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Abstract

The Randić spread of a simple undirected graph G, sprR(G), is equal to the maximal

difference between two eigenvalues of the Randić matrix, disregarding the spectral radius [Gomes

et al., MATCH Commun. Math. Comput. Chem. 72 (2014) 249–266]. Using a rank-one

perturbation on the Randić matrix of G it is obtained a new matrix whose matricial spread

coincide with sprR(G). By means of this result, upper bounds for sprR(G) are obtained.

1 Basic definitions

The concept of Randić spread was introduced in a previous paper [14]. Here we offer some

additional results on this spectral characteristics of the Randić matrix. Our notation and

terminology agrees with those in [14], where additional details and references can be

found. In this paper G is an undirected simple graph with vertex set and edge set V (G)

and E(G), respectively. The vertices of G are labeled by 1, 2, . . . , n. If e ∈ E(G) has end

vertices i and j, then we say that i and j are adjacent (i ∼ j) and that e = ij. The set

Ni = {j ∈ V (G) : ij ∈ E(G)} is the set of neighbors of i ∈ V (G) and its cardinality,
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denoted by di, is its vertex degree. The minimum degree is denoted by δ and the maximum

degree is Δ. The adjacency matrix A = A(G) of G is used to represent the adjacency

relations. The elements aij are equal to 1 if vertices i and j are adjacent and 0 otherwise.

The eigenvalues λ1, λ2, . . . , λn of A are called the eigenvalues of the graph and its set the

spectrum of G (see [11]).

As in [14], for a real square matrix M associated to the graph G, we denote by λi(M)

its i-th greatest eigenvalue. The spectrum (the multiset of eigenvalues) of M is denoted by

σ(M) = σ(M(G)). The multiplicity s of an eigenvalue λ in this spectrum is represented

by λ(s). The matrix L(G) = D(G)−A(G), where D(G) = diag(d1, . . . , dn) is the diagonal

matrix of the vertex degrees, is known as Laplacian matrix or the Laplacian of G. Its

spectrum is called the Laplacian spectrum of G. Additional properties for the adjacency

and Laplacian matrix can be seen for instance in [11]. The identity matrix of order n (or

of appropriate order) is represented by In (or simply by I). The vector en denotes que all

one-vector with all its components equal to one.

2 Motivation

The Randić matrix is defined as R = R(G) = (rij), where rij = 1/
√

di dj if ij ∈ E(G),

and zero otherwise. The definition of Randić matrix cames from a molecular structure-

descriptor introduced by Milan Randić in 1975, (see [19])

χ = χ(G) =
∑

ij∈E(G)

1√
di dj

(1)

known as the Randić index. In fact, the summands on the right hand side of (1) may be

understood as matrix entries. In spite of its connection with Randić index this matrix

seems to have not been much studied in mathematical chemistry however, the graph

invariant Randić energy, defined as the sum of the absolute values of the eigenvalues of the

Randić matrix has been recently introduced and some of its properties were established,

in particular the study of lower and upper bounds for it, see [3, 4, 6, 13]. Recall that, for

graphs without singletons, the diagonal matrix D−1/2 exists. The matrix L = L(G) =

D−1/2 L(G)D−1/2 is the normalized Laplacian matrix, [10], and for a graph G without

singletons, the following equality can be stated:

L(G) = In −R(G) .

Some relations between these two matrices concerning its eigenvalues and its eigen-

vectors can be found for instance in the previous paper [14].
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In 1998 Bollobás and Erdös introduce the general Randić index (see [2]) as follows

Rα(G) =
∑

ij∈E(G)

(di dj)
α

for a fixed real number α �= 0. Note that the topological index introduced in [19] is a

particular case of the previous one considering α = −1
2
. In [9] some known results for the

graph invariant R−1 (G) are highlighted and the authors provided upper and lower bounds

for the energy of a simple graph with respect to the normalized Laplacian eigenvalues

(defined as the sum of its absolute values), EL (G). An upper bound of R−1 (G) known

for trees is also extended by these authors to connected graphs. Also, in [9] for a graph

G of order n with no singletons

2R−1 (G) ≤ EL (G) ≤
√
2nR−1 (G),

and this shows the relevant importance of R−1 (G) when related with EL (G) . In [22]

it was shown that for G a graph without singletons with minimum vertex degree δ and

maximum vertex degree Δ, then

n

2Δ
≤ R−1 (G) ≤ n

2δ

and it was proved that equality occurs in both bounds if and only if G is a regular graph.

In [14] it was introduced the concept of Randić spread and it was deduced upper and

lower bounds for this spectral invariant. Some of the bounds presented are in terms of

Randić index of the underlying graph. The Randić spread is defined in [14] as:

sprR(G) = max {|λi(R)− λj(R)| : λi(R), λj(R) ∈ σ(R(G)) \ {1}} .

In this paper it is presented in Section 4 an upper bound for Randić spread using a

result due to Scott, see [21], and in addition we also obtain new upper bounds for this

spectral invariant in function of Rα (G), for α = −1
2
. Moreover, in Section 5 we present

upper bounds for Randić spread and for the spread of a rank one perturbed matrix in

function of R−1 (G) . In Section 6 an upper bound for the Randić spread of the join of

two graphs with disjoint vertex sets is stated.

3 Auxiliary results

We start this section recalling the definition for the spread of an n × n complex matrix

M with eigenvalues λ1, λ2, . . . , λn that is defined by

s(M) = max
i,j
|λi − λj|
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where the maximum is taken over all pairs of eigenvalues of M.

This parameter appears in literature in many references, see for instance [1, 15–18].

The following upper bound for the spread of a square matrix M was given in [17]

s2 (M) ≤ 2 |M|2 − 2

n
|trace (M)|2 (2)

with |M |2 = trace(M∗M), where M∗ is the transconjugate of M .

Now we shall need the following result proved in [20].

Lemma 1. [20] Let G be an undirected simple and connected graph. For i ∈ V (G), let

Ni be the set of first neighbors of the vertex i of G. If ξ (R (G)) is an eigenvalue with

greatest modulus among the Randić eigenvalues of G, then

|ξ (R (G))| ≤ 1−min
i<j

{ |Ni ∩Nj|
max {di, dj}

}
.

where the minimum is taken over all pairs (i, j), such that 1 ≤ i < j ≤ n.

By using Lemma 1 we directly arrive at:

Theorem 2. Let G be an undirected simple and connected graph whose Randić matrix is

R(G). Then

sprR(G) = λ2(R(G))− λn(R(G)) ≤ 2− 2min
i<j

{ |Ni ∩Nj|
max {di, dj}

}
where the minimum is taken over all pairs (i, j), 1 ≤ i < j ≤ n, such that the vertices i

and j are adjacent.

The next theorem is due to Brauer [7] which shows how to modify one single eigenvalue

of an arbitrary square matrixM beginning from a rank one perturbation without changing

the remaining eigenvalues of M.

Theorem 3. [7] Let M be an arbitrary n×n matrix with eigenvalues λ1, λ2, . . . , λn . Let xk

be an eigenvector of M associated with the eigenvalue λk, and let q be any n-dimensional

vector. Then the matrix M+ xk q
t has eigenvalues

λ1, . . . , λk−1 , λk + xt
k q , λk+1, . . . , λn .

Let G be an arbitrary graph of order n with m edges and pq ∈ E(G). The following

statements can be found in [14]. The matrix

Rpq =

(
0 (dp dq)

−1/2

(dp dq)
−1/2 0

)
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is a principal submatrix of order 2 of PR(G)Pt, where P is an appropriate permutation

matrix of order n. Applying Theorem 3 it was proved in [14], that the matrix

Bpq = R(G) + βpq wwt

has spectrum

σ(Bpq) = σ(R(G)) \ {1} ∪
{
1 + βpq w

t w
}

= σ(R(G)) \ {1} ∪
{
1−
(
(dp dq)

−1/2 + 1
)}

= σ(R(G)) \ {1} ∪ {λpq} ,

where w = D
1
2 e , λpq = −1/

√
dp dq , and

βpq = −
1

2m

[
1√

dp dq + 1

]
.

Remark 1. [14] By Theorem 3, for any given value ς such that λn(R(G)) ≤ ς ≤
λ2(R(G)), the equality sprR(G) = s(Bς) holds, where Bς = R(G) + κwwt with

κ := κ(ς) :=
1

2m
(ς − 1) .

For κ specified in Remark 1 the matrix Bς = (bij) = R(G) + κwwt has the following

entries, (see [14]):

bij =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

κ di if i = j

1√
di dj

+ κ
√

di dj if ij ∈ E(G)

κ
√
di dj if ij /∈ E(G) .

(3)

4 An upper bound for Randić spread using a result

due to D. Scott

The following upper bound for the spread of a matrix is due to D. Scott and can be easily

proved by Gershgorin circle theorem (see also the proof of Theorem 3.1 in [1]). D. Scott,

in [21], also study the accuracy of this upper bound. Let M = (mij) be a square matrix.

Then

s (M) ≤ max
i 
=j

{
|mii −mjj|+

∑
k 
=i

|mik|+
∑
k 
=j

|mjk|
}
.

By using this upper bound we establish the next theorem.
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Theorem 4. Let G be a connected graph on n vertices and m edges and Bς be the matrix

defined in Remark 1, with λn(R(G)) ≤ ς ≤ λ2(R(G)). Then

s(Bς) ≤ max
i<j

{(
1− ς

2m

)
|di − dj|+

∑
l∼i

∣∣∣∣ 1√
di dl

−
(
1− ς

2m

)√
di dl

∣∣∣∣
+

(1− ς)

2m

∑
l 
∼i

√
di dl +

∑
l∼j

∣∣∣∣∣ 1√
dj dl

−
(
1− ς

2m

)√
dj dl

∣∣∣∣∣
+

(1− ς)

2m

∑
l 
∼i

√
dj dl

}
. (4)

The next lemma was proved in [14].

Lemma 5. [14] Let G be a connected graph of order n. Then λ2(R(G)) < 0 if and only

if G ∼= Kn .

Taking into account this lemma we establish the next corollary.

Corollary 6. Let G be a connected graph with n vertices and m edges with G �∼= Kn, then

sprR(G) ≤ max
i<j

{
|di − dj|

2m
+
∑
l∼i

∣∣∣∣ 1√
di dl

−
√
di dl
2m

∣∣∣∣
+
∑
l∼j

∣∣∣∣∣ 1√
dj dl

−
√

dj dl

2m

∣∣∣∣∣+ ∑
l 
∼j

√
dj dl

2m
+
∑
l 
∼i

√
di dl
2m

}
. (5)

Proof. By Lemma 5 if G �∼= Kn then λ2(R(G)) ≥ 0 ≥ λn(R(G)) which implies that ς = 0

satisfies the condition in Remark 1. Thus the upper bound in (4) becomes (5).

Corollary 7. Let G be a connected graph with n vertices and m edges. Then the maximum

taken over all pairs (i, j) , 1 ≤ i < j ≤ n in the set

{
|di − dj|(m+ χ(G))

2m2
+
∑
l∼i

∣∣∣∣ 1√
di dl

− m+ χ(G)

2m2

√
di dl

∣∣∣∣
+
∑
l∼j

∣∣∣∣∣ 1√
dj dl

− m+ χ(G)

2m2

√
dj dl

∣∣∣∣∣
+

(
m+ χ(G)

2m2

) (∑
l 
∼i

√
di dl +

∑
l 
∼j

√
dj dl

)}
is an upper bound for sprR(G).

Proof. The proof follows easily by inequality in (4) by taking ς = −χ(G)
m

.
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5 Bounds for Randić spread using a rank one per-

turbed matrix

In what follows, using the suggestion in Remark 1, we deduce some upper bounds for the

Randić spread (and for the spread of a rank one perturbed Randić matrix).

Firstly we need to recall the following result. For an arbitrary graphG, using inequality

(2), we present another upper bound for the Randić spread. To this purpose, for 1 ≤ j ≤ n

let us define

Γ(j) =
∑
s∼j

1

ds
.

Note that if G is a regular graph then Γ (j) = 1, for all 1 ≤ j ≤ n. Moreover define

f (G) = 2
∑

i∈V (G)

Γ(i)

di
.

Then,

f (G) = 2
∑

i∈V (G)

∑
s∼j

1

di ds
= 4R−1(G) = 2 |R(G)|2 .

By using inequality in (2) we get the following result.

Theorem 8. Let G be a connected graph on n vertices and m edges and Bς be the matrix

defined in Remark 1. Then

s (Bς) ≤
√
4R−1 (G) +

2(ς − 1)

n
(1 + n+ ς (n− 1)) . (6)

Moreover, if κ = κ (ς) = 1
2m

(ς − 1), with λn(R(G)) ≤ ς ≤ λ2(R(G)), we have

sprR (G) ≤
√
4R−1 (G) + 8κm

(
1 +mκ− mκ

n

)
. (7)

For ς = λ2(R(G)) the upper bound in (6) becomes

sprR(G) ≤
√
4R−1(G) +

2(λ2(R(G))− 1)

n
(1 + n+ λ2(R(G) (n− 1)) .

For ς = λn(R(G)) the upper bound in (6) becomes

sprR(G) ≤
√
4R−1(G) +

2(λn(R(G))− 1)

n
(1 + n+ λn(R(G)) (n− 1)) .

Proof. We shall use the upper bound (2) on the matrixBς . Taking into account the entries

bij defined in (3), and that |Bς |2 = trace(B∗
ςBς), where B∗

ς denotes the transconjugate of

Bς , we obtain

|Bς |2 =
∑

i∈V (G)

Γ (i)

di
+ 4κm(1 +mκ) .
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By a direct computation we have

trace (Bς) = 2mκ .

Applying the upper bound in (2) at Bς we have

s2 (Bς) ≤
∑

i∈V (G)

2Γ (i)

di
+ 8κm (1 +mκ)− 8m2κ2

n
. (8)

By elementary algebra, we can carry the term on the right hand side of previous

inequality to the upper bound in (7).

If κ = 1
2m

(ς − 1) from (8) we get∑
i∈V (G)

2Γ (i)

di
+ 8κm(1 +mκ)− 8m2κ2

n
=
∑

i∈V (G)

2Γ (i)

di
+ 2 (ς2 − 1)− 2

n
(ς − 1)2 .

Now, by a standard computation we arrive at (6).

Corollary 9. Let G be a connected graph with n vertices with G �∼= Kn. Then

sprR (G) ≤
√
4R−1(G)− 2(1 + n)

n
. (9)

Proof. By Lemma 5 if G �∼= Kn then λ2(R(G)) ≥ 0 ≥ λn(R(G)) which implies that ς = 0

satisfies the condition in Remark 1. Thus the upper bound in (7) becomes (9).

Corollary 10. Let G be a connected graph with n vertices and m edges, then

sprR (G) ≤
√
4R−1 (G)− 2 (χ(G) +m) ((1 + n)m− χ(G) (n− 1))

nm2
.

Proof. By inequality in (7) by taking ς = −χ(G)
m

.

6 An upper bound for the Randić spread of join of

two graphs

Usually, considering two graphs G1 and G2, the join G1 ∨ G2 is the graph G such that

V (G) = V (G1) ∪ V (G2) and E(G) = E(G1) ∪ E(G2) ∪ {uv : u ∈ V (G1), v ∈ V (G2)}.
In [14] for i = 1, 2 and considering Gi a pi-regular graph on ni vertices with pi ≥ 0, ni ≥ 1,

for the matrix

R(G1 ∨G2) =

⎛⎜⎜⎜⎜⎝
1

p1 + n2

A(G1)
en1 e

t
n2√

(p1 + n2)(p2 + n1)

en2 e
t
n1√

(p1 + n2)(p2 + n1)

1

p2 + n1

A(G2)

⎞⎟⎟⎟⎟⎠ .
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it was obtained

χ (G1 ∨G2) =
1

2

(
n1 p1

p1 + n2

+
n2 p2

p2 + n1

+
2n1 n2√

(p1 + n2)(p2 + n1)

)
.

Using the matrix

S =

⎛⎜⎜⎜⎜⎝
p1

p1 + n2

√
n1n2√

(p1 + n2)(p2 + n1)

√
n1 n2√

(p1 + n2)(p2 + n1)

p2
p2 + n1

⎞⎟⎟⎟⎟⎠
and σ(S) = {1, detS}, and applying a lemma of Fiedler (see [8]), the spectrum of R(G1∨
G2) was stated in [14] as:

σ

(
1

p1 + n2

A(G1)

)
∪ σ

(
1

p2 + n1

A(G2)

)
∪ σ(S) \

{
p1

p1 + n2

,
p2

p2 + n1

}
. (10)

Then, the following lemma was proved.

Lemma 11. [14] Let G1 and G2 be graphs of order n1 and n2 , respectively. Then

λ2(R(G1 ∨G2)) = max

{
λ2

(
1

p1 + n2

A(G1)

)
, λ2

(
1

p2 + n1

A(G2)

)}
. (11)

Now, we define the following (G1 ∨G2)-graph invariant

Υ (G1 ∨G2) = min

{
− p1
p1 + n2

, − p2
p2 + n1

,
p1 p2 − n1 n2

(p2 + n1) (p1 + n2)

}
.

The next lemma presents a lower bound for λn(R(G1 ∨G2)) in terms of

Υ (G1 ∨G2).

Lemma 12. Let G1 and G2 be graphs of orders n1 and n2, respectively. Then

λn(R(G1 ∨G2)) ≥ Υ(G1 ∨G2) (12)

Proof: By Eq. (10) it is clear that λn(R(G1 ∨G2)) is equal to

min

{
1

p1 + n2

λn1 (A (G1)) ,
1

p2 + n1

λn2 (A (G2)) ,
p1 p2 − n1 n2

(p2 + n1)(p1 + n2)

}
.

Attending that
1

p1 + n2

λn1(A(G1)) ≥ −
p1

p1 + n2

and
1

p2 + n1

λn2(A(G2)) ≥ −
p2

p2 + n1
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if we have

λn(R(G1 ∨G2)) = min

{
1

p1 + n2

λn1 (A (G1)) ,
1

p2 + n1

λn2 (A(G2))

}

≥ min

{
− p1
p1 + n2

− p2
p2 + n1

}
≥ Υ(G1 ∨G2).

Now, if

λn(R(G1 ∨G2)) =
p1p2 − n1n2

(p2 + n1) (p1 + n2)

then evidently
p1 p2 − n1 n2

(p2 + n1)(p1 + n2)
≥ Υ(G1 ∨G2) .

Thus the result follows.

Theorem 13. For i = 1, 2, let Gi be a pi-regular graph on ni vertices with pi ≥ 0, ni ≥ 1.

If

δ̃1 =

∣∣∣∣λ2

(
1

p1 + n2

A(G1)

)
−Υ(G1 ∨G2)

∣∣∣∣
δ̃2 =

∣∣∣∣λ2

(
1

p2 + n1

A(G2)

)
−Υ(G1 ∨G2)

∣∣∣∣ .
then

sprR (G1 ∨G2) ≤ max
{
δ̃1, δ̃2

}
.

Proof. The result follows from (11) by noting that by (10), detS = p1 p2−n1 n2

(p1+n2)(p2+n1)
is a

Randić eigenvalue of G1 ∨G2.
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[11] D. Cvetković, M. Doob, H. Sachs, Spectra of Graphs – Theory and Application,

Academic Press, New York, 1980.

[12] B. Furtula, I. Gutman, Comparing energy and Randić energy, Maced. J. Chem.
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