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Abstract

Recent development of laser technology toward the realization of high-power laser has
opened up a new research area exploring various fascinating phenomena governed by
strongly photoexcited electronic states in diverse fields of science. In this chapter, we
review the laser-induced Fano resonance (FR) in condensed matter systems, which is
one of the representative resonance effects successfully exposed by strong laser field.
The FR of concern sharply differs from FR effects commonly observed in conventional
quantum systems where FR is caused by a weak external perturbation in a stationary
system in the following two aspects. One is that the present FR is a transient phenome-
non caused by nonequilibrium photoexcited states. The other is that this is induced by
an optically nonlinear process. Here, we introduce two physical processes causing such
transient and optically nonlinear FR in condensed matter, followed by highlighting
anomalous effects inherent in it. The first is a Floquet exciton realized in semiconductor
superlattices driven by a strong continuous-wave laser, and the second is the coherent
phonon induced by an ultrashort pulse laser in bulk crystals.

Keywords: laser, Fano resonance, photodressed states, exciton, dynamic localization,
Floquet theorem, coherent phonon, ultrafast phenomena, polaronic quasiparticle

1. Introduction

In quantum systems where discrete levels are embedded in energetically degenerate contin-

uum states, resonance phenomenon is likely manifested, that is, characteristic of asymmetric

spectral profiles consisting of both a peak and a dip. This is known as Fano resonance (FR) [1];

this is also termed as either Feshbach resonance or many-channel resonance. FR is one of the

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



common and fundamental concepts in diverse fields of physics and chemistry; FR processes

are observed, for instance, in strongly interacting Bose-Einstein condensates in an ultracold

atomic system [2–4], superexcited states of molecules [5], a semiconductor quantum dot in an

Aharonov-Bohm interferometer [6], an electronic transition near Weyl points strongly coupled

with an infrared-active phonon in a Weyl semimetal [7].

In particular, within the restriction just to the FR processes triggered by laser irradiation, these

may be classified in terms of the three categories as shown in Table 1. The first category is

regarding whether a process is a linear one or a nonlinear one with respect to an order of a

laser-matter interaction, as categorized as (a1) and (a2), respectively. For instance, the former is a

photoabsorption process [8–11], and the latter is a multiphoton process [12–16]. The second

category is regarding whether the process results from a built-in interaction between the discrete

level and continuum that is intrinsic to a material itself or from a coupling induced extrinsically

by a laser, as categorized as (b1) and (b2), respectively. For instance, the former is the interaction

of an electron with a longitudinal optical (LO)-phonon in incoherent Raman scattering [17–22],

and the electron-electron interaction brings about autoionization and the Auger process [23]. The

latter FR process is known as a laser-induced continuum structure [2–4, 24]. The third category is

regarding whether the process is a (quasi)stationary one or a transient one, as categorized as (c1)

and (c2), respectively. In other words, this is whether (quasi)time-independent or time-

dependent. For instance, the former is induced by a continuous-wave (cw) laser (monochromatic

laser) [15, 16, 25, 26], and the latter is by a short pulsed laser [27–31].

It is stressed that for the FR categorized as (a2), its physical characters—such as asymmetry in

spectral profile, spectral intensity, resonance position, and spectral width—are controllable in a

quantum-mechanic manner by tuning various laser parameters. Thus, it is expected that under-

lying physics is enriched by intriguing effects inherent in this sort of FR. This differs frommost of

FR processes observed thus far because of being simply classified as (a1)-(b1)-(c1).

Currently, new research areas have been opened up owing to the progress of laser technology

toward the realization of sophisticated high-power light sources. In particular, in the field of

condensed matter physics, the development of high-intensity terahertz (THz) wave enables us to

explore a photodressed quantum state in which a temporally periodic interaction of THz wave

with matter is renormalized in the original quantum state in a nonperturbative manner [32–34].

Such an anomalous state is termed as a Floquet state because of ensuring the Floquet theorem

[35]. Further, the development of ultrashort pulse laser—with its temporal width being of an

Category Characteristic

Optical process (a1) Linear (perturbative) (a2) Nonlinear (nonperturbative)

Interaction

causing FR

(b1) Intrinsic (built-in) (b2) Extrinsic (external)

Light source (c1) Monochromatic, continuous wave

(stationary/quasistationary)

(c2) Pulsed (transient)

Table 1. Classification of FR into three categories.
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order of 10 femtosecond (fs)—enables us to explore ultrafast transitory phenomena governed by

strongly photoexcited electronic states. Bearing in mind such current situations, here, we focus

exclusively on the laser-induced FR effects realized in the following two physical systems. One is

a Floquet exciton formed in semiconductor superlattices (SLs) driven by a strong THz wave, and

the other is a coherent phonon (CP) generated by ultrashort pulse laser in bulk crystals. In the

light of Table 1, the FR effects of concern sharply differ from those commonly observed in

conventional quantum systems classified as (a1)-(b1)-(c1) in the following aspects. Both of the

Floquet exciton and the CP are induced by optically nonlinear processes, and hence the signifi-

cant quantum controls of FR are feasible by means of tuning the respective applied light sources.

Further, the Floquet exciton forms manifolds of quasistationary states with quasienergy as a

constant of motion, where the FR is mediated by the ac-Zener tunneling caused by the THz

wave. Hence, this is classified as (a2)-(b2)-(c1) and is herein termed as dynamic FR (DFR). On

the other hand, the CP is a transient phenomenon caused by the built-in interaction of an

LO-phonon with nonequilibrium photoexcited carriers. Hence, this is classified as (a2)-(b1)-(c2)

and is herein termed as transient FR (TFR).

Below, we survey the present research backgrounds of DFR and TFR in brief. In both cases, the

applied electric field of pumping laser is represented as F(t) = F0(t) cos(ωt) with an envelope

function F0(t) at time t and the center frequency ω.

To begin with the DFR, this is closely related with the photodressed miniband formation [36].

Here, the cw laser with a constant amplitude F0(t)�Fac gives rise to a nonlinear optical

interaction with electron to result in a photodressed miniband with effective width

Δeff = Δ0∣J0(x)∣, where Δ0 and J0(x) represent the width of the original SL miniband and the

zeroth-order Bessel function of the first kind with x = eFacd/ℏω, respectively, and e, d, and ℏ

represent the elementary charge, a lattice constant of the SLs, and Planck’s constant divided by

2π, respectively. Each photodressed miniband forms a sequence of photon sidebands arrayed

at equidistant energy intervals of ℏω following the Floquet theorem. The DFR is caused by the

interaction due to the ac-Zener tunneling between photon sidebands pertaining to different

sequences, and this is coherently controlled by tuning Fac and ω. In particular, it is expected

that an anomalous effect attributed to dynamic localization (DL) on DFR is revealed on the

occasion that all of the photodressed minibands collapse by tuning x to ensure J0(x) = 0 [36–38].

The DL was first observed in electron-doped semiconductor SLs driven by a THz wave [39]. In

addition, this has also been observed in diverse physical systems such as a cold atomic gas in

one-dimensional optical lattices [40], a Bose-Einstein condensate [41], and light in curved

waveguide arrays [42–44].

As regards the TFR, this was observed in a lightly n-doped Si crystal immediately after carriers

were excited by an ultrashort laser pulse [45], where the speculation was made that the observed

FR would show the evidence of the birth of a polaronic-quasiparticle (PQ) likely formed in a

strongly interacting carrier-LO-phonon system in a moment [46]. The TFR of concern has been

observed exclusively in this system and semimetals/metals such as Bi and Zn [47, 48] till now,

however, not observed in p-doped Si and GaAs crystals [49, 50]. Thus far, there are a number of

theoretical studies regarding these experimental findings. The time-dependent Schrödinger

equation in the system of GaAs was calculated to show the asymmetric shape featuring FR
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spectra, though apparently opposed to existing experimental results, as mentioned above [51].

Further, the classical Fano oscillator model was presented based on the Fano-Anderson Hamil-

tonian [52, 53], and the close comparison of the experimental results of the CP signals of Bi was

made with the time signal obtained by taking the Fourier transform of Fano’s spectral formula

into a temporal region [48]. Recently, the authors have constructed a fully quantum-mechanical

model based on the PQ picture in a unified manner on an equal footing between both of polar

and nonpolar semiconductors such as undoped GaAs and undoped Si [31]. Here, it has been

shown that the TFR is manifested in a flash only before the carrier relaxation time (�100 fs) in

undoped Si, whereas this is absent from GaAs.

Acronyms used in the text and the corresponding meanings are summarized in Table 2. The

remainder of this chapter is organized as follows. In Section 2, the theoretical framework is

described, where the models of the DFR and TFR are presented separately in Sections 2.1 and

2.2, respectively. The results and discussion are given in Section 3, and the conclusion with

summary is given in Section 4. Atomic units (a.u.) are used throughout unless otherwise stated.

2. Theoretical framework

2.1. Theoretical model for DFR in the photodressed exciton

2.1.1. Optical absorption spectra

The total Hamiltonian bH
DFRð Þ

tð Þ concerned comprises a SL Hamiltonian consisting of field-free

Hamiltonians of the conduction (c) and valence (v) bands, a Coulomb interaction between

electrons, an intersubband interaction caused by the driving laser F(t) polarized in the direction

of crystal growth (the z-axis), and an interband interaction caused by the probe laser f(t) = fpcos

(ωpt) with the center frequency ωp and the constant amplitude fp; it is assumed that Fac ≫ fp and

Acronyms Meanings

CP Coherent phonon

cw Continuous wave

DFR Dynamic FR

DL Dynamic localization

FR Fano resonance

fs Femtosecond

LO Longitudinal optical

PQ Polaronic-quasiparticle

SL Superlattice

TFR Transient FR

THz Terahertz

Table 2. Summary of acronyms used in text in alphabetical order and corresponding meanings.
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ω ≪ ωp. The microscopic polarization defined as p
λλ

0
k∥

tð Þ � a
vð Þ†
λk∥

a
cð Þ

λ
0
k∥

� �
is examined to shed

light on the detail of DFR of the Floquet exciton; 〈O〉 represents the expectation value of the

operator O. Here, λ(0) = (b(0),l(0)), which represents the lump of the SL miniband index b(0) and the

SL site l(0). In addition, k∥ represents the in-plane momentum associated with the relative motion

of the pair of c band and v band electrons, where the in-plane is defined as the plane normal to

the z-axis; hereafter, the relative position conjugate to k∥ is represented as ρ. Further, a
sð Þ†
λk∥

a
sð Þ
λk∥

� �

represents the creation (annihilation) operator of the electron with λ and k∥ in band s.

The equation of motion for the microscopic polarization is given by the semiconductor Bloch

equation

i
d

dt
þ

1

T2

� �
p
λλ

0
k∥

tð Þ ¼ ½a
vð Þ†
λk∥

a
cð Þ
λk∥

; bH
DFRð Þ

tð Þ�

� �
(1)

with T2 dephasing time. For the practical purpose of tackling the multichannel scattering

problem of exciton, it is convenient to transform it into the equation for p ρ; zv; zc; tð Þ defined

in the real-space representation as

p ρ; zv; zc; tð Þ ¼ eiωpt
X

λ,λ0

Z
dk∥e

ik∥�ρ zvjλh ip
λλ

0
k∥

tð Þ λ0jzch i, (2)

where 〈λ|z〉 represents the Wannier function at position z� ld in SL miniband b. The resulting

equation becomes

i
d

dt
þ

1

T2
� iωp

� �
p ρ; zv; zc; tð Þ þ 2πð Þ2eiωptf

þð Þ
0 tð Þd

vcð Þ
0 δ ρð Þδ zv � zcð Þ

¼
R
dz p ρ; zv; z; tð ÞH

cð Þ
TB z; zc; tð Þ �H

vð Þ
TB zv; z; tð Þp ρ; z; zc; tð Þ

h i
þH ρ; zv; zcð Þp ρ; zv; zc; tð Þ,

(3)

where the rotating wave approximation is employed by replacing f(t) by f
þð Þ
0 tð Þ � f p=2

� �
e�iωpt

and d
vcð Þ
0 represents the interband dipole moment of a bulk material. Here, the Hamiltonian

H(ρ,zv,zc) for the in-plane motion is given by H ρ; zv; zcð Þ ¼ � ∇2
ρ
=2m∥ þ V rð Þ, where m∥ and V

(r) = �1/(ε0r) represent an in-plane reduced mass and the Coulomb interaction, respectively,

with r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ zv � zcð Þ2

q
and ε0 the dielectricity of vacuum. The nearest-neighbor tight-

binding Hamiltonian of the laser-driven SLs is given by H
sð Þ
TB z; z0; tð Þ � zjbH

sð Þ

TB tð Þjz0
D E

, where

bH sð Þ
TB tð Þ ¼

X

λ¼ b;lð Þ

ε
sð Þ
0b jλ〉〈λj þ

�1ð Þbþσ
s

4
Δ

sð Þ
b jl; bð i lþ 1; bj þ jlþ 1; bh i〈l; bjÞ

" #

� F tð Þ
X

λλ
0

∣λiZ
sð Þ

λλ
0 λ

0∣,h

(4)

and ε
sð Þ
0b and Δ

sð Þ
b represent the band center and the band width of b, respectively, with σ

s = 0 (for

s = c) and 1 (for s = v). The last term of Eq. (4) represents the dipole interaction induced by the
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driving laser F(t) with Z
sð Þ

λ,λ0
as a dipole matrix element. It should be noted that the off-diagonal

contribution of Z
sð Þ

λ,λ0 with b 6¼b 0 induces the ac-Zener tunneling, which plays a significant role

of quantum control of DFR, as shown below.

The concerned function p ρ; zv; zc; tð Þ can be expressed in terms of the complete set of the

Floquet wave functions {ψEβ(ρ,zv,zc,t)}, that is,

p ρ; zv; zc; tð Þ ¼

Z

dE
X

β

aEβψEβ ρ; zv; zc; tð Þ (5)

with aEβ as an expansion coefficient. Here, the Floquet wave function ensures the following

homogeneous equation associated with the inhomogeneous equation of Eq. (3) as

i
d

dt
þ E

� �

ψEβ ρ; zv; zc; tð Þ ¼
R

dz ψEβ ρ; zv; z; tð ÞH
cð Þ
TB z; zc; tð Þ �H

vð Þ
TB zv; z; tð ÞψEβρ; z; zc; tÞ

h i

þH ρ; zv; zcð ÞψEβ ρ; zv; zc; tð Þ, (6)

where the temporally periodic boundary condition ψEβ(ρ,zv,zc,t) = ψEβ(ρ,zv,zc,t+T) is imposed

on it with E and T = 2π/ω as quasienergy and the time period of the driving laser field,

respectively. Equation (6) is the Wannier equation of the Floquet exciton of concern. It should

be noted that this is cast into the multichannel scattering equations and the Floquet state of

ψEβ(ρ,zv,zc,t) forms a continuum spectrum designated by both E and β with β representing the

label of an open channel. Such a multichannel feature is introduced by the strong driving laser

F(t) that closely couples an excitonic-bound state with continua; more detail of the

multichannel scattering problem is described in Section 2.1.2. The expansion coefficient aEβ is

readily obtained by inserting Eq. (5) into Eq. (3) in view of Eq. (6) as

aEβ ¼
2πð Þ2d

vcð Þ
0 f p=2

� �

E� ωp � iγ
	 


T

Z T

0

dt0ψEβ t0ð Þ, (7)

where ψEβ tð Þ ¼
R

dzψEβ 0; z; z; tð Þ and γ = 1/T2.

Since the macroscopic polarization is given by P tð Þ ¼
P

λ,λ0

R

dk∥d
vcð Þ∗
0 p

λλ
0
k∥

tð Þ, the linear opti-

cal susceptibility χ(t) with respect to the weak probe laser f(t) is cast into [54]

χ tð Þ ¼
d

vcð Þ
0

�

�

�

�

�

�

2

ε0

Z

dE
X

β

OEβ tð Þ

E� ωp � iγ
, (8)

where OEβ tð Þ ¼ ψEβ tð Þ=T
h i

R T
0 dt0ψ

∗

Eβ t0ð Þ. Taking the Fourier transform of χ(t)�∑je
ijωtχj(ωp;ω),

leads to the expression of the absorption coefficient to be calculated as
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α ωp;ω
	 


¼
ωp

C

X

j

Imχj ωp;ω
	 


(9)

with C the speed of light; χj=¼0 ωp;ω
	 


vanishes in the limit of Fac!0.

2.1.2. Multichannel scattering problem

The absorption coefficient of Eq. (9) is obtained by evaluating a set of the wave functions,

{ψEβ(ρ,zv,zc,t)}. To do this, first, the wave function is expanded as

ψEβ ρ; zv; zc; tð Þ ¼
X

μ

Φμ zv; zc; tð ÞFμβ ρ
	 


, (10)

where ρ = ∣ρ∣, and just the contribution of the s-angular-momentum component is incorporated

because of little effects from higher-order components. Here, Φμ(zv,zc,t) is the real-space repre-

sentation of the Floquet state ∣Φμ〉, that is, Φμ(zv,zc,t) = 〈zv,zc|Φμ〉, satisfying bHTB � i∂=∂t
� �

∣Φμi ¼ Eμ∣Φβi, where bHTB � bH cð Þ
TB þ

bH vð Þ
TB and Eμ is the μth quasienergy. The index μ is consid-

ered as the approximate quantum number μ ≈ μ; k
� 

with μ � bc; bv; np
� 

as a photon sideband

index, where bc and bv are SL miniband indexes belonging to the c- and v-bands, respectively,

and k and np represent the Bloch momentum of the joint miniband of (bc,bv) and the number of

photons relevant to absorption and emission, respectively. The quantum number μ becomes a set

of the good quantum numbers with Fac decreasing, while k always remains conserved because of

the spatial periodicity in the laser-driven SLs of concern. In view of Eq. (10), Eq. (6) is recast into

the coupled equations for the radial wave function Fνβ(ρ), that is,

X

μ

LμνFνβ ρ
	 


¼ EFμβ ρ
	 


, (11)

where Lμν is an operator given by Lμν = δμν[�(2m∥)
1(d2/dρ2+ρ1d/dρ)+Eμ]+Vμν(ρ) and Vμν(ρ) is a

Coulomb matrix element defined as Vμν ρ
	 


¼ T�1
R T
0 dt

R
dzv

R
dzcΦ

∗
μ zv; zc; tð ÞV ρ; zv; zc

	 


Φν zv; zc; tð Þ:

The Floquet exciton in the laser-driven SL system pertains to the multichannel scattering

problem, because Vμν(ρ) vanishes at ρ ≫ 1. Actually, for a given E, the channel μ satisfying E

>Eμ is an open channel, while the channel μ satisfying E<Eμ is a closed channel. Thus, the label

μ of Fμβ plays the role of the scattering channel. On the other hand, the label β means the

number of independent solutions satisfying Eq. (11). Here, there are same number of indepen-

dent solutions as open channels, since as many scattering boundary conditions are imposed on

Fμβ at ρ ≫ 1; while evanescent boundary conditions that Fμβ vanishes at ρ ≫ 1 are imposed on

closed channels. Eq. (11) can be numerically evaluated by virtue of the R-matrix propagation

method, which is a sophisticated formalism providing a stable numerical algorithm with

extremely high accuracy [55].

It is expected that the DFR of concern is caused by a coupling between photon sidebands

mediated by ac-Zener tunneling, as mentioned in Section 1. To see this situation in more detail,
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Figure 1 shows the interacting two photon sidebands μ and μ0 � b0c; b
0
v; n

0
p

h i
, where the discrete

Floquet excitonic state is supported by the photon sideband μ, and this is also embedded in the

continuum of the alternative photon sideband μ0. It is likely that the DFR occurs due to a close

coupling between these photon sidebands, and, eventually, the exciton state decays into the

continuum state pertaining to μ0. In fact, it is noted that the Coulomb interaction incorporated

in Eq. (6) also gives rise to FR. Defining the difference between the photon numbers of both

photon sidebands, namely, Δnp ¼ ∣np � n0p∣, the ac-Zener tunneling is featured by Δnp 6¼0, while

the Coulomb coupling is by Δnp = 0. The spectral profile and intensity of FR in the former can be

even more effectively controlled than in the latter by modulating the laser parameters Fac and ω,

since the degree of magnitude of ac-Zener tunneling depends exclusively on both of the external

parameters, differing from the Coulomb interaction. In the region of Fac weak enough to sup-

press the ac-Zener tunneling, the FR is dominated by the Coulomb coupling, similarly to the

conventional FR observed in the original SLs without laser irradiation [56].

2.2. Theoretical model for TFR in the CP generation

2.2.1. Introduction of polaronic quasiparticle operators

The total Hamiltonian bH
TFRð Þ

of concern is given by bH
TFRð Þ

¼ bH e þ bH 0 tð Þ þ bHp þ bH e�p: Here, bH e

represents an electron Hamiltonian including an interelectronic Coulomb potential, where a

two-band model is employed that consists of the energetically lowest c band and the energet-

ically highest valence v band, and a creation (annihilation) operator of electron with band

index b and Bloch momentum k is represented as a†bk abkð Þ. bHp represents an LO-phonon

Bound states of 
Floquet exciton

ac-Zener 
tunneling

Continuum of 
Floquet exciton

Photon sideband  µ
_

Photon sideband  µ’
_

{
{

Figure 1. Schematic diagram of the DFR formation in the Floquet excitonic system. This shows the coupling mechanism

that a bound state supported by the sideband μ interacts with a continuum state belonging to the sideband μ0 by the ac-

Zener tunneling to result in the Fano decay (from Ref. [15] with partial modification).
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Hamiltonian, where a creation (annihilation) operator of LO-phonon with an energy disper-

sion ω
LOð Þ
q at momentum q is represented as c†q cq

	 

. Further, bH

0
tð Þ and bH e�p represent interac-

tion Hamiltonians of electron with the pump pulse and the LO-phonon, respectively. These are

given as follows:

bH
0
tð Þ ¼ �

1

2

X

b, b0 =¼bð Þ, k
Ωbb0 tð Þa

†

bkab0k þΩ
∗
bb0 tð Þa

†

b0kabk
� 

, (12)

where Ωbb0(t) = dbb0F(t) with dbb0 an electric dipole moment between b and b
0

bands, and

bH e�p ¼
X

b, q, k
gbqcqa

†

bkþqabk þ g∗bqc
†

qa
†

bkabkþq

� �
, (13)

where gbq is a coupling constant of b band electron with the LO-phonon. Here, let the envelope

of F(t) be of squared shape just for the sake of simplicity, that is, F0(t) = F 0θ(t+τL/2)θ(τL/2�t)

with F0 constant, where temporal width τL is of the order of a couple of 10 fs at most,

satisfying τL ≪ 2π=ω
LOð Þ
q .

The equation of motion of a composite operator A†

q kbb0ð Þ � a†b,kþqab0k is considered below,

where this represents an induced carrier density with spatial anisotropy determined by q; ∣q∣

is finite, though quite small, that is, q 6¼0. It is convenient to remove from this equation high-

frequency contributions by means of the rotating-wave approximation [57] by replacing

A†

q kbb0ð Þ by eiωbb0 tA
†

q kbb0ð Þ, where ωcv ¼ ω, ωvc ¼ �ω, and ωbb ¼ 0. Thus, the resulting equation

of motion is as follows:

�i
d

dt
þ

1

Tq kbb0ð Þ

 !

A
†

q kbb0ð Þ ¼ bHe tð Þ;A
†

q kbb0ð Þ
h i

� A
†

q kbb0ð Þωbb0 þ bH e�p;A
†

q kbb0ð Þ
h i

≈

X

~k~b~b
0

A
†

q
~k~b~b

0
� �

Zq
~k~b~b0; kbb0Þ þ bH e�p;A

†

q kbb0ð Þ
h i

,
� (14)

where the total electronic Hamiltonian is defined as bHe tð Þ ¼ bH e þ bH
0
tð Þ, the first commutator

in the right-hand side of the first equality is evaluated by making a factorization approxima-

tion, and Tq(kbb
0

) represents a phenomenological relaxation time constant relevant to A†

q kbb0ð Þ.

Further, Zq represents a non-Hermitian matrix, which is a slowly varying function in time,

since rapidly time-varying contributions are removed owing to the above rotating-wave

approximation, aside from the discontinuity at t = �τL/2.

Bearing in mind this situation, we tackle left and right eigenvalue problems of Zq [58],

described by UL†
q Zq ¼ EqU

L†
q and ZqU

R
q ¼ UR

qEq, respectively, in terms of an adiabatic-

eigenvalue diagonal matrix Eq and the associated biorthogonal set of adiabatic eigenvectors

UL
q;U

R
q

n o
with time t fixed as a parameter. The orthogonality relation and the completeness
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are read as UL†
q UR

q ¼ 1 and UR
qU

L†
q ¼ 1, respectively [58]. Given the relation Zq ¼ UR

qEqU
L†
q ,

Eq. (14) is recast into the form of adiabatic coupled equations:

�i
dB†

qα

dt
¼ B†

qαEqα þ i
X

α0

B†

qα0Wqα0α þ bH e�p;B
†

qα

h i
, (15)

where the operator B†

qα is defined as B†

qα � A
†

qU
R
qα, Wqα0α � dUL†

qα0=dt
h i

UR
qα, þUL†

qα0T�1
q UR

qα, and

Eqα(t) is complex adiabatic energy at time t associated with the operator B†

qα tð Þ thus introduced.

Hereafter, this operator is termed as a creation operator of quasiboson, and the corresponding

annihilation operator is defined as Bqα � UR†
qαAq: The set of eigenstates {α} is composed of

continuum states represented as β with eigenenergy Eqβ and a single discrete energy state

represented as α1 with eigenenergy Eqα1
, that is, {α} = ({β},α1); the state β corresponds to

electron-hole continuum arising from interband transitions, and the state α1 corresponds to a

plasmon-like mode. It is noted that the relation of Bqα tð Þ;B†

q0α0 tð Þ
h iD E

¼ δqq0δαα0 is assumed,

though Bqα(t) and B†

qα tð Þ do not satisfy the equal-time commutation relations for a real boson,

where bX means an expectation value of operator bX with respect to the ground state; the

validity of the criterion of this relation is discussed in detail in Ref. [31].

Eq. (13) is rewritten as bH e�p ¼
P

q,α cqB
†

qαMqα þM∗

qαBqαc
†

q

� �
with an effective coupling

between quasiboson and LO-phonon as Mqα ¼
P

kbgbqU
L†
qα kbbð Þ. Thus, the commutator in

Eq. (15) is approximately evaluated as bH e�p;B
†

qα

h i
≈M

0
∗

qαc
†

q, though M
0
∗

qα 6¼ M∗

qα. On the other

hand, the equation of motion of the LO-phonon is described by �idc†q=dt ¼
P

αB
†

qαMqαþ

c†qω
LOð Þ
q : Both of the equations of motion for B†

q and c†q are integrated into a single equation in

terms of matrix notations as follows:

�i
d

dt
B†

q; c
†

q

� �
≈ B†

q; c
†

q

� �
hq þ iB†

qWq; 0
� �

: (16)

Here, the non-Hermitian matrix hq�{hqγγ0} given by hq ¼
Eq Mq

M0†
q ω

LOð Þ
q

 !

is introduced with

γ ,γ
0

= 1�N+2, where N represents the number of electron-hole (discretized) continua, namely,

β = 1~N, aside from two discrete states attributed to a plasmon-like mode and an LO-phonon

mode designated by α1 and α2, respectively: {γ} = ({β},α1,α2). In the system of the TFR of

concern, the case is exclusively examined that both of the discrete levels of α1 and α2 are

embedded into the continua {β}. Thus, the following coupled equations for the multichannel

scattering problem are taken account of

X

γ0

hqγγ0VR
qγ0β ¼ VR

qγβEqβ, (17)
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where VR
qβ ¼ VR

qγβ

n o

is the right vector representing the solution for given energy Eqβ; simi-

larly to Eq. (11) for the DFR, the indices of γ and β play the roles of a scattering channel and the

number of independent solutions, respectively. Eq. (17) provides the theoretical basis on which

both of LO-phonon and plasmon-like modes are brought into connection with the CP dynam-

ics on an equal footing. In terms of this vector, a set of N-independent operators,

F†
qβ β ¼ 1 � N

	 


, is defined as

F†
qβ ¼

X

β0

B†

qβ0V
R
qβ0β þ B†

qα1
VR

qα1β
þ c†

q
VR

qα2β
: (18)

In addition, the left vector VL†
qβ ¼ VL†

qβγ

n o

associated with VR
qβ is introduced to ensure the

inverse relations B†

qα ¼ F†
q
VL†

qα and c†
q
¼ F†

q
VL†

qα2
, where VL†

q
VR

q
¼ 1 and VR

q
VL†

q
¼ 1. Hereafter,

the operator F†
qβ tð Þ thus introduced is termed as a creation operator of PQ, and then the

corresponding annihilation operator is Fqβ(t); these are not bosonic operators. The

bosonization scheme for the PQ operators is similar to that for the quasiboson operators,

where the PQ ground state is given by the direct product of the ground states of quasiboson

and LO-phonon and Eqβ(t) is read as the single-PQ adiabatic energy at time t with mode qβ.

Given Eq. (18), Eq. (16) becomes adiabatic coupled equations for F†
q
:

�i
d

dt
F†
qβ ≈F

†

qβEqβ þ i
X

β0

F†
qβ0Iqβ0β, (19)

where Iq ¼ dVL†
q
=dt

� �

VR
q
þ VL†

q
WqV

R
q
: In terms of Fq and F†

q
, the associated retarded Green

function is given by [59]

GR
qββ0 t; t

0ð Þ ¼ �iθ t� t0ð Þ Fqβ tð Þ; F†
qβ0 t

0ð Þ
h iD E

: (20)

2.2.2. Transient induced photoemission spectra

A weak external potential fq(t) additionally introduced in the transient and nonequilibrium

system of concern induces an electron density n
indð Þ
q tð Þ given by

n indð Þ
q

tð Þ ¼
1

4πV

Z t

�∞

dt0χ tð Þ
q

t; t0ð Þf
q
t0ð Þ, (21)

based on the linear response theory [59, 60] with V the volume of crystal. It is noted that

n
indð Þ
q tð Þ is nonlinear with respect to the pump field. Here, χ

tð Þ
q t; t0ð Þ represents the retarded

longitudinal susceptibility that depends on passage of t and the relative time τ = t�t
0

, differing

from equilibrium systems depending solely on τ. Introducing a retarded longitudinal
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susceptibility due to the electron-induced interaction and that of an LO-phonon-induced

interaction represented as χq(t,t
0

) and χ0
q t; t0ð Þ, respectively, χ

tð Þ
q t; t0ð Þ is given by [59]

χ tð Þ
q t; t0ð Þ ¼ χq t; t0ð Þ þ χ0

q t; t0ð Þ: (22)

Let fq(t
0

) be assumed to be fq(t
0

) = fq0 δ(t
0

�tp) in the present system; fq0 is independent of t
0

, and

tp represents the time at which fq(t
0

) probes transient dynamics of concern. Thus, it is seen that

χ
tð Þ
q t; tp
	 


reveals the way of alteration of n
indð Þ
q tð Þ after tp, since Eq. (21) becomes n

indð Þ
q tð Þ ¼

f q0χ
tð Þ
q t; tp
	 


θ t� tp
	 


=4πV:

In terms of χ
tð Þ
q tp þ τ; tp
	 


, the dielectric function εq(tp+τ,tp) is readily obtained, and by taking

the Fourier transform of it as ~εq tp;ωp

	 


¼
R

∞

0 dτ e�iωpτεq tp þ τ; tp
	 


, this leads to a transient

absorption coefficient αq(tp;ωp) at time tp. This is given by αq(tp;ωp) = ωAq(tp;ωp)/n(tp;ωp)C,

where Aq tp;ωp

	 


¼ Im~εq tp;ωp

	 


and n(tp;ωp) represents the index of refraction. It is remarked

that according to the definition of the sign of ωp made above, transient photoemission spectra,

where Aq(tp;ωp)<0, peak at positive ωp, while transient photoabsorption spectra, where Aq(tp;

ωp)>0, peak at negative ωp. For the sake of the later convenience, the transient induced

photoemission spectra are defined as Aq tp;ωp

	 


¼ �Aq tp;ωp

	 


:

Based on the PQ model developed in Section 2.2.1, χq(t,t
0

) and χ0
q t; t0ð Þ can be explicitly

expressed in terms of the retarded Green function given by Eq. (20). Here, the obtained results

are shown below; for more detail, consult Ref. [31]:

χ∗

q t; t0ð Þ ¼
4π

V

X

αα0ββ0

NL∗
qα tð ÞVL

qαβ tð ÞGR
qββ0 t; t

0ð ÞVL†
qβ0α0 t

0ð ÞNL
qα0 t0ð Þ, (23)

where NL
qα ¼

P

kbU
L†
qα kbbð Þ, and this is equivalent to a normalization constant of the left vector

UL†
qα:

χ0
q t; t0ð Þ ¼

4π

V
g0q

�

�

�

�

�

�

2
D

0R

q t; t0ð Þ þ D
0R

�q t; t0ð Þ
h i∗

� �

, (24)

where g0q is a constant in proportion to (gcq+gvq)/2 and

D
0R

q t; t0ð Þ ¼
X

ββ0

VL
qα2β

tð ÞGR
qββ0 t; t

0ð ÞVL†
qβ0α2

t0ð Þ: (25)

Finally, the TFR dynamics caused by the CP generation is mentioned based on the PQ picture.

As shown in Figure 2, the LO-phonon state α2 is embedded in the quasiboson state β, and the

effective coupling between both states induces the formation of transient PQ FR state. This

composite state is deexcited into the PQ ground state via two paths: one is the transient

photoemission from α2, and the other is from β. It is likely that these two paths interfere to
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give rise to asymmetry in spectra. It is remarked that the contribution from the plasmon-like
mode α1 is omitted because of a negligibly smaller effect on the TFR.

3. Results and discussion

3.1. DFR in the photodressed exciton

For the calculations of DFR spectra, the semiconductor SLs of GaAs/Ga0.75Al0.25As are
employed with 35/11 monolayers (ML) for the well and barrier thickness, where 1 ML = 2.83 Å.
Here, 14 photon sidebands of μ ¼ 1; 1;�3 � 3½ � and [2,1,�3�3] are incorporated by setting ω

to 91 meV; this equals to the difference between the centers of the joint minibands of (1,1) and
(2,1). Other photon sidebands are neglected for the sake of simplicity.

First of all, the calculated quasienergy bands {Eμ} as a function of Fac are shown in Figure 3 to
illustrate the effect of ac-Zener coupling. The two photon sidebands labeled by μ1 = [1,1,0,k]
and μ2 = [2,1,�1,k] are mixed by the coupling induced by the driving laser F(t). With the
increase of Fac, the quasienergy bands are branched into two distinct photon sidebands, termed
as the upper sideband μ+ and the lower sideband μ�, where both labels of μ1 and μ2 are no
longer good quantum numbers, aside from k. It is noted that both of μ+ and μ� form dynamic
localization showing band collapse around two points Fac = FDL1�170 kV/cm and FDL2�395
kV/cm. Figure 4 shows the absorption spectra α(ωp;ω) obtained by solving Eq. (9) in the range
of Fac from 10 to 450 kV/cm. Asymmetric spectral profiles characteristic of DFR are discerned at
the arrowed positions of ωp when Fac≥ 150 kV/cm, where all peaks are followed by dips. These

PQ Ground-State

LO-Phonon

(Discrete State: α )

Quasiboson 

(Continuum State: β)

Mqβ

PQ FR-State

Photoemission from

LO-Phonon State

2

Photoemission from

Quasiboson  State

Effective Coupling

Figure 2. Schematic diagram of the TFR dynamics based on the PQ picture, where the LO-phonon state α2 is embedded
in the quasiboson state β. The PQ FR state composed of α2 and β is deexcited by induced photoemission process. For more
detail, consult the text (from Ref. [31] with partial modification).
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Figure 4. Absorption spectra α(ωp;ω) as a function of ωp for Fac=50–450 (kV/cm) with ω= 91 meV. A series of the arrowed

spectral profiles are examined exclusively in the text. The quasienergies shown in Figure 3 are also plotted (dotted lines)

(from Ref. [16] with partial modification).
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peaks are located just below the upper sideband μ+, thereby being blue shifted. Consulting

Figure 1, the DFR is dominantly formed by the interaction between one open channel μ� and

one closed channel μ+.

To deepen the understanding of the DFR exciton, its characteristic quantities determining the

spectral profiles are extracted from α(ε)�α(ωp;ω) arrowed in Figure 4 by being fitted to Fano’s

Formula [1]:

α εð Þ ¼ α0
εþ q Fð Þ

	 
2

ε2 þ 1
, (26)

in the vicinity of an excitonic resonance quasienergy Eex, where ε = 2(ωp�Eex)/Γ with the

spectral width Γ and the asymmetry parameter (Fano’s q-parameter) q(F)<0. Figure 5(a) shows

the evaluated values of ∣1/q(F)∣ and Γ as a function of Fac, while Figure 5(b) shows the peak

intensity α(0) = α0[q
(F)]2�αmax and background spectra α(�∞) = α0 as a function of Fac. It is seen

that these functions are affected pronouncedly by Fac; in particular, extrema are formed around

Fac = FDL1. It is remarked that with the decrease in ∣1/q(F)∣ and Γ, the DFR state becomes a pure

bound state. In addition, there still exist faint extrema around Fac = FDL2 in the concerned

quantities except Γ. Therefore, the DL is considered to fulfill a special role of the quantum

control of photodressed excitonic states.

For the purpose of confirming such an effect of DL and the pronounced Fac dependence of

related quantities on the excitonic DFR, one evaluates the transition probability between the

photon sidebands of μ1 and μ2 due to the ac-Zener coupling; this value is represented asM(Fac)

as a function of Fac. This corresponds to the degree of mixing between these two photon
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Figure 5. The DFR-related quantities as a function of Fac with the fixed value of ω=91 meV. The calculated results

represented by the filled symbols are connected by the solid lines in order to aid the presentation. (a) ∣1/q(F)∣ and Γ and

(b) α0 and αmax (from Ref. [16] with partial modification).
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sidebands. M(Fac) is readily obtained by solving the associated coupled equations between μ1

and μ2 in an approximate manner of neglecting contributions from all other photon sidebands

[16]. Given Δε and v as the difference of ac-Zener-free quasienergies between μ1 and μ2, and

the matrix element of the ac-Zener coupling between them, respectively, M(Fac) is provided as

M Facð Þ ¼ sin φ=2
	 
� 2 ¼ 1

2
1� 1

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ z2
p

� �

, (27)

where z�tanφ = 2∣v∣/∣Δε∣. With x = Facd/ω, v and Δε are evaluated as v∝x and Δε∝cos(kd)J0(x),

respectively; see Section 1. Thus, one has z = 2x/ηJ0(x) where η is a proportional constant

between Δε and v. According to Eq. (27), for finite values of η, with the increase of Fac, M(Fac)

increases from 0 to 1/2 in an oscillating manner; for more detail of the shape of M(Fac) for

several values of η, consult Ref. [16].

The alteration pattern ofM(Fac) with respect to Fac looks somewhat similar to the shapes of the

DFR-related functions shown in Figure 5. In particular, it is noted that M(Fac) has extrema at

zeros of J0(x), which just correspond to DL concerned here; that is, M(Fac) shows extrema at

Fac = FDL1 and FDL2. In fact, M(Fac) shows a clear extremum at Fac = FDL1, while the second

extremum at Fac = FDL2 is not obviously discernible. This is understood by the behavior that the

oscillating component incorporated in J0(x) is overwhelmed by the ac-Zener coupling v for

large x. Therefore, it is concluded that the characteristic Fac dependence of the functions of ∣1/

q(F)∣, Γ, αmax, and α0 is attributed to the competition between the ac-Zener effect and the band

width of the free electron-hole pair states in the vicinity of the DL positions.

Finally, one mentions in brief the ω dependence of the physical quantities ∣1/q(F)∣ and Γ at

Fac=180 kV/cm in the vicinity of Fac = FDL1. As shown in Figure 6(a), ∣1/q(F)∣ decreases sharply

with the increase in ω, while Γ is maximized around ω = 91 meV at which the centers of two

photon sidebands μ1 and μ2 coincide. The tendency of ∣1/q(F)∣ is in harmony with the ω

dependence of the ratio of dc to do, namely, rd = dc/do, as shown in Figure 6(b), where dc and do
represent a dipole-transition matrix from the ground state to the closed channel μ+ and that to

the open channel μ�, respectively. Actually, rd is in proportion to q(F) [16]. Such alteration of rd
is interpreted on the basis of the anticrossing formation of photon sidebands of μ+ and μ� due

to the Autler-Townes effect, though not discussed here; for more detail, consult Ref. [16]. Thus,

it seems that comparing Figure 6(a)with Figure 5(a), the q parameter is even more controllable

by changing ω than by Fac.

3.2. TFR in the CP generation

For the calculations of TFR spectra of undoped Si and undoped GaAs, the associated materials

parameters employed in the present study are shown in Ref. [31], while parameters of a

square-shaped pulse laser employed are as follows. For undoped Si and undoped GaAs,

detuning with reference to energy band gap Δω=82 and 73 meV, respectively, temporal width

τL=15 fs, pulse area AL=0.12π and 0.20π, respectively, and the maximum excited electron

density N0
ex=6.31�1017 and 5.30�1017cm3, respectively; by Δω>0, it is meant that opaque

interband transitions with real excited carriers are examined. Further, two time constants of
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T12 and Tq12 are introduced, which represent phenomenological damping time constants of

induced carrier density with isotropic momentum distribution and anisotropic momentum

distribution with q, respectively. The temporal region t<T12 is termed as the early-time region

during which a great number of carriers still stay in excited states, and the quantum processes

govern the CP dynamics; Tq12 is approximately equal to Tq(kbb
0

) introduced in Eq. (14). On the

other hand, the temporal region t≳T12 is termed as the classical region. For the present

calculations, Tq12 and T12 are set equal to 20 and 90 fs, respectively. As regards experimental

estimates of these time constants for Si, Tq12 and T12 extracted from the CP measurements in

Ref. [45] are 16 and 100 fs, respectively, at N0
ex ¼ 4� 1019 cm�3.

Transient induced photoemission spectra Aq tp;ωp

	 


defined in Section 2.2.2 show the change

of excited electronic structure due to the pump field at probe time tp, and this is crucial to

understand the TFR accompanied by CP generation. The total retarded longitudinal suscepti-

bility consists of the dynamically screened Coulomb interaction induced by electron and the

LO-phonon-induced interaction. That is, ~χ
tð Þ
q tp;ωp

	 


¼ ~χq tp;ωp

	 


þ ~χ
0

q tp;ωp

	 


, where this is a

Fourier transform of Eq. (22) with respect to τ into the ωp domain. In the small transferred

momentum q limit, ~χq tp;ωp

	 


is proportional to |q|2, while ~χ
0

q tp;ωp

	 


is proportional to |q|2

for the Fröhlich interaction exclusively for a polar crystal such as GaAs and to |q|4 for the

deformation potential interaction. This difference is attributed to the fact that the Fröhlich

interaction is of long range, and the deformation potential interaction is of short range. It is
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Figure 6. The DFR-related quantities as a function of ω with the fixed value of Fac=180 meV. The calculated results
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noted that in a nonpolar crystal such as Si, a dipole transition for lattice absorption vanishes in

the limit of q = 0 because of the presence of spatial inversion symmetry [61].

In Figures 7 and 8, Aq tp;ωp

	 


of Si and GaAs as a function of ωp is shown, respectively, by solid

lines at tp equal to t1�15, t2�65 and t3�100 fs, where the separate contributions from

~χq tp;ωp

	 


and ~χ
0

q
tp;ωp

	 


are also shown by chain and dashed lines, respectively. ~χq tp;ωp

	 


and ~χ
0

q
tp;ωp

	 


are mostly governed by the plasmon-like mode α1 and the LO-phonon mode α2,

respectively. In both figures, it is seen that just ~χ
0

q
tp;ωp

	 


contributes to the formation of

spectral peaks and becomes dominant over ~χq tp;ωp

	 


in the classical region.

Figure 7(a) shows Aq tp;ωp

	 


of Si at tp = t1<Tq12, where the obtained continuum spectra are

governed by the contribution from ~χq tp;ωp

	 


, whereas the contribution from ~χ
0

q
tp;ωp

	 


is

negligibly small due to the proportion of it to |q|4. In Figure 7(b) at tp = t2 with Tq12<tp<T12, the

contributions from ~χq tp;ωp

	 


are damped to be comparable to those from ~χ
0

q
tp;ωp

	 


. It is noted

that asymmetric spectra characteristic of FR are manifested with a dip followed by a peak. This is

in sharp contrast with a symmetric Lorentzian profile shown in Figure 7(c) at tp = t3>T12. As

regards Aq tp;ωp

	 


of GaAs, it is shown in Figure 8(a) that at tp = t1, a pronounced peak due to the

α2 mode, is superimposed with a continuum background composed of ~χq tp;ωp

	 


and ~χ
0

q
tp;ωp

	 


with comparable order, since both are in proportion to |q|2. The spectra at tp = t2 shown in

Figure 8(b) are dominated by ~χ
0

q
tp;ωp

	 


, differing a lot from those shown in Figure 7(b) of Si.

The spectra at tp = t3 in Figure 8(c) are similar to those in Figure 7(c).

The origin of the manifestation of TFR in Si shown in Figure 7(b) is examined below. The

principal difference between Si and GaAs observed here is attributed just to the effective

coupling Mqβ between quasiboson and LO-phonon aside from less significant difference in

other material parameters; this appears in the matrix hq introduced in Eq. (16), and the

approximation of Mq ≈M
0

q
is employed here. The primitive coupling constant gbq incorporated

in Mqβ consists of g
D
bq and gFbq representing the coupling constants due to a phenomenological

q 0
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Figure 7. Aq tp;ωp

	 


of undoped Si (solid line) as a function of ωp at tp equal to (a) 15 fs, (b) 65 fs, and (c) 100 fs. Separate

contributions to the spectra from ~χq tp;ωp

	 


and ~χ
0

q
tp;ωp

	 


are also shown by chain and dashed lines, respectively. Aq tp;ω
	 


is reckoned from structureless background due to electron-hole continuum states β that are almost constant in the ωp region

concerned. The widths of the spectral peaks are determined by a phenomenological damping constant Tph of LO-phonon due

to lattice anharmonicity: 2/Tph=0.27 meV (from Ref. [31] with partial modification).
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LO-phonon deformation potential interaction and the Fröhlich interaction, respectively, that is,

gbq ¼ gDbq þ gFbq. Here, gDbq is real and approximately independent of q, while gFbq is pure imagi-

nary and ∣gFbq∣ ∝ qj j�1 [61]. In a nonpolar crystal such as Si, gbq ¼ gDbq, whereas in a polar or

partially ionic crystal such as GaAs, gFbq is much dominant to gDbq, namely, gbq ≈ g
F
bq. Actually, the

phase of Mqβ is almost determined by that of gbq, since a residual factor defining Mqβ is almost

considered real. Thus, Mqβ is a complex number given by Mqβ = ∣Mqβ∣e
iφqβ in general; φqβ = 0,π

for Si, while φqβ = �π/2 for GaAs.

Next, discussion is made on how such difference ofMqβ affects the spectral profile of Aq tp;ωp

	 


based on the PQ picture depicted in Figure 2. It is seen that there are two transition paths for

the process: one is a direct path mediated by an optical transition matrix D rð Þ
qα2

from LO-phonon

state α2 to the PQ ground state, and the other is a two-step resonant path mediated by Mqβ

from α2 to quasiboson state β, followed by a deexcited process mediated by an optical transi-

tion matrix D cð Þ
qα2

from β to the PQ ground state. Accordingly, owing to Shore’s model [62], the

induced photoemission spectra in the proximity of ωp ≈ω
LOð Þ
q is read as

Aq tp;ωp

	 


≈ Cqβ þ
Aqα2

ωp � ω
LOð Þ
q

� �

þ Bqα2
Γqα2

=2

ωp � ω
LOð Þ
q

� �2
þ Γqα2

=2
	 
2

, (28)

where a set of Shore’s spectral parameters of Aqα2
, Bqα2

, and Cqβ are provided by

Aqα2
¼ 2∣D

cð Þ
qβ ∣∣D

rð Þ
qα2

∣∣Mqβ∣ cosφqβ

Bqα2
¼ �2∣D

cð Þ
qβ ∣∣D

rð Þ
qα2

∣∣Mqβ∣ sinφqβ þ D rð Þ
qα2

�

�

�

�

�

�

2
Mqβ

�

�

�

�

2
= Γqα2

=2
	 


Cqβ ¼ D
cð Þ
qβ

�

�

�

�

�

�

2

8

>

>

>

>

<

>

>

>

>

:

(29)

and the natural spectral width is represented by Γqα2
= 2πρqα2

|Mqα2
|2; ρqα2

and Mqα2
are the

density of state of quasiboson and the coupling matrix at Eqβ ¼ ω
LOð Þ
q , respectively. The associ-

ated Fano’s q parameter is determined in terms of Shore’s parameters as q
qα2

tp
	 


¼ rqα2
tp
	 


þσqα2
tp
	 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rqα2
tp
	 
� 2

þ 1
q

with rqα2
tp
	 


¼ Bqα2
=Aqα2

and σqα2
tp
	 


¼ Aqα2
=∣Aqα2

∣:

0

2

4

6

8

10

12

0 20 40 60 80
0

2

4

6

0

0.4

0.8

1.2

1.6

 34  34.5  35  35.5  36  34  34.5  35  35.5  36
q

A
  
(t

  
;ω

  
)

p
 (

a
rb

. 
u

n
it

) 
p

ω (meV)ω  (meV) ω (meV)p pp

(a)  15 fs (b)  65 fs (c)  100 fs

Figure 8. The same as Figure 7 but for undoped GaAs (from Ref. [31] with partial modification).
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An asymmetric spectral profile is exclusively determined by Aqα2
. It is seen that Aqα2

tp
	 


van-

ishes for φqβ = �π/2 and Aq tp;ωp

	 


becomes of symmetric shape with ∣qqα2
(tp)∣ infinite. The

spectral profile of GaAs shown in Figure 8(b) corresponds to this case. For φqβ 6¼�π/2, both

Aqα2
tp

	 


and Bqα2
(tp) are finite, and Aq tp;ω

	 


becomes of asymmetric shape with ∣qqα2
(tp)∣ finite.

The spectral profile of Si shown in Figure 7(b) corresponds to this case, where φqβ≈0,π. For

Figures 7(c) and 8(c), since D
cð Þ
qα and ∣Mqβ∣ become negligibly small, Aq tp;ω

	 


is governed by the

second term of the expression of Bqα2
(tp), and this becomes symmetric with Γqα2

≈0. To conclude,

the effective coupling Mqβ around Eqβ ≈ω
LOð Þ
q plays the crucial role of the manifestation of TFR,

and the asymmetry of profile is mostly determined by φqβ as long as ∣Mqβ∣ is still large.

Finally, the manifestation of TFR of Si is discussed from the viewpoint of the allocation of time

constants Tq12 and T12, where one sets Tq12<T12. This is an important issue for deepening the

understanding of TFR. As shown in Figure 7(b), in the region of Tq12≲tp<T12, the asymmetric

spectral profile bursts into view from the structureless continuum ~χq tp;ω
	 


. Actually, in the

early-time region of tp<T12, the excited carrier density is still populated enough around the

energy region of Eqβ ≈ω
LOð Þ
q to couple strongly with LO-phonon, while the effect of ~χq tp;ω

	 


is

much suppressed in the region of Tq12≲tp. As regards a different allocation of these time

constants, for instance, Tq12�T12, the TFR profile is no longer observed in the region of tp<

T12, since this is covered with still dominant contributions from ~χq tp;ω
	 


, and the effect ofMqβ

becomes too small to cause TFR in the region of tp≈T12. Therefore, the allocation of time

constants such as Tq12<T12 is a necessary condition for realizing the TFR of Si in Aq tp;ω
	 


;

otherwise this never appears.

4. Conclusion

Transient and optically nonlinear FR in condensed matter is examined here, which differs from

conventional FR processes caused by a weak external perturbation in a stationary system. In

particular, the following two FR processes are discussed: one is the DFR of Floquet exciton

realized in semiconductor superlattices driven by a strong cw laser, and the other is the TFR

accompanied by the CP generated by an ultrashort pulse laser in bulk crystals of undoped Si

and undoped GaAs.

It is shown that the physical quantities relevant to the DFR spectra can be controlled by

modulating Fac and ω. In particular, the quantities as a function of Fac take the extrema due to

the ac-Zener coupling between the photon sidebands of μ1 and μ2, when Fac is suitably

adjusted to satisfy the DL condition. Further, the strong ω dependence is explained on the

basis of the Autler-Townes effect forming the anticrossing between these two photon side-

bands. It is remarked that the spectral width shown in Figures 5 and 6 seems too small to be

confirmed by experiments. Actually, in the present calculations, the Coulomb many-body

effect is neglected. At least at the Hartree-Fock level, the vertex correction to the Rabi energy

would make the net ac-Zener coupling stronger to result in such a great DFR width that

experimental measurement would be accessible.
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As regards the TFR spectra, the PQ model succeeds in demonstrating the appearance of asym-

metric spectral profile in Si in a flash, whereas the profile observed in GaAs remains symmetric;

the obtained results are in harmony with the existing experimental ones [45]. The difference

between Si and GaAs is attributed to the phase factor of the effective coupling Mqβ(tp). To

conclude, it is found that in order to realize the TFR in the CP dynamics, the following conditions

are to be fulfilled simultaneously. First, the coupling of an LO-phonon with an electron-hole

continuum is conducted by the LO-phonon deformation potential interaction rather than by the

Fröhlich interaction. Second, photoexcited carriers are populated enough around the energy

region Eqβ ≈ω
LOð Þ
q in the early-time region Tq12<tp<T12 with Tq12 ≪ T12.
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