

“Sponge-like” (diffusion) Hours

“Poration” Minutes

“Burst” Seconds

Table 5. Mechanisms of drug release from lipobeads with environmentally sensitive or degradable hydrogel core.
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in comparison with conventional liposomes. When the environment changes (temperature, pH, 

etc.), the polymer network swells so much that the volume of hydrogel core becomes greater 

than the space provided by the closed lipid bilayer. Therefore, a “growing” hydrogel core causes 

stretching of the lipid bilayer and pore formation (“poration”) resulting in the drug release 

through the pores. This mechanism provides a faster drug release in response to stimuli with the 

projected characteristic time of minutes.

The “exploding” lipobeads have been discovered [23] as a byproduct of biodegradation of 

microgels covered with phospholipid membrane. As schematically outlined in Table 5 (the 

bottom row), if a polymer network degrades (for example, the interchain cross-links can be 
cleaved by hydrolysis), the swelling pressure inside increases, because the degradation prod-

ucts are unable to diffuse through the lipid membrane even it stretches. At some point, the 
internal pressure becomes sufficient to break the membrane. As a result, encapsulated drug 
falls out of lipobeads with the maximal release rate (“burst” release with the characteristic 

time of seconds).

4.1.3. Drug combination within lipobeads

In the first example [20], a combination of protein (Pfs25) and oligonucleotide (CpGODN) has 
been simultaneously encapsulated into lipobeads. The recombinant protein Pfs25 expressed in 

Pichia pastoris is a leading antigen of blocking stage potential and can be used as a vaccine to 

block malaria transmission by mosquitoes. The antigen Pfs25 has a poor immunogenicity and 

needs an enhancer of immunological recognition. Unmethylated CpG oligodeoxynucleotide 

(CpGODN) is a strong stimulator of immune response in mammalian hosts and acts as the 
adjuvant improving immunogenicity of coadministered protein antigen as well as reducing the 

amount of protein required. CpGODN stimulates the immune system through a specific recep-

tor TLR9. The immune activity of CpG was monitored by following the levels of nonspecific and 
specific immunoglobulins, a variety of cytokines, gamma interferon (IFN-γ), and increased lytic 
activity (see [20] for references). The results of this study were impressive: (i) on the 90th day of 
storage at 4°C, the detected antigen leakage from lipobeads was significantly lower (5%) than 
from conventional liposomes (26%), (ii) like the conventional liposomes, no macroscopic sign 
of adverse reaction (redness, swelling, and formation of granulomas) at the site of intramuscu-

lar injection was observed for lipobeads, (iii) lipobead-encapsulated combination of Pfs25 and 

CpGODN showed the maximal immune response based on serum anti-Pfs25 profile of immu-

nized mice, (iv) significantly higher levels of interferon-γ and interleukin-2 were detected in the 
spleen if mice immunized with lipobeads carried the drug combination.

In the second scheme [11], hydrophilic protein (IL-2, 17 kDa) and hydrophobic small mol-
ecule drug (SB505124, SB, 335 Da) have been coencapsulated into the hydrogel core of 120-
nm lipobeads cross-linked by a free radical photopolymerization. The IL-2 belongs to the 

family of cytokines, soluble proteins that supposedly stimulate natural killer cells (NK) and 

enhance lytic activity against melanomas and renal cancer. However, efficiency of the IL-2 
as an immunotherapeutic agent may be significantly reduced by the ability of tumor cells 
to secret a number of immunosuppressive factors, such as the transforming growth factor-β 
(TGF-β) that decreases local immune responses. The SB is a TGF-β antagonist that inhibits 
TGF-β receptor. The study on coencapsulation into lipobeads and simultaneous sustained 
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delivery of the aforementioned drugs showed that no toxicity was observed on intravenously 

administrated mice. Biodistribution analysis of rhodamine-loaded lipobeads in healthy mice 
indicated that the lipobeads primarily accumulated in lungs, liver, and kidney, the heart and 

spleen were also reached though. In B16 lung metastatic animals, the highest accumulation of 
lipobeads and drug was found to occur in the lungs and liver. In comparison to other delivery 

systems including liposomal, a significantly greater reduction in both tumor growth rate and 
tumor mass was observed after one-week therapy of the B16/B6 mouse models of metastatic 
melanoma administered intravenously. It was found that the lipobead-delivered combination 

immunotherapy stimulated both innate and adaptive immune systems resulting in drastically 

increased survival.

4.1.4. Combined multifunctional drug containers

As per Figures 11 and 12, the nanogel core collapse at elevated temperature causes either 

reversible or irreversible aggregation of lipobeads depending on whether lipid bilayer fusion 

occurs or not. Reversible and irreversible aggregation of lipobeads is a key step for designing 

two types of combined multifunctional containers.

In the system made of anchored lipobeads, the initial formulation may consist of two dif-

ferent drugs entrapped in different lipobeads (Figure 14). Under switching condition 1, 

both drugs can be simultaneously delivered as one aggregate to the targeted organs in 

the body. At switching condition 2 or 3, either one or the other drug can be released in the 

desired order.

In the system based on irreversible aggregation of lipobeads (Figure 15), several nanogels 

loaded with different predrug reagents are trapped under the same lipid membrane (“giant 
lipobeads”) to react inside without damaging the surrounding organs and to be delivered to 

the targeted site in one “giant” container able to release the final product controllably.

Figure 14. The combined drug delivery system based on reversible aggregation of lipobeads.
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4.1.5. Remarks on lipobead-encapsulated anticancer drugs

Today, cancer is one of the most dangerous illnesses on Earth, because mortality in patients 

with solid malignant tumors is caused mainly by tumoral metastases, the appearance of 

new cancerous centers in another organs or different tissues. Administration of anticancer 

drugs by intravenous route (chemotherapy) is the main treatment aimed at destruction of 

primary tumor and reduction of the probability of formation of secondary tumors due to 

metastases. Since single metastatic cells cannot be localized, followed, and monitored so far, 
a high concentration of an anticancer drug should be systematically distributed throughout 

the entire human body to increase the probability of the cancer cells’ distraction. Being strong 
poisons and/or cancerogenic themselves, anticancer drugs destroy not only malignant cells 

but also normal ones giving rise to serious side effects of a chronic and irreversible origin 
and/or causing the formation of a new malignant tumor even without metastases of the pri-

mary one. Moreover, the high concentrations of anticancer drugs can induce a resistance 

of the malignant cells to these drugs. To reduce the toxicity of the anticancer drugs by con-

trolling their suitable concentrations and reaching the targeted cells without healthy cells 

being affected, numerous polymeric nanoparticles and liposomal drug delivery systems are 
under development or undergo clinical trials. However, only two polymer conjugates and 

six liposome-encapsulated anticancer drugs were approved to market as the most clinically 

successful liposomal anticancer products so far (for details, see [36] and references therein). 

Probably, loading drugs into the environmentally responsive hydrogel core covered with the 

lipid layer is the right way to the chemotherapy with superior tumor response and minimal 

side effects even at a greater loading concentration.

4.2. Prospective applications and perspectives

4.2.1. Hydrogel/lipid bilayer assembly: Mimicking cell membrane system

Recently developed technologies of using the liposome interior as a microreactor and the 

concept of lipobeads itself inspire the idea of artificial membrane system with controlled 
properties. The bottom-up approach to design “liposomes-within-giant vesicle” structures 
(vesosomes) [171, 172] includes a series of structures mimicking cell membrane systems such 

as shown in Figure 16 in the order of increase in their complexity: (a) giant vesicles with the 
size compared to the size of living cells (~5–200 μm), (b) large unilamellar vesicles with the 

Figure 15. The combined drug delivery system based on irreversible aggregation of lipobeads.
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nanometer scale size (<1000 nm), (c) a number of liposomes interior to the single membrane 

vesicle (cell analogue), (d) a double membrane vesicle with the inner membrane surface 

lesser than the outer membrane surface (nucleus analogue), and (e) a double membrane 

vesicle with the inner membrane surface greater than the outer membrane (mitochondrion 

analogue).

By analogy with vesosomes, it would be intriguing to design the so-called vesobeads—hydro-

gel/membrane structures of different combinations of liposomes, giant vesicles, nanogels, 
microgels, lipobeads, and giant lipobeads. Some of them shown in Figure 17 are: (a) giant 
vesicles with hydrogel core (“giant lipobeads”), (b) hydrogel inside liposomes with the size 

less than 1 μm, (c) structure that has many lipobeads inside of a giant vesicle, which can also 

be done by injection. By manipulating the hydrogel, one can cause the lipobeads to aggregate, 
as shown in structure (d). If the membranes of lipobeads fuse, the structure (e), a number of 

nanogels inside of a double membrane, can be engineered.

The aforementioned membrane/membrane and hydrogel/membrane structures comprise 

fusion/fission of LUVs and GUVs and can be served as a model system to study exo- and 
endocytosis, hydrogel/membrane compatibility, loading ability of the lipid bilayers, polymer 

networks, and interior of GUVs, and interactions between those assemblages when their sur-

faces are specifically modified.

Besides all the advantages of conventional lipobeads discussed in this chapter, the multicom-

partmental structure of vesobeads will provide additional protection against degradation 

and leakage in bloodstream and greater biocompatibility. Moreover, the structure of a veso-

bead resembles the structure of a macropinosome (Figure 13) and can provide simultaneous 

internalization of several lipobeads into the cell interior. Indeed, if an external lipid bilayer of 

vesobead fuses with the cellular plasma membrane, a bunch of loaded lipobeads are injected 

into cytoplasm.

Figure 17. Hydrogel/lipid bilayer assemblies.

Figure 16. Liposomes-within-giant vesicle structures.
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4.2.2. Proteo-lipobeads

The next step of lipobead functionalization is incorporation of proteins into their lipid bilay-

ers or/and loading of the hydrogel core with functional proteins. This type of hydrogel/mem-

brane structures has been already named as proteo-lipobeads.

4.2.2.1. Proteins within lipid bilayer

The first proteo-lipobeads were prepared when transmembrane receptors were reconstituted 
into the lipid bilayer of lipobeads [45]. It was found that the receptors retained their native-

specific binding. Recently, new proteo-lipobeads with the controlled orientation of the mem-

brane protein and enhanced stability have been developed by modifying agarose beads with 

linkers, binding membrane proteins to the linkers, and surface coverage with phospholipids 

[173]. The lipobead incorporated cytochrome c oxidase was shown to be functional in terms 

of antibody binding and proton transport modulation. The proteo-lipobeads, as alternatives 

of living cells for monitoring properties of membrane proteins and ion transport through 

ionic channels and transporters, did exhibit a higher stability, capability of uniform orienta-

tion, and functional activity of the membrane proteins in comparison with proteo-liposomes 

and polymersomes [174]. The further interplay between lipids and the lipobead-encapsulated 

proteins will allow one to remodel the dynamic cell membrane systems [175] and, despite the 

increase in complexity of a lipobead structure, will bring about new benefits, such as tiny liv-

ing cells mimicking mechanisms of drug release regulated by signaling.

If ionic channels (transmembrane proteins) incorporated into the lipid bilayer, it would be 

necessary to measure ionic transport through the membrane without rupturing the lipid 

bilayer. For these purposes, one can imagine a hemispherical configuration of the lipobead, 
which would allow an electrical access to the interior as shown in Figure 18. By the way, this 
device could be used as a biomimetic sensor and a cell analogue, which functional properties 

could be modeled and studied by changing the inner compartments of the probe.

Figure 18. Hemispherical lipobead with electrical access to the interior.
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4.2.2.2. Proteins inside hydrogel core

As it was mentioned in Section 2.5.1, so far the only test enzymes were loaded into the lipo-

beads interior to show retention of their enzymatic activity after release from the hydrogel 

core [37].

By analogy with the enzyme-containing lipid vesicles (liposomes) [176], one can predict that in 

turn the near-future development of enzyme-containing lipobeads will follow the same steps 

and directions, including the studies on (i) methods for adsorption of a variety of enzymes 

onto the interior or exterior site of the lipid bilayer and for their encapsulation within hydro-

gel core, (ii) enzyme encapsulation efficiencies, (iii) potential applications, especially, in the 
biotechnology (e.g., cheese production) and biomedical fields (e.g., enzyme-replacement 
therapy or for immunoassays). As in the case of liposomes, the enzyme-containing lipobeads 

could play a twofold role: enzyme carriers and enzymatic nanoreactors. In the first case, the 
enzyme molecules are expected to be controllably released from the lipobeads at the target 

site. In the second case, enzymes trapped inside the hydrogel matrix or interspace between 

the hydrogel core and lipid bilayer catalyze an enzymatic reaction either upon permeation 

of a substrate across the bilayer or by stimuli-responsive activation of the enzyme molecules.

Obviously, a deeper understanding and modeling of the catalytic activity of the entrapped 

enzyme molecules will be in demand. In this context, it is worthy to highlight the key prop-

erty which hydrogel core brings to the enzyme-containing lipobeads: the activity of the enzyme 
entrapped into the hydrogel can be affected by the 3D-polymeric network density. For example, 
the studies on activities of enzymes immobilized into the temperature-sensitive hydrogels explic-

itly indicated that their activity (e.g., urease [177], β-galactosidase [178], α-chymotrypsin [179]) 

decreased upon PNIPA hydrogel shrinking at elevated temperatures. Since the volume transition 
in the temperature-sensitive hydrogels is reversible (see Section 3.1.1 for details), the activities of 
the aforementioned enzymes were restored with temperature decrease beyond the TV of PNIPA.

There may be another case, when the activity of enzyme immobilized into the hydrogel matrix 

increases upon a polymer network collapse. In accord with the recently proposed model of 

electrochemical mechanics of bacterial spores [180], all bacterial spores have a lipobead-like 

structure consisting of layered protein network (coat), peptidoglycan cross-linked matrix 

(cortex) enclosed between two lipid membranes, and the spore core containing the genetic 

information. Some piece of evidence indicates that the co-called cortex lytic enzymes involved 
into the spore cortex degradation enhance their activity in response to the collapse of the 

peptidoglycan cortex where these enzymes are located. Note, in this case, the cortex matrix is 

a substrate for the enzymes, so that its collapse is equivalent to the increase in the substrate 

concentration, which in turn is responsible for the rate of the degradation reaction.

5. Closing remarks

The concept of lipobeads has been proposed about 30 years ago and the time has come to 

explore a combination of lipid bilayer and cross-linked polymer network as a logical step of 
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the development of polymeric and liposomal nanoscopic systems to provide the desired level 

of functionality, which Nature achieves in living cells. Two general approaches to preparation 

of lipobeads (polymerization within lipid vesicle interior and mixing of separately prepared 

lipid vesicles and hydrogel particles) actually are the modified methods for fabrication of 
liposomes or nanogels. Besides attractive properties from both liposomal and polymeric sys-

tems, the mechanical stability of the lipid bilayer and environmental responsiveness of the 

total structure are the two important properties that hydrogel core brings about to the new 

construct. Bicompartmental structure of lipobeads predefines their numerous future applica-

tions in biotechnology and bioengineering, tissue engineering, sensing and molecular recog-

nition, drug and gene delivery, controlled release, artificial muscles, flow control, and so on.

As a platform for drug delivery systems, lipobeads have already been loaded with chemother-

apeutics (doxorubicin, a combination of immunotherapeutic agent and inhibitor of growth 

factor receptor), malaria vaccine (a combination of stage potential blocker and immunostimu-

lator), and dermatological agent (natural moisturizing factor). In animal experiment, the lipo-

bead-delivered combination chemotherapy demonstrated a drastically increased survival.

Further development of the hydrogel/lipid bilayer assemblies may include vesobeads (e.g., 

many dispersed lipobeads or their aggregate inside of a giant vesicle, a number of nanogels 

inside of a double membrane), proteo-lipobeads (lipobeads with functional proteins incor-

porated into lipid bilayers or/and hydrogel core), enzyme-containing lipobeads (a particu-

lar case of proteo-lipobeads with controllable enzymatic activity), and hemi-lipobeads (a cell 

analogue probe with electrical access to its interior).

This chapter shows that additional technological expenses on production of lipobeads will 

not be a high cost for the aforementioned advantages of their use in the following Era of the 

Bioscopic Systems.
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