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Abstract

The human brain, like every vital organ, is constituted of neurons. It is through this organ 
that we can learn and reason, reflect and memorize. The geniality of human brain and 
more particularly of its neurons motivates several researchers to interest to this research 
and to benefit from its biological aspect. The idea was to reproduce, in an artificial way, 
the behaviors observed in man. It was in 1943 that the first artificial neural network 
(ANN) was created by Warren McCulloch and Walter Pitts. It is a simple elementary pro-
cessor imitating the structure and the functioning from the biological neuron. Artificial 
neural network is characterized by its capacity to learning and generalizing. It represents 
a very powerful tool. It provided multiple solutions to different complex problems. In 
these recent years, its effectiveness is proved in various researches fields. ANN is sub-
divided on two main groups, the static and dynamic neural network. The choice of the 
one or the other neural network type depends to the application to be processed and the 
complexity of model. For static neural network, information propagates in a single direc-
tion, layer by layer, and from the inlet to the outlet. They are generally used in various 
applications such as classifications, pattern recognition, and functions approximation. 
For the dynamic neural network dynamic neural network is not limited. Each neuron 
can send and receive information from all other neurons. The dynamic neural network 
architecture includes frequently one or more cycles which necessarily contain at least one 
delay connection. This gives rise to the dynamism notion. This neural network type is 
more complex than the static one, but it is more efficient for some particular applications 
such as dynamic modeling, monitoring, and process control. In this chapter, nonlinear 
autoregressive models with exogenous input (NARX) model, as type of dynamic neural 
network, will be used to the solar radiation prediction. Simulation results will be pre-
sented to prove the effectiveness of this model compared to those obtained using the 
static one.
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1. Introduction

The human brain, like every vital organ, is constituted of a set of cells which are called 

neurons. It is through this organ that we can learn and reason, reflect and memorize. The 
geniality of human brain and more particularly of its neurons motivates several research-

ers to interest to this research and to benefit from its biological aspect. The idea was to 
reproduce, in an artificial way, the behaviors observed in man. It was in 1943 that the first 
artificial neural network was created by Warren McCulloch and Walter Pitts. It is a simple 
elementary processor imitating the structure and the functioning from the biological neu-

ron. Artificial neural network is characterized by its capacity of learning and generalizing. 
It represents a very powerful tool; it provided multiple solutions to different complex 
problems. In these recent years, its effectiveness is proved in various researches fields. 
Artificial neural network are subdivided on two main groups, the static and dynamic 
neural network. The choice of the one or the other neural network type depends on the 

application to be processed and the complexity of model. For static neural network, infor-

mation propagates in a single direction, layer by layer, and from the inlet to the outlet. 

They are generally used in various applications such as classifications, pattern recogni-
tion, and functions approximation. The connectivity between neurons in dynamic neural 
network is not limited. Each neuron can send and receive information from all other neu-

rons. The dynamic neural network architecture includes frequently one or more cycles 

which necessarily contain at least one delay connection. This gives rise to the dynamism 

notion. This neural network type is more complex than the static one, but it is more effi-

cient for some particular applications such as dynamic modeling, monitoring, and process 

control. In this chapter, nonlinear autoregressive models with exogenous input (NARX) 
model, as type of dynamic neural network, will be used to the solar radiation prediction. 

Simulation results will be presented to prove the effectiveness of this model compared to 
the static one.

2. Static neural network

Static neural network was the first and simplest type. It is a nonlooped network since it does 
not contain a feedback or delay connection [1]. It is a statistical regression tool which allows 

the approximation of any nonlinear function sufficiently regular. The neural architecture of 
this network is presented as shown in Figure 1. It imitates the structure of the biological 

neuron. It is composed of a set of layers. The hidden one allows to receive a variable number 

of inputs, and information is moved only from inputs directly through hidden layer to the 

output layer without cycles or loops. Each connection is associated with a synaptic weight w, 

which represents the strength of each connection. The negative weight inhibits its input, while 

the positive weight accentuates it.
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3. NARX model

NARX model is the abbreviation of “nonlinear autoregressive models with exogenous input”. 
It is registered under recurrent dynamic neural networks. It is a nonlinear autoregressive 

model with exogenous inputs. NARX consists of a linear ARX model with two delays, one 
for input and the other for output. It is based on the multilayer perceptron and the recurring 

connections. Its effectiveness has been proven in the research work presented in [2] to predict 

the PV power. It is also used in other applications such as the electricity prices prediction and 

the air pollution prediction [3–5]. This model is commonly used for the time series, estima-

tion, and prediction as well as for nonlinear dynamic systems modeling. Compared to other 

neural network types, NARX model is characterized by a good learning, fast convergence, 
and better generalization [6]. The PV power prediction results presented in [2] have proven an 

improvement performance when using NARX model compared to those obtained using the 
static neural network. NARX model performances are also compared to those of static neural 
network and radial neural network in the research works presented in [7]. NARX gave also 
the best prediction results in these studies.

4. NARX model architecture

NARX model defines the output as a function of its inputs and its past outputs as described 
in the following equation [8],

  y (t)  = f  [y (t − 1) , y (t − 2) ,   …  . , y (t −  d  
y
  ) ; u (t − 1) , u (t − 2) , ..., u (t −  d  

u
  ) ]   (1)

Figure 1. Static neural architecture.
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Where u represents the exogenous data and y are the NARX model outputs. d
u
 and d

y
 pres-

ent respectively delays order of inputs u and outputs y. Figure 2 presents the NARX model 
standard architecture.

For example, the NARX architecture of a neural network composed of three inputs, one out-
put and six neurons in its hidden layer is presented as shown in the Figure 3.

5. Learning and generalization

Learning and generalization are two specifics properties that characterize any neural net-
work. Unlike traditional methods that build programs to solve a problem, neural network 

operates mainly on a learning basis. We do not program a neural network, but we learn it. 

This is why the learning phase is among the most important properties of neural network.

Figure 2. NARX model standard architecture.

Figure 3. Example NARX model standard architecture (3 inputs, 1 hidden layer, and 1 output).
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The learning phase consists to estimate the parameter of the network in such a way that it can 

best fulfill the task assigned to it. This phase cannot be effective only after having accumu-

lated a set of inputs/outputs. When creating a neural network, the inputs and outputs are fixed 
relative to the application to be accomplished, it is the network weights that are modified and 
adjusted during the learning phase. The weight adjustment cannot be done in a random way 

but according to a “learning algorithm.” The generalization phase, known also the test phase, 
is one of the characteristics that determines the neural network performance. It consists to treat 

the output network with respect to the nonlearned inputs. The network generalization capacity 
degrades in the case of under/on learning.

6. Solar radiation prediction

In the present work, solar radiation will be predicted firstly with static neural network 
and then with NARX model. This study begins firstly with the observation of the solar 
radiation data base. In fact, the data base used in this work is composed of a set of solar 

radiation and temperature measurements correspond to an industrial company located 

on north of Barcelona [9]. These measurements are taken every day and every 5 min-

utes throughout 2010. In Figure 4, the daily evolution of solar radiation during 2010 is 

presented.

As shown in the above figure, the presented database is so large. So in order to reduce this 
annual solar radiation descriptive curve, just the solar radiation weekly averages will be taken 

into consideration in the solar radiation prediction. The curve presented in Figure 4 is thus 

reduced as presented in Figure 5.

Figure 4. Solar radiation daily evolution during 2010.

Solar Radiation Prediction Using NARX Model
http://dx.doi.org/10.5772/intechopen.70570

255



7. Solar radiation prediction using static neural network

In this paragraph, solar radiation will be predicted using the static neural network. Inputs 

chosen for this neural network are the temperature and the output will be the radiation as 

presented in Figure 6.

To determine the optimal neural structure for this network, the learning and test perfor-

mances are treated for different neurons in the hidden layer. The transfer functions chosen 
for the hidden layer and for the output layer are respectively “tansig” and “purelin.” As pre-

sented in Table 1, the optimal neurons number obtained for this static neural network is equal 

to 2. The simulation results of learning, test, and validation obtained with this structure are 

presented in Figure 7.

Figure 5. Weekly evolution of solar radiation during 2010.

Network

Static Neural

Temperature Solar Radiation

Figure 6. Inputs and the output for the static neural network.
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The optimal neural structure for the static neural network is thus composed of temperature 

(T) as input, radiation (R) as output, and one hidden layer which contains two neurons as 
shown in Figure 8.

The results of solar radiations prediction with static neural network are presented in Figure 9. All 

inputs are normalized, so the maximum solar radiation value is equal to 1. The blue curve cor-
responds to the real solar radiation, and the red one corresponds to the predicted one. As shown 

in the figure, the predicted solar radiation follows the evolution of the real one, but there is not an 

Number of neurons MSE

1 0.0288

2 0.0016

3 0.0140

4 0.0041

5 0.0071

6 0.0298

7 0.0043

8 0.0058

9 0.0106

10 0.0097

Table 1. MSE versus neurons in the hidden layer for static neural network.

Figure 7. Learning, test, and validation of static neural network.
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approximation between the two curves. This is remarked especially when the solar radiation fluc-

tuations are so important. To better treat these results, prediction error is presented in Figure 10, 

and the different error mean square error (MSE), mean absolute error (MAE), and root mean square 
error (RMSE) are computed and presented in Table 2.

Figure 11 shows that the prediction error is variable. It reaches a maximum value of 0.5 and 
a minimum value of 0.02. This is shows the performances of static neural network to predict 

the solar radiation for certain period of time and its weakness to predict it in other periods. 

The MSE value is equal to 0.0516; it is lower than MAE and RMSE. It is not considered 
too small, thus shows the inefficiency of the static neural network to best predict the solar 
radiation.

Figure 9. Solar radiation prediction using the static neural network.

T R

Figure 8. Optimal neural architecture for the static neural network.
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8. Solar radiation prediction using NARX model

In this part, solar radiation will be predicted using the NARX model. As presented in the pre-

vious paragraph, to predict a future value, NARX model is based on the historical data related 
to this value and involves some exogenous data. As temperature influences the solar radiation 
variation, it is chosen as an exogenous data. So the NARX model inputs will be the historical 
solar radiation data and temperature data as presented in Figure 11.

The hidden layers number and their neurons must be chosen in such a way that they offer 
the best network performances in learning and in generalization. So in this paragraph, the 
network performances will be treated for different neural network architecture. Inputs for 
NARX model correspond to the historical solar radiations (R(t−1) and R(t−2)) and the ambi-
ent temperatures (T(t−1) and T(t−2)). The output will be the predicted solar radiation at time 
t (R(t)) as presented in Figure 12. The transfer functions used for the hidden layer and for the 

output layer are respectively “tansig” and “purelin.”

Figure 10. Solar radiation prediction error with the static neural network.

Error Performances

MSE 0.0516

MAE 0.2076

RMSE 0.2272

Table 2. MSE, MAE, and RMSE for solar radiation prediction with static neural network.
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R(t)

R(t-1)

R(t-2)

T(t-2)

T(t-1)

NARX

Figure 12. Neural architecture for the NARX model.

First, the network performances will be studied with just one neuron in the hidden layer; then, 
number of neurons will be incremented and the network performances will be restudied. Network 

performances are treated by the compute of the mean square error of learning and test (MSE). The 

optimal neural structure corresponds to the one which presented the minimal MSE. Simulations 

results for this study are presented in Table 3 and in Figure 13. The optimal neural architecture 

obtained is the one which its hidden layer contains five neurons as presented in Figure 14.

Based on this neural network, solar radiation is predicted by NARX model. Simulation results 
are presented in Figure 15. The blue curve corresponds to the real solar radiation, and the red 

curve corresponds to the predicted one. As obtained with the static neural network, the pre-

dicted solar radiation follows the evolution of the real one. Furthermore, an approximation 
between the real and predicted curves is remarked, the two curves are overlapped for certain 

period of time especially when the solar radiation fluctuations are low. So an improvement 
in the quality of solar radiation prediction with NARX model is remarked compared to that 
obtained with the static neural network.

To the best evaluation of the NARX model performances, the solar radiation prediction error is 
presented in Figure 16. The different error MSE, MAE, and RMSE are computed and presented 
in Table 4. As presented in Figure 16, the maximum error reaches the value of 0.42, and the 

NARX

Radiation (G)

Temperature (T)

Radiation (G)

Figure 11. Inputs and output for the NARX model.
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minimum one is equal to 0. MSE is always the lowest one. It indicates a value of 0.0348. It is 

low compared to this one obtained with static neural network. Therefore, the performance of 

NARX model is proven in this work to predict the solar radiation.

Number of neurons MSE

1 0.0047

2 0.0217

3 0.0122

4 0.0072

5 0.00089

6 0.0016

7 0.0076

8 0.0258

9 0.0784

10 0.0460

Table 3. MSE versus neurons in hidden layer for NARX model.

Figure 13. Learning, test and validation of NARX model.

Solar Radiation Prediction Using NARX Model
http://dx.doi.org/10.5772/intechopen.70570

261



R(t)

R(t-1)

R(t-2)

T(t-2)

T(t-1)

Figure 14. Optimal neural architecture for the NARX model.

Figure 15. Solar radiation predicted by NARX.

Figure 16. Solar radiation prediction error with NARX model.
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9. Conclusion

In this chapter, the solar radiation is predicted using two different neural networks, the static 
one and the NARX model. Simulations results are presented and are proven the effectiveness 
of NARX model to predict the solar radiation compared to the static neural network. The 
efficiency of NARX model is proven especially for the low solar radiation fluctuations. The 
NARX model is characterized by the presence of a direct feedback of the output which has 
given it an additional predictive power.
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