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Abstract

In this chapter, Fano resonances in simple structures with high permittivity such as
spheres or core-shell particles are analyzed by Mie theory. The Mie scattering coeffi-
cients can be decomposed into slow varying backgrounds and narrow resonances,
which cause the Fano resonances in scattered field. For structures of arbitrary shapes,
temporal coupled-mode theory is applied to explain the Fano resonances found in the
scattering cross section. At last, we analyze the periodic structures by using band
diagram, and it shows that the Fano resonances can be viewed as the superposition of
the Bloch wave and the Mie scattering wave.

Keywords: Fano resonance, Mie theory, temporal coupled-mode theory, photonic
crystal, sensor

1. Introduction

Fano resonance was first discovered in quantum systems to describe the asymmetrically

shaped ionization spectral lines of atoms [1]. The asymmetric profile is caused by the interfer-

ence between a broad background state and a narrow discrete state. The interference phenom-

enon also exists in electromagnetic system and was first observed by Wood [2]. With the

development of metamaterials, Fano resonances have been observed in many classical oscilla-

tor systems, such as nonconcentric ring/disk cavities [3], asymmetric split rings, and dolmen

structures [4]. Such Fano systems are caused by symmetry breaking of the geometry and are

usually consisted of metal and dielectric. Recently, metamaterials composed of high refractive

index materials have attracted researchers’ attentions since they can enhance efficiency signif-

icantly [5]. Fano resonances occur in these metamaterials usually have larger quality factor

since metal is replaced by lossless high-permittivity dielectric, which makes Fano curve

sharper compared with conventional metamaterials.

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



In this chapter, we will investigate the Fano resonances in high-permittivity objects theoreti-

cally and do the simulations to verify the accuracy of theories, which will provide a guidance

for the further study and applications. The chapter is organized as follows:

In the second section, we analyze the Fano resonances in high-permittivity spheres, which are

the simplest structures that can be analyzed by applying Mie theory easily.

In the third section, we will use the Mie theory to investigate the Fano resonances in core-shell

particles. With more degrees of freedom for design, core-shell structures are more suitable for

applications such as sensors.

In the fourth section, a new method called temporal coupled-mode theory (TCMT) is used to

explain the Fano resonances found in high permittivity arbitrarily shaped objects. Combined

with cylindrical wave expansion (2D) or spherical wave expansion (3D), we can use TCMT to

model the Fano resonances in scattering by an arbitrary object.

In the fifth section, we do some numerical simulation on periodic array of cylinders and show

that Fano resonances can be observed in transmission spectra as a result of interference of

leaky guided modes of cylinders with an incident electromagnetic wave.

In the last section, we will draw a conclusion briefly.

2. Fano resonances in high-permittivity spheres

2.1. Mie theory

Mie scattering was first discovered by Mie in 1908 [6]. In spite of the long history, Mie theory

still governs the forefront optical devices such as nanoantennas [7] and metamaterials [8]. It

describes the scattering of a plane wave by a homogeneous sphere. The solution takes form of

an infinite series of spherical multipole partial waves. For different electromagnetic modes, the

positions of resonances which can be calculated by Mie theory are different. Resonance arises

when the incident wave reaches an eigenmode frequency and excites localized modes in

the sphere.

Let us assume the radius of sphere is a. The relative permittivities and permeabilities of sphere

(r ≤ a) and embedding medium (r > a) are (E1, μ1) and (e, μ), respectively. The Mie scattering

coefficients are [6]:

an ¼
μ1xjn xð Þ mxjn mxð Þ

� �0
� μm2xjn mxð Þ xjn xð Þ

� �0

�μ1xh
1ð Þ
n xð Þ mxjn mxð Þ

� �0
þ μm2xjn mxð Þ xh 1ð Þ

n xð Þ
h i0 (1)

bn ¼
μxjn xð Þ mxjn mxð Þ

� �0
� μ1xjn mxð Þ xjn xð Þ

� �0

�μxh 1ð Þ
n xð Þ mxjn mxð Þ

� �0
þ μ1xjn mxð Þ xh 1ð Þ

n xð Þ
h i0 (2)

where x = ka (k = ω/c is the wavenumber of incident wave) is the size parameter of the sphere,
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and m ¼
ffiffiffiffiffiffiffi

E1μ1

Eμ

q

is the relative refractive index. jn(x) and h 1ð Þ
n xð Þ stand for spherical Bessel

functions and Hankel functions of the first kind, respectively.

2.2. Decomposition of Mie scattering coefficients

For simplicity, the embedding medium is considered to be vacuum in the following analysis,

so we have e = 1, μ = 1. We assume the relative permeability of sphere to be 1 and the relative

permittivity E1 to be a purely real number, so the relative refractive index m ¼ ffiffiffiffi

E1
p

. Eq. (1),

which represents electric scattering coefficients can be rewritten by

an ¼ � xjn xð Þ
� �0

xh 1ð Þ
n xð Þ

h i0 þ
i

xh
1ð Þ
n xð Þ½ �02

E1xjn
ffiffiffi

E1
p

xð Þ
ffiffiffi

E1
p

xjn
ffiffiffi

E1
p

xð Þ½ �0 �
xh

1ð Þ
n xð Þ

xh
1ð Þ
n xð Þ½ �0

(3)

where � xjn xð Þ
� �0

= xh 1ð Þ
n xð Þ

h i0
means a slow varying background and i

xh
1ð Þ
n xð Þ½ �02

=
E1xjn

ffiffiffi

E1
p

xð Þ
ffiffiffi

E1
p

xjn
ffiffiffi

E1
p

xð Þ½ �0 �
�

xh
1ð Þ
n xð Þ

xh
1ð Þ
n xð Þ½ �0Þ means a narrow resonance when high-permittivity dielectric sphere is considered [9].

As shown in Figure 1, squared norm of Mie coefficient |a1|
2 is plotted when E1 = 1000. It can be

described by superposition of narrow resonance and slow varying background.
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Figure 1. Squared norm of Mie coefficient |a1|
2 (blue curve), slow varying background
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(green curve), and

narrow resonance (red dot-dash line) for a sphere with E1 = 1000.
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Similarly, magnetic scattering coefficient ∣bn∣ can be decomposed into two parts:

bn ¼ � jn xð Þ
h 1ð Þ
n xð Þ

þ
�i

xh
1ð Þ
n xð Þ½ �2

ffiffiffi

E1
p

xjn
ffiffiffi

E1
p

xð Þ½ �0
xjn

ffiffiffi

E1
p

xð Þ � xh
1ð Þ
n xð Þ½ �0

xh
1ð Þ
n xð Þ

(4)

where �jn xð Þ=h 1ð Þ
n xð Þ represents a slow varying background and �i

xh
1ð Þ
n xð Þ½ �2

=
ffiffiffi

E1
p

xjn
ffiffiffi

E1
p

xð Þ½ �0
xjn

ffiffiffi

E1
p

xð Þ �
�

xh
1ð Þ
n xð Þ½ �0

xh
1ð Þ
n xð Þ

Þ represents a narrow resonance (as shown in Figure 2).

The slow varying backgrounds are the same as scattering coefficients of PEC spheres.

2.3. Rewrite Mie coefficients in the form of Fano function

Normalized Fano function can be expressed as 1
1þq2

qþx�x0
Γð Þ2

1þ x�x0
Γð Þ2, where x0, Γ, and q represent

resonance position, resonance width, and Fano parameter, respectively. Compared with con-

ventional Lorentz resonance, Fano resonance will exhibit asymmetric line shape and usually

has sharper resonant curve.

When the permittivity of sphere is high, we can rewrite the Mie coefficients in the form of Fano

function. The resonance position, resonance width, and Fano parameter can be achieved by

following Eqs. (10):
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Figure 2. Squared norm of Mie coefficient |b1|
2 (blue curve), slow varying background
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(green curve), and narrow

resonance (red dot-dash line) for a sphere with E1 = 1000.
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E1x0jn
ffiffiffiffi

E1
p

x0
� �

ffiffiffiffi

E1
p

x0jn
ffiffiffiffi

E1
p

x0
� �� �0 ¼ Re

x0h
1ð Þ
n x0ð Þ

x0h
1ð Þ
n x0ð Þ

h i0

0

B

@

1

C

A
(5)

q ¼ x0yn x0ð Þ
� �0

x0jn x0ð Þ
� �0 sign

Im x0h
1ð Þ
n x0ð Þ

x0h
1ð Þ
n x0ð Þ½ �0

� 	

∂
E1xjn

ffiffiffi

E1
p

xð Þ
ffiffiffi

E1
p

xjn
ffiffiffi

E1
p

xð Þ½ �0
∂ω

�

�

�

�

�

ω¼ω0

0

B

B

B

B

B

@

1

C

C

C

C

C

A

(6)

Γ ¼
Im x0h

1ð Þ
n x0ð Þ

x0h
1ð Þ
n x0ð Þ½ �0

� 	

∂
E1xjn

ffiffiffi

E1
p

xð Þ
ffiffiffi

E1
p

xjn
ffiffiffi

E1
p

xð Þ½ �0
∂ω

�

�

�

�

�

ω¼ω0

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

(7)

In Eqs. (5)–(7), Re(x) and Im(x) mean the real and imaginary part of x, yn(x) represent the

spherical Neumann functions, sign(x) denotes the sign function. These equations are the

rewrite of electric scattering coefficients. Similarly, magnetic scattering coefficients can also be

rewritten in the form of Fano function [10].

As shown in Figure 3, the approximate model which can be written in the form of Fano

function matches well with the exact Mie scattering coefficient.

3. Fano resonances in core-shell particles with high-permittivity covers

In most researches [11, 12], Fano resonances observed in coated spheres are derived in the

Rayleigh limit. However, the approximation may suffer a loss of precision when frequency

gets higher. An exact analysis based on Mie theory is proposed to analyze Fano resonances by

coated spheres with high-permittivity covers in a precise way [13].

Figure 3. The exact value of Mie scattering coefficients (blue line) and Fano curve predicted by approximate model (red

dot-dash line) are shown for (a) electric dipole |a1|
2 when ω0 = 3 � 1015 rad/s , a = 64.33 nm , E1 = 1000 and (b) magnetic

dipole |b1|
2 when ω0 = 3 � 1015 rad/s , a = 148.97 nm , E1 = 1000.
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3.1. Theoretical analysis

Let us assume the inner radius of core-shell particle is a1 and the outer radius is a. The ratio of

a1 and a can be denoted as η = a1/a. The relative permittivities and permeabilities of core

(0 < r ≤ a1), shell (a1 < r ≤ a), and embedding medium (r > a) are (E1, μ1), (E2, μ2), and (E0, μ0),

respectively. The solution of scattering by coated spheres can be described by Mie theory. For

simplicity, the embedding medium is considered to be vacuum in the following analysis which

means E0 = 1, μ0 = 1. Also, we assume μ1 = μ2 = 1, which means both core and shell are

nonmagnetic. When the core-shell particles are covered by high-permittivity dielectric shells,

we can decompose the scattering coefficients cTMn and cTEn into slow varying backgrounds and

narrow resonances, which are similar to the high-permittivity spheres. For electric scattering

coefficients, we have

cTMn ¼ sTMn þ rTMn (8)

where

sTMn ¼ �
xjn xð Þ
� �0

xh 1ð Þ
n xð Þ

h i0 (9)

x = k0a is the size parameter of outer sphere. sTMn represents the slow varying background and

its expression is given in Eq. (9). As we can see, the background is the same as the electric

scattering coefficient of a PEC sphere with radius a. rTMn represents the narrow resonance, and

it can be calculated formally by subtracting sTMn from cTMn . The expression for narrow resonance

can be found in [13].

Similarly, we can decompose magnetic scattering coefficients into two parts:

cTEn ¼ sTEn þ rTEn (10)

where

sTEn ¼ �
jn xð Þ

h 1ð Þ
n xð Þ

(11)

As shown in Figure 4, the scattering coefficients can be viewed as the cascade of Fano reso-

nances.

3.2. Application of sensors

Due to the sharp resonances near the resonance frequencies, Fano resonances have great poten-

tial applications in sensing problems [14–16]. Although some of them may have high sensitivity,

the structures which are designed to produce Fano resonances are usually complicated and

cannot be analyzed by formula exactly. Because of the simple structure, core-shell particles have

the potential to be a great platform for sensing since they can be fabricated easily. In fact, core-

shell particles consisted of metal and dielectric, can exhibit Fano resonances due to the
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hybridization between the plasmon resonances of the core and shell [17, 18]. However, the loss in

metal may flatten the shape of Fano curve, which affects the sensitivity of Fano resonance sensor.

Hence, we use lossless high-permittivity dielectric to replace the metal.

For the high-permittivity shell sensors, we can fill the core with unknown materials. The

permittivity of the unknown material can be varied continuously such as liquid solvents. By

detecting the scattering field over a discrete set of frequencies near Fano resonance position,

we can achieve the permittivity we want with high accuracy.

The sensitivity for Fano resonance sensing can be examined by comparing the changes in the

scattering coefficients between core-shell structure with high-permittivity shell and homoge-

neous sphere when the permittivity of material changes. We can define the sensitivity as an

analogy to [14]

STMn ¼ lim
∆E!0

∆ cTMn
�

�

�

�

2

∆E
(12)

As shown in Figure 5(a), the difference of sensitivity between core-shell structure and sphere is

plotted. As for the core-shell structure, the relative permittivity of core is increased by ∆E1 = 0.1.

The maximum value of ∆ cTM1
�

�

�

�

2
occurs at x = 0.49495 (located by a vertical blue line) when

0.493 ≤ x ≤ 0.496, which is ∆ cTM1
�

�

�

�

2
¼ 0:1971. In order to make a comparison with Fano

resonance sensor, we figure out the scattering coefficients of a sphere with different permittiv-

ities as given for the core in core-shell structure. As shown in Figure 5(b), the maximum value

∆ cTM1
�

�

�

�

2
¼ 4:2259� 10�5 occurs at x = 0.496, which shows that the Fano resonance sensor offers

a high sensitivity.

Since Fano resonances of high permittivity core-shell particles mentioned above only exist in

scattering coefficients of multipole partial waves, it is difficult to achieve these coefficients

separately by measuring the electromagnetic field distribution around the scatterers. In fact,

by choosing operating frequency range properly, we can achieve the scattering coefficient of a

Figure 4. Squared norm of Mie coefficient (a) cTM1
�

�

�

�

2
(blue curve), slow varying background

xj1 xð Þ½ �
0

xh
1ð Þ

1
xð Þ½ �

0

�

�

�

�

�

�

�

�

2

(green curve) and

narrow resonances (red dot-dash line) (b) cTE1
�

�

�

�

2
(blue curve), slow varying background

j1 xð Þ

h
1ð Þ

1
xð Þ

�

�

�

�

�

�

�

�

2

(green curve), and narrow

resonances (red dot-dash line) for a core-shell particle with a = 100 nm , a1 = 80 nm , E1 = 10 , E2 = 1000.
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single partial wave (cTM1 for example) without filtering out from the total electromagnetic fields.

When size parameter x is small, most of the scattering coefficients cTMn , cTEn are zero, except for

several coefficients with small n. We choose the first resonance frequency of cTM1 as the operat-

ing frequency. Since Fano resonance is usually sharp and narrow, we find that overlap between

different modes can be avoided if the frequency range narrows down. To explain it explicitly,

we define the scattering cross section as [19]

Qsca ¼
2

x2

X

∞

n¼1

2nþ 1ð Þ cTMn
�

�

�

�

2
þ cTEn
�

�

�

�

2

 �

(13)

The contribution of cTM1 to Eq. (13) can be defined as

QTM
1 ¼

6

x2
cTM1
�

�

�

�

2
(14)

As shown in Figure 6, when we choose the first Fano resonance position of cTM1 as the

operating frequency, we find that the scattering cross section of multipole partial waves is the

same as the scattering cross section of cTM1 for a narrow frequency range. As shown in Figure 6(a),

Fano resonance can also be observed in scattering cross section which can be used to sense the

permittivity.

Figure 5. (a) cTM1
�

�

�

�

2
as a function of x for core-shell structure with different core permittivities E1 = 1.4 (blue line) and

E1 = 1.5 (red line), high-permittivity shell E2 = 1000 , η = 0.8. (b) cTM1
�

�

�

�

2
as a function of x for sphere structure with E1 = 1.4

(blue line) and E1 = 1.5 (red line).

Figure 6. For the core-shell particle with high-permittivity shell E2 = 1000, η = 0.8, (a) log10(Qsca) is plotted as a function of x and

E1when the summation inEq. (13) is truncated ton = 5. (b) log10 QTM
1

� �

(calculated byEq. (14)) is plotted as a function of x and E1.
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The asymmetry parameter 〈cosΘ〉 is defined as the average cosine of the scattering angle Θ.

For a spherical particle, the asymmetry parameter can be calculated by [20]

cosΘh i ¼
4π

x2Qsca

Re
X

∞

n¼1

n nþ 2ð Þ

nþ 1
cTMn cTMnþ1

� �

∗

þ cTEn cTEnþ1

� �

∗

h i

� 	

 !

þ
4π

x2Qsca

Re
X

∞

n¼1

2nþ 1

n nþ 1ð Þ
cTMn cTEn
� �∗

h i

� 	

 ! (15)

The asymmetry parameter is positive if the particle scatters more light toward the forward

direction while it is negative if more light is scattered toward the backscattering direction.

As shown in Figure 7, the width between maximum and minimum for a fixed core permittiv-

ity E1 narrows down compared with scattering cross section which is shown in Figure 6. With

the increase of size parameter x, the asymmetry parameter reaches its maximum and decreases

sharply to its minimum.

To check the average scattering direction changes from front to back, we use numerical

simulation software COMSOL 5.0 to simulate the scattering of a plane wave by a core-shell

Figure 7. The asymmetry parameters for high-permittivity shell particles with E2 = 1000 , η = 0.8.
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structure. The incident wave travels in the +z-direction and the electric field is oriented in the x-

direction. Draw a horizontal line at E1 = 1.5 in Figure 7, and we can find the average cosine of

the scattering angle 〈cosΘ〉 has a lineshape of Fano resonance as a function of size parameter x.

As shown in Figure 8(a), the high-permittivity shell structure scatters more light to the forward

direction at x = 0.498672. When x increases, the asymmetry parameter decreases sharply from

positive value to negative value. The minimum value is achieved at x = 0.499276 and the

scattering wave is concentrated in the backward direction as shown in Figure 8(c). Among

the maximum value and the minimum value of asymmetry parameter, we find 〈cosΘ〉 ≈ 0 at

x = 0.498980, which means the scattering is symmetric with respect to the plane z = 0.

Hence, Fano resonances in core-shell particles can be used to detect the slight changes of core

permittivity since they are sensitive in both magnitude and direction.

4. Fano resonances in arbitrary objects with high-permittivity dielectric

When the structure gets more complicated, the Mie theory is no longer valid for the solution of

scattering field. We have to use the temporal coupled-mode theory (TCMT) to replace Mie

Figure 8. Scattering pattern of a high-permittivity shell particle with E2 = 1000 , E1 = 1.5 , η = 0.8 , a = 100 nm when (a)

x = 0.498672 (b) x = 0.498980 (c) x = 0.499276.
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theory when investigating the Fano resonances in arbitrary objects with high-permittivity

dielectric.

4.1. Temporal coupled-mode theory

The temporal coupled-mode theory provides a useful general framework to study the interac-

tion of a resonance with external waves. It has been well developed when dealing with

particles that have cylindrical or spherical shapes [21]. In [22], TCMT has been generalized to

analysis the scattering of arbitrary shape structures. The temporal coupled-mode equations

can be expressed as [23]

dA

dt
¼ �iω0 �

1

τ

� 	

Aþ κ
T
s
þ

s
� ¼ Bs

þ þ Ad

8

>

<

>

:

(16)

In Eq. (16), |A|2 corresponds to the energy inside the resonator. s+ and s
� represent incoming

waves and outgoing waves, respectively. They couple directly by the resonant mode A is

coupled with the outgoing waves s
� through d and is excited by the incoming waves s

+

through κ
T. ω0 is the resonance frequency and 1

τ is the external leakage rate.

There exists some constrains between B, d, and κ, which are imposed by energy conservation

and time-reversal invariance [22]. The constrain conditions are

dj j2 ¼
2

τ

κ
T
d
∗ ¼

2

τ

Bd
∗ þ d ¼ 0

8

>

>

>

>

<

>

>

>

>

:

(17)

For a 2D arbitrary object, we can expand scattering field into cylindrical waves

Hsca ¼
X

∞

m¼�∞

H0 am H
1ð Þ
mj j kρ
� �

e
imθ (18)

s
+ and s

� in Eq. (16) can be viewed as coefficients of input wave and outgoing wave on the

basis of cylindrical waves.

The incident plane wave can also be expanded into cylindrical waves

e
ikr ¼

X

∞

m¼�∞

i
mj j
e
�iθ0m

H
1ð Þ
mj j kρ
� �

þH
2ð Þ
mj j kρ
� �

2

0

@

1

A� e
iθm (19)

where θ0 is the incident angle. Combined with cylindrical wave expansion, we can use TCMT

to describe the Fano resonances in arbitrary objects with high-permittivity dielectric.

Fano Resonance in High-Permittivity Objects
http://dx.doi.org/10.5772/intechopen.70518

199



4.2. Numerical simulation

The method we determine the coefficients in Eq. (16) is similar to the method described in [22].

Firstly, we use eigenmode analysis in COMSOL 5.0 to figure out the resonance frequency ω0

and the external leakage rate 1
τ. Secondly, being different from the method in [22] where they

set B = I, we calculate the B through the simulation results of the arbitrary object covered by

PEC illuminated by the plane wave. Since the slow varying background of high-permittivity

sphere is the PEC sphere as mentioned above, it is intuitive to assume the slow varying

background of arbitrary object which is described by B is the same as the object covered by

PEC. Thirdly, combined with the field distribution of eigenmode simulation and background

scattering matrix B, we can figure out the resonant radiation coefficients d. At last, κ can be

solved through constrain conditions in Eq. (17).

Once the coefficients in Eq. (16) are determined, we can use the TCMT to predict the scattering

fields by different incident frequencies and incident angles.

As shown in Figure 9, the relative permittivity of rounded-corner triangle is 600. The struc-

ture has a resonance frequency of ω0 = 0.12172ωp and the leakage rate is 1
τ ¼ 1:1771� 10�4,

which can be figured out by COMSOL. We use Matlab to set the temporal coupled-mode

model as shown in Eq. (16). By comparing with the simulation results of COMSOL at

different incident frequencies (near the resonance frequency) and incident angles, we can

prove the validity of TCMT.

When a TM wave impinges on the scatterer, the scattering cross section can be defined as

Csct ¼
Psct

I0
(20)

where Psct is the rate at which energy is scattered across the circle far away from the scatterer

and I0 ¼
1
2

ffiffiffiffi

μ0

E0

q

H0j j2 is the intensity of the incident plane wave. For TCMT, the scattering cross

section can be calculated by [22]

Figure 9. (a) Rounded-corner triangle with r ¼ 0:15λp, a1 ¼ 0:3λp,φ ¼ π
6 , E ¼ 600. (b) The real part of Hz for the eigen-

mode analysis at the frequency ω0 = 0.12172ωp.
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Csct ¼
S� Ið Þsþð Þ† S� Ið Þsþ

I0
(21)

where

S ¼ Bþ
dκT

iω0 � iωþ 1
τ

(22)

As shown in Figure 10(b, c), for different incident angles, scattering cross sections predicted by

TCMTmatch well with the results simulated by COMSOL.

As shown in Figure 11, the green line represents the assumption in [22] that the back-

ground scattering matrix B can be set to I while the blue line represents the assumption

that B is achieved through the simulation results of the arbitrary object covered by PEC. As

we can see, when the incident frequency equals to the resonance frequency, both the green

line and blue line (TCMT models with different parameters) can match the simulation

results. However, when the incident frequency deviates from the resonance frequency, our

TCMT model shows a better accuracy compared with the TCMT model in [22], which

indicates that the background scattering matrix B cannot be set to I easily when the

permittivity of object is high.

Figure 10. (a) Scattering cross section predicted by TCMT as a function of incident frequency ω and incident angle θ0.

Comparison between TCMT and COMSOL simulation results for different incident angles θ0 = 0 (b) and θ0 ¼
π

2 (c).

Fano Resonance in High-Permittivity Objects
http://dx.doi.org/10.5772/intechopen.70518

201



5. Fano resonances in periodic structures

Fano resonances have been widely observed in the various periodic structures [24, 25]. The

theory of Fano resonance in periodic structures is well developed. In [26], temporal coupled-

mode theory is applied to analysis the transmission spectra of photonic crystal slab. According

to the TCMT, the Fano resonances existed in transmission spectra are the result of the coupling

of leaky mode to the external waves. Recently, the experimental discovery of Fano resonances

involving interference between Mie scattering and Bragg scattering is studied in [27]. By

comparing the disordered system with the periodic structure, they conclude the sharp reso-

nances in periodic structure are caused by the Bloch waves. In order to study the interference

between Mie scattering and Bragg scattering theoretically, the inverse dispersion method is

proposed to calculate the photonic band diagram and distinguish unambiguously between

Bragg and Mie gaps in the spectra [28]. The method reduces Maxwell’s equations to a problem

with the eigenvalue k while ω is considered to be a real parameter. It is not so intuitive since

conventional approach will reduce the Maxwell’s equations to standard eigenproblem for the

Figure 11. The far-field amplitude of the scattering field with different incident frequencies and angles of (a)ω =ω0 , θ0 = 0,

(b) ω ¼ ω0,θ0 ¼
π

2, (c) ω = ω0 + 2Γ , θ0 = 0, (d) ω ¼ ω0 þ 2Γ,θ0 ¼
π

2.
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frequency [29]. In [30], the author shows that the frequencies of observed Fano resonances

existed in a linear array of dielectric cylinders coincide with the position of narrow frequency

bands found in the spectra of corresponding two-dimensional photonic crystals. Inspired by

[28, 30], we figure out the eigenfrequency of the photonic crystal slab and compare with the

band diagram of two-dimensional photonic crystal. We are surprised to find that the occur-

rence of Fano resonances in photonic crystal slab can be predicted by the band diagram of

photonic crystal.

5.1. Transmission spectra of the photonic Crystal slab

The structure of photonic crystal slab is shown in Figure 12. We assume the dielectric cylinders

are parallel to the z axis. When TE waves with different angles incident on the slab, we can

calculate the transmission coefficients and plot them in Figure 13.

As shown in Figure 13, Fano resonances with narrow resonance width can be observed. The

permittivity of photonic crystal slab does not need to be as high as single cylinder in order to

achieve same quality factor and such materials may be easily found in nature.

Figure 12. Photonic crystal slab with radius of cylinders r = 0.4a (a is the period of the slab), e = 12, μ = 1.

Figure 13. Transmission coefficient of plane wave incident on the photonic crystal slab. The incident angles are (a) ϕ = 0

and (b) ϕ ¼
π

100.
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Let us assume the Fano resonances in Figure 13 satisfy the Fano function 1
1þq2

qþ
ω�ω0

Γð Þ
2

1þ
ω�ω0

Γð Þ
2. Firstly,

we use eigenmode analysis in COMSOL to figure out the eigenfrequency of photonic crystal

slab. The real and imaginary part of eigenfrequency represent the resonance frequency ω0 and

resonance width Γ respectively. Secondly, we use the fitting method in Matlab to get the

optimal Fano parameter q in Fano function. Thirdly, with given ω0, Γ, and q, we can plot the

Fano function with respect to frequency ω. As shown in Figure 14, the Fano curve matches

well with the transmission coefficient simulated by COMSOL. The horizontal ordinate is

chosen as a/λ for convenience, which is proportional to frequency ω.

5.2. Band diagram of photonic Crystal

The photonic crystal slab is periodic in only one direction while two-dimensional photonic

crystal is periodic in two directions. For a photonic crystal as shown in Figure 15, the band

diagram for ky ¼ 0, 0 ≤ kx ≤
π

a is plotted in Figure 16(a). The eigenfrequencies of the photonic

crystal are real while the eigenfrequencies of the photonic crystal slab are complex due to the

existence of radiation loss. Hence, only the real parts of eigenfrequencies are plotted as shown

in Figure 16(b). By comparing the resonance frequencies shown in Figure 13 and eigenfre-

quencies in Figure 16(b), we can conclude that the occurrence of Fano resonances in transmis-

sion spectra of photonic crystal slab can be predicted by the real parts of the eigenfrequencies

of the system. In addition, for the Fano resonances, which are observed in Figure 13(b) but

cannot be observed in Figure 13(a), they all have the eigenfrequencies with Q!∞. Hence, the

resonance widths tend to zero and the resonances cannot be observed.

Figure 14. The Fano curve and the simulation result of photonic crystal slab are plotted.
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As shown in Figure 16, the Fano resonances of the transmission spectra coincide with the band

diagram of the two-dimensional photonic crystal, which further explains that Fano resonances in

periodic structures can be viewed as the superposition of the Bloch wave, which provides the

narrow resonances and the Mie scattering wave which provides the slow varying background.

6. Conclusion

In this chapter, we have presented various structures with high permittivity, which have Fano

resonances, such as spheres, core-shell particles, arbitrary shape objects, and periodic

Figure 15. Photonic crystal with radius of cylinders r = 0.4a (R1 = R2 = a), e = 12, μ = 1.

Figure 16. (a) Band diagram of two-dimensional photonic crystal as shown in Figure 15 when ky ¼ 0, 0 ≤ kx ≤
π

a . (b) Real

parts of eigenfrequencies of photonic crystal slab as shown in Figure 12 with Q > 70 are plotted.
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structures. For each structure, different theoretical methods together with numerical analysis

have been presented. Compared with conventional Fano resonances observed in structures

consisted of metal and dielectric, high-permittivity structures can enhance the quality factor

significantly, which may open up new opportunities for applications such as sensors, switches,

and permittivity measuring technique.
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