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Abstract

In Parkinson’s disease, there is a loss of dopaminergic innervation in the basal ganglia. 
The lack of dopamine produces substantial changes in neural plasticity and generates 
pathological activity patterns between basal ganglia nuclei. The treatment to relieve 
Parkinsonism is the administration of levodopa. However, the treatment produces dys-
kinesia. The question to answer is how the interactions between neurons change in the 
brain microcircuits under these pathological conditions. Calcium imaging is a way to 
record the activity of dozens of neurons simultaneously with single-cell resolution in 
brain slices from rodents. We studied these interactions in the striatum, since it is the 
nucleus of the basal ganglia that receives the major dopaminergic innervation. We used 
network analysis, where each active neuron is taken as a node and its coactivity with 
other neurons is taken as its functional connections. The network obtained represents 
the functional connectome of the striatal microcircuit, which can be characterized with 
a small set of parameters taken from graph theory. We then quantify the pathological 
changes at the functional histological scale and the differences between normal and path-
ological conditions.

Keywords: Parkinson’s disease, L-DOPA induced dyskinesia, striatal microcircuit, functional 
connectome, network properties

1. Introduction

Idiopathic Parkinson’s disease (PD) was first described by James Parkinson in 1817 and it is 
the second most common neurodegenerative disease after Alzheimer’s disease. PD preva-

lence is lower in African, Asian, and Arabic countries than in North America, Europe, and 
South America [1, 2]. In the USA, the incidence of PD by ethnicity is highest among Hispanic 

people, followed by non-Hispanic white people, Asian people and black people [1, 2]. Gender 
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is another risk factor with a male to female incidence ratio around 3:2 [1, 2]. However, age 
is the greatest risk factor to develop PD: the incidence is low before the age of 50 years but 
increases quickly peaking around 80 years [1, 2]. In addition, there are several environmental 

risk factors for PD: pesticide exposure, head injury, rural living, etc.; but also there are some 
factors that help to decrease the risk: tobacco smoking, coffee drinking, alcohol consumption, 
etc. [1, 2].

The main characteristics of PD are the motor symptoms: resting tremor, rigidity, postural 
instability, bradykinesia, among others [3]. The motor symptoms of PD are the result of dopa-

minergic denervation of the basal ganglia (BG). This loss of dopamine is due to the death of 

dopaminergic neurons in the substantia nigra pars compacta (SNc). Dopamine is essential for 
the proper functioning of the BG [4]. The causes of PD are still unknown. Some neurotoxic 
animal models have been developed to mimic and study its pathophysiology. In rodents, 

the most used is the hemiparkinsonian model: the unilateral lesion of the SNc with the 
6-hidroxidopamine toxin (6-OHDA). It is commonly evaluated by turning behavior induced 
by dopaminergic agonists [5–7]. In this chapter, recent results to study pathophysiology at the 

microcircuit level will be disclosed together with their theoretical framework [8, 9]. The best 

treatment to relieve some signs and symptoms of PD is the administration of dopaminergic 

agonists, mainly L-DOPA. However, the long-term administration of L-DOPA produces other 
movement disorders: L-DOPA-induced dyskinesias (LIDs). There are three well-character-

ized types of LID [10]. (1) Peak dose dyskinesia, which is the most common, occurs in 80% of 
patients at peak of dopamine concentrations derived from L-DOPA (“on” time). (2) Diphasic 

dyskinesia, that occurs at the rising and falling of L-DOPA’s clinical useful concentrations. 

(3) Early morning dystonia, that occurs when dopamine levels are very low, commonly after 
patients spent nighttime without L-DOPA.

LID is characterized by abnormal and involuntary movements which seem to appear ran-

domly. It is often extremely disabling. 50% of the patients present it between 4 and 5 years 
after starting treatment and 75% after 10 years of treatment [11, 12]. To study this kind of dys-

kinesia, the 6-OHDA rodent model is treated with high doses of L-DOPA during several days 
and it is evaluated by counting abnormal involuntary movements (AIMs): locomotive, limb, 
axial, and orolingual [13]. Here, this model was used to study the dyskinetic pathophysiology 
at the microcircuit level [9]. We propose the study of the BG at the microcircuit level in order 

to better understand the detailed pathophysiology of these movement disorders.

2. Striatal microcircuit

The BG contains subcortical nuclei involved in motor coding: selection, generation, learning, 
and control of movements [14]. The nuclei of the BG are the striatum, the external and internal 
segments of the globus pallidus (GPe & GPi), the subthalamic nucleus (STN), and the substantia 

nigra pars compacta (SNc), and substantia nigra pars reticulata (SNr). The main input of the BG 
is the striatum, which receives glutamatergic afferents from the cortex and the thalamus, and 
dopaminergic terminals from the SNc [15]. The striatal microcircuit contains different neu-

ral classes. A general classification separates the spiny projection neurons (SPNs) from the 
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interneurons. The SPNs are the 95% of the striatal neural population and they have collateral 
synapses between them at distances less than 100 μm [16–18]. The SPNs are divided in two 
populations: direct pathway SPNs (dSPNs) that connect monosynaptically to the BG output 
nuclei, GPi and SNr, and the indirect pathway SPNs (iSPNs) that send synaptic terminals to 
the GPe. Normally, SPNs have little spontaneous activity until they are activated by an excit-
atory drive, defined as afferents, neurotransmitter agonists, or modulators that induce the 
microcircuit to produce alternant neural activity [19]. When SPNs are activated, they show 
particular temporal patterns with oscillations between two distinct states: one with a hyperpo-

larized membrane potential or downstate at around −80mV, and the second with membrane 
potential depolarizations that last hundreds of milliseconds or seconds, the upstate, at around 

−50 mV [20]. It is during the upstate that SPNs fire action potentials, better respond to synaptic 
inputs and concert their firing with other SPNs conforming active neuronal ensembles.

On the other hand, the interneurons conform the remaining 5% of the population [15]. One 

class of interneuron expresses choline acetyltransferase (ChAT) with axons extending more 
than 1 mm. Other classes of interneurons are GABAergic and they are divided in numerous 
types: the fast spiking interneurons, which express parvalbumin (PV) and/or serotonin recep-

tors (5-HT3); the low threshold spike interneurons (LTS), which could be further subdivided 
and may express or coexpress neuropeptide Y (NPY), somatostatin (SOM), nitric oxide syn-

thase (NOS), or else, serotonin receptors (5-HT3), or calretinin, there are also neurogliaform 
interneurons (NGF), and other types still being studied [21–23]. The axonal arborizations of 
most interneurons may reach up to 1 mm. The exact combination of connections between 
these neuronal classes is still under study using electrophysiological recordings and optoge-

netics. There may be several valid combinations depending on function or context and further 
research is necessary to find out each of them.

The traditional model of the two pathways [24–25] propose that in control conditions there 

is an equilibrium between the activity of the direct pathway (dSPNs), which promotes move-

ment, and the indirect pathway (iSPNs) which inhibits movement. Therefore, the balanced 
activation of both pathways produce coordinated movements. It is posited that in PD there is 
an imbalanced activity between these pathways: the activity of iSPNs becoming more impor-

tant producing greater inhibition of movements. In contrast, during LID there is more activity 

in the direct pathway producing more involuntary movements. Unfortunately, these explana-

tions are not supported by some experiments in monkeys, where these differences in activity 
were not observed [4]. Therefore, instead of staying at cellular level descriptions, in this work, 
we describe the interactions or functional connections between neuronal ensembles of the 
striatal microcircuit at the functional histological level in living brain tissue. This approach 

may help to identify what changes characterize control and pathological microcircuits to then 
ask, in future experiments, what cellular elements produce them.

3. Striatal cell assemblies

In the history of neuroscience, ideas about how neural activity is organized, one of them stands 
out: the cell assembly hypothesis. This hypothesis was formally proposed in its modern form 
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by Hebb in 1949 [26] and defines a cell assembly as a group of interconnected neurons dedi-
cated to code motor processes or to store and maintain neural representations. This hypoth-

esis is based on long-term synaptic plasticity and has been modified to include both long-term 
potentiation and depression (LTP and LTD). It postulates that the changes in synaptic weights 
due to synaptic plasticity produce preferential connections and circuits for the flow of activ-

ity within and between neuronal ensembles, making up neural circuits. Experiments in small 
areas of tissue have shown these ensembles, which exhibit recurrence and alternation in their 
activity. The flow of activity generates spatiotemporal sequences and reverberations that cor-

relate with behavior [27–34].

In cerebral slices, the activity of some neural circuits may be facilitated by an excitatory drive 
[19]. In striatal slices of rodents, microcircuits are almost silent, therefore to induce their acti-

vation one may use an excitatory drive such as N-methyl-D-aspartate (NMDA) [35]. However, 
circuits may also be activated by an adequate electrical stimulus in the cortex or the thalamus 
without the use of any chemical transmitter (unpublished). Recording the activity of dozens 

of neurons in the striatum using calcium imaging, the alternation and recurrence of so-called 

“network states,” conformed by coactive sets of neurons or neurons that have correlated fir-

ing between them as expected for cell assemblies or ensembles [36], have been observed. It 

has also been shown that this activity could also depend on the short-term plasticity of the 
synaptic connections [37] and their ever-changing mutual innervation.

In tissue from the Parkinsonian rodent model, the striatal microcircuit is observed as over-

active, not quite silent or with little activity as in control conditions. This excess in activity 
occurs without any excitatory drive or stimulus. However, a network state becomes domi-
nant during the alternation of activity between neuronal ensembles attracting most active 
neurons and being more recurrent [8]. In this way, the circuit is metaphorically trapped by 
one network state, decreasing alternation and resembling what is seen in the patient who 
has trouble in changing or initiating a movement. Pharmacological bioassays in the striatum 

have been performed while observing the Parkinsonian overactivity. Adding L-DOPA [38] or 

nicotine [39] to the Parkinsonian striatal circuit reduced this activity and returned the circuit 

to resemble control conditions. To go beyond alternation and recurrence of network states, 
the dynamics of transitions between these states has been analyzed [9, 40], and a temporal 

sequence of these transitions was constructed using Eulerian paths—where every transition 
is traveled once—the paths that form the dynamics were then analyzed. In control conditions, 
more than a half of the sequences are closed forming reverberations. But in Parkinsonian and 

dyskinetic conditions, most transitions conformed open Eulerian paths [9]. In addition to the 

temporal dynamics of cell assemblies, neural network analysis was performed to compare 
control and pathological conditions.

4. Network analysis in neuroscience

Network analysis is a branch of discrete mathematics known as graph theory, which started 
in 1736 thanks to the mathematician Leonard Euler. Basically, a graph is a set of nodes and 
the links or edges between them. Nodes could be people, brain areas, neurons, etc., and links 

Pathophysiology - Altered Physiological States38



could be some relation between them: friendship, anatomical connections, synapses, action 
of modulators, etc. In the last 15 years, the interest included complex networks, which are 
characterized by irregular and complex structures evolving in time [41]. Complex networks 
may maintain their properties despite changes in scale: temporal or spatial [42]. To study 

cerebral connectivity, anatomical and functionally, this theoretical framework is being used in 
many areas of neuroscience: neuroanatomy, neurodevelopment, cognitive neuroscience, etc. 
[43, 44]. Sporns and Hagmann, simultaneously and independently, called “connectome” to 

the network of connections that make up a brain [45, 46]. This concept has been extended to 
include functional connectivity of any kind, obtaining functional connectomes [47]. Functional 
connectivity refers to the associations that relate the activity between the elements of the cere-

bral network, not necessarily anatomical, for example, the coactivity between cerebral areas, 
nucleus or neurons [9], their correlations [48] or coherence [49]. Network analysis in neuro-

science has shown a hierarchical organization and scale-free connectivity at different scales: 
microcircuits [9, 50], larger circuits [51, 52], and the whole brain [49]. The characterization of 

functional connectomes using quantitative parameters allows compare the complexity of the 
neuronal interactions between control, pathological or pharmacological treated conditions.

5. Functional connectome of the striatal microcircuit

Network analysis at the microcircuit level started recently [9, 43, 51]. Here, we describe the 
analysis of the striatal microcircuit. The first step to get a functional connectome is to define 
the nodes and a specific functional connection between them. In the striatum, cell assem-

blies were analyzed at histological level by taking the neurons as the nodes and the coactiv-

ity between neurons as the functional links [9]. However, other functional links are being 
assayed and a consistency between different approaches is being observed (unpublished). 
In the present case, each neuron is functionally connected with other neurons when they are 
active during the same minimal time window. At the end of the recording the neural network 
or, more specifically, the functional connectome is obtained. The next step is to measure the 
parameters of the connectome to answer what kind of topology the network has and whether 
there are neurons with particular connections. To determine whether the network has ran-

dom connectivity or regular connectivity, two main parameters are used: the characteristic 
path length (L) and the clustering coefficient (C) [41]. These two metrics were then compared 
with models of random and regular networks. A main observation was that the striatal con-

nectome has neither random nor regular connectivity, but has properties of both at an inter-

mediate point [9] known as “small-world” networks, which belong to the set of complex 
networks [53]. Other property found for the striatal microcircuit was free-scale, i.e., the same 
properties are maintained at different temporal and spatial scales. This property seen in the 
striatal microcircuit [9], has also been found in somatosensory, auditory, and primary motor 

cortices microcircuits [50, 51]. To determine the scale-free property, the distribution of con-

nections P(k) was obtained. Next, we observed that this distribution could be fitted to a power 
law function indicating that it is a scale-free network [54]: there are few neurons with many 
connections and many neurons with few connections. In other words, there are some particu-

lar neurons that have the most connections in the network, so-called “hub neurons,” that play 
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a key role in the connectivity: they provide the physical substrate to have mutual innervation 
and connect different ensembles. Since Sherrington description, this property is necessary to 
alternate activity between ensembles. Even if a network is scale-free, it does not mean that has 
a modular organization as hypothesized for brain microcircuits [55–57]. Thus, a next question 
to answer was whether the connectome is constituted hierarchically, in a modular way. This 
was shown to be the case because the distribution of clustering coefficients C(k) of the nodes 
were also well fitted to a power law function [58]. Thus, a modular architecture has been seen 

in the striatal microcircuit [9], as well as in the somatosensory and auditory cortices micro-

circuits [51]. In summary, the striatal microcircuit connectome is a complex network, with 
“small-world” and scale-free properties forming hierarchical modules. In addition, network 
analysis allowed to describe with single neuron resolution some particular neurons identified 
by their connectivity as “hub neurons.”

6. Key role of hub neurons

Since some neurons can be identified by their particular connectivity as hub neurons, the next 
step is to know what class of neurons they are. There are evidences that some hub neurons 
are interneurons (unpublished). The functional connectome in the striatum was observed in 
an area of about 1 mm2 with hub neurons connecting many neurons at distances larger than 
500 μm, while synapses between projection neurons can only be found at a distances less 
than 100 μm [16–18]. Indeed, only interneurons can extend their axons to connect neurons 
at distances up to 1 mm. This inference was confirmed by whole cell patch clamp recordings 
of some hub neurons identifying fast-spiking (PV), low-threshold spiking (LTS) and cholin-

ergic interneurons (ACh) [9, 36]. Transgenic mice in which optogenetic stimulation activates 
a particular neural population [59] shows that hub neurons connect with different groups 
of neurons perhaps inducing the coactivity that underlies network states, and therefore, are 
responsible for their alternation. However, further experiments using transgenic animals and 
optogenetics are needed to identify the classes of neurons that form striatal modular circuits 

and under what conditions.

7. Pathological changes in the functional connectome

To know the role of cortical afferents in the striatal microcircuit, we used decorticated striatal 
slices. The decorticated striatal microcircuit preserves some active network states conforming 
temporal sequences, albeit alternation between ensembles is greatly reduced. In fact, network 
analysis revealed a loss of active hub neurons [9]. This result suggested that cortical afferents 
maintain privileged connections with striatal hub neurons, probably interneurons, to orga-

nize striatal activity.

Similarly, in the rodent model of Parkinson’s disease, there is a significant loss of hub active 
neurons. Not strangely, the Parkinsonian striatal microcircuit shows less transitions between 
network states, confirming that one larger neuronal ensemble becomes dominant [8, 38], 
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recruiting the majority of active neurons [9]. These results indicate that the majority of hub 

neurons are functionally eliminated during dopamine deprivation and a remaining set of 

hub neurons help to maintain the dominant state. This is supported by studies that suggest 

a breakdown of corticostriatal connectivity during Parkinson’s disease [60, 61]. Other stud-

ies show potentiation of synaptic currents of some classes of interneurons [62, 63]. It is also 

known that drugs as L-DOPA or nicotine could return the microcircuit to control conditions 
[38, 39], implying that hub neurons are not physically eliminated during dopamine depriva-

tion. The role of the interneurons has been recently addressed [9], since previous studies did 

not consider them [64].

In the L-DOPA-induced dyskinesia model, the microcircuit keeps showing a significant 
increase in activity with respect to the controls. In fact, more functional connections and even 
more hub neurons, and more transitions between network states correlate with the increase 
of prokinetic gamma rhythms described in dyskinetic subjects [65]. The “return” of hub 

neurons confirmed that they were not physically but only functionally removed during the 
Parkinsonian state. Their reappearance during dyskinesia indicates that they are necessary in 

the striatal microcircuit to produce movements. Nevertheless, the dyskinetic striatal micro-

circuit exhibited a loss of hierarchical modules [9]. This finding could be seen as a correlate of 
the excessive disordered movements present in dyskinetic subjects.

8. Primitive process in the striatal microcircuit

It is well known that pyramidal neurons connect preferentially to interneuron pools and not 
to the projections neurons or motoneurons in the spinal cord [66]. Thus, the present findings 
suggest a principle of general organization, which can explain how the same cell assemblies 
could be used in different behaviors depending on the activation of certain hub neurons by 
the cortical commands. According to Huyck [31, 67], any neural model at the microcircuit 

level should fulfill a primitive process: to have an input that selects the operators, apply oper-

ators on the operands, store results, and generate an output. In the striatum, the working 
hypothesis would be that input coming from the cortex selects the interneurons—operators—
and apply their operations on the projections neurons—operands—the information is stored 
and striatal output is generated, the result of the whole operation: activation and inhibition 
of agonist and antagonist muscles in sequence (Figure 1). This hypothesis implies that corti-

cal afferents organize groups of interneurons to induce the activity in a similar way as in the 
processes described by the cognitive theory of Allen Newel [31, 67]. Being the hub neurons the 

operators and the projections neurons the operands, the process of alternating network states, 
the sequences and the reverberations could underlie the actions of minimal motor routines 

[29]. Each microcircuit could be associated with others to produce different actions, depend-

ing on the group of operators activated by the cortex. This would explain the changes in the 
dynamics of the microcircuit and the functional relations between their neurons [68]. Now, 
there is technology to record several simultaneous neurons in vivo at the microcircuit level to 

study the functional connectome under different behaviors. Thus, the multiple combinations 
of connections being described at the cellular level may make sense.
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9. Final conclusions

In this chapter, studies at the microcircuit histological level are remarked. There are many 

problems when jumping from the cellular/molecular level to the systems level without know-

ing what happens at microcircuit level when trying to understand how the brain works. The 
output seen at the systems level is the product of the microcircuits specific to each area, not 
of particular neurons or synapses; assumed in the cellular/molecular paradigm. To bridge the 
gap, analysis and perspectives from the microcircuit level are necessary [43, 69].

Using network analysis at the microcircuit level, it is observed that the striatal microcircuit has 
a set of highly connected hub neurons, which communicate efficiently with different neural 

Figure 1. New model of cell assemblies activation in the striatal microcircuit.
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groups. These groups underlie the neural states that alternate and reverberate. The structure 

of the striatal connectome has “small-world” properties, is scale-free and has a hierarchical 
modular organization, as other complex networks seen in nature. The cortical commands use 
the hub neurons to organize the dynamics of the circuit and given the distances between the 
neurons that conform a neuronal ensemble, it can be inferred that hub neurons should be long 

axon neurons, that is, interneurons. After striatal decortication or during the 6-OHDA model 
of Parkinson’s disease hub neurons decrease significantly and as a consequence, the transi-
tions between ensembles and circuit dynamics decrease, reflecting metaphorically hypoki-
nesia and rigidity, and supporting previous studies that show a breakdown of corticostriatal 
communication in Parkinsonian subjects. In L-DOPA-induced dyskinesia, the opposite hap-

pens: the number of hub neurons and the transitions between ensembles increase. However, 
this occurs together with a loss of the hierarchical architecture. This also is reminiscent of the 
signs seen in dyskinetic subjects: uncoordinated involuntary movements. Finally, we con-

clude that the pathophysiology and pharmacology of the nervous system can be studied in 

living tissue at histological scale by using simultaneous recording and network analysis.
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