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Abstract

Carbon nanotubes (CNTs) have attracted much interest because of their superior electrical,
thermal, and mechanical properties. These unique properties of CNTs have come to the
attention of many scientists and engineers worldwide, eager to incorporate these novel
materials into composites and electronic devices. However, before the utilization of these
materials becomes mainstream, it is necessary to develop protocols for tailoring the mate-
rial properties, so that composites and devices can be engineered to given specifications.
In this chapter, we review our recent studies, in which we investigate the nominal tensile
strength and strength distribution of multi-walled CNTs (MWCNTs) synthesized by the
catalytic chemical vapor deposition (CVD) method, followed by a series of high-tempera-
ture annealing steps that culminate with annealing at 2900°C. The structural-mechanical
relationships of such MWCNTs are investigated through tensile-loading experiments with
individual MWCNTs, Weibull-Poisson statistics, transmission electron microscope (TEM)
observation, and Raman spectroscopy analysis.

Keywords: carbon nanotubes, tensile strength, Weibull-Poisson statistics, structural defects,
heat treatment

1. Introduction

Carbon nanotubes (CNTs) have attracted much interest because of their potential application
as next-generation electronic and structural materials. In particular, their superior electrical,
thermal, and mechanical properties, including high electrical and thermal conductivity [1,
2], negative thermal expansion coefficient [3-10], and high mechanical strength, exceeding
100 GPa [11, 12], make them a candidate material for nano- and microscale composites,
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sensors, actuators, and other electronic devices. Additionally, continuous multi-walled
CNT (MWCNT) yarns and sheets, which are prepared by directly drawing MWCNTs from
spinnable MWCNT arrays, have been developed [13, 14], and new processing methods
utilizing MWCNT yarns and sheets have emerged as means of producing preforms and
composites with higher MWCNT volume fractions [15-25]. The most recent reviews on
these topics were reported by Di et al. [26] and Goh et al. [27].

The Young’s modulus and strength of CNTs are well known to depend critically on
the structure (e.g., geometry, crystallinity, and defect type and density), which in turn
depends on the manufacturing route and subsequent treatment [28-31]. Quantum
mechanics calculations [32-36] predict that defect-free single-walled CNTs possess
Young’s modulus values of ~1 TPa, tensile strengths >100 GPa, and failure strains of
~15-30%, depending on the chirality. However, experimental measurements [29, 37-41],
which have all involved MWCNTs, have reported markedly lower values for fracture
strengths and failure strains. For example, Ding et al. [40] showed that unpurified arc
discharge-grown MWCNTs yielded a mean modulus value of 955 GPa, in good agree-
ment with theory, but mean fracture strengths and failure strains that were only 24 GPa
and 2.6%, respectively. Calculations [35] have suggested that defects introduced by
oxidative pitting during nanotube purification can markedly reduce fracture strength.
Therefore, for the development of basic design concepts for the use of CNTs in nanocom-
posites that require high strength, experimental evaluation of the mechanical properties
of CNTs is crucial.

Several techniques have been developed for exploring the mechanical properties of indi-
vidual CNTs. One method for measuring the Young’s modulus of a CNT is to fabricate
a nanotube beam that is clamped at each end to a ceramic membrane (or otherwise sup-
ported) and to measure its vertical deflection versus the force applied at a point midway
along its length [28]. The atomic force microscope (AFM) is a natural and convenient
means for studying the Young’s modulus of CNTs, because it allows measurement of
the deflection of a sample as a function of applied force when used in contact mode [28,
30, 42-46]. Salvetat et al. [28] deposited a droplet of a MWCNT suspension on a well-
polished alumina ultrafiltration membrane and evaluated the Young’s modulus using
the abovementioned method. They found that MWCNTs grown by catalytic chemical
vapor deposition (CVD) have Young’s moduli in the range of 12-50 GPa (mean: 27 GPa).
These values are considerably lower than the moduli of arc discharge-grown MWCNTs
(600-1100 GPa). Recently, Elumeeva et al. [30] investigated the Young’s modulus of four
types of MWCNTs synthesized by the CVD method followed by a series of high-tem-
perature annealing steps at 2200, 2600, and 2800°C using a method similar to that of
Salvetat et al.’s study [28]. The experimental results showed that the Young’s modulus
increased for the annealed MWCNTs with respect to the as-grown ones. Poncharal et al.
presented a vibrating reed technique for testing the bending modulus of MWCNTs [47].
The elastic bending modulus as a function of diameter was found to decrease sharply
(from approximately 1 TPa to 100 GPa) with increasing diameter (from 8 to 40 nm),
which was attributed to the crossover from a uniform elastic mode to an elastic mode
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that involves wavelike distortions in the nanotube. Gaillard et al. [48] also used a similar
experimental setup, but their technique is relatively simpler: the resonance frequency of
an electrostatically driven MWCNT is determined using a dark-field optical microscope.
They found that there was a correlation between the defect density and the bending mod-
ulus, which suggests that the bending modulus is relatively more sensitive to wall defects
than the nanotube diameter. The other method for evaluation of the tensile strength and
Young’s modulus of CNTs is the tensile testing method [11, 12, 37-41, 49-51]. Yu et al.
[37] measured the stress-strain response and strength at failure of individual arc dis-
charge-grown MWCNTs (~30 um long) using a manipulator tool operated inside a scan-
ning electron microscope (SEM). They reported measured tensile strengths and Young's
moduli of MWCNTs ranging from ~11 to ~63 GPa and from 270 to 950 GPa, respectively.
Peng et al. [11] reported that defect-free individual MWCNTs were shown to possess a
mechanical strength equivalent to the theoretical value (100 GPa) using a precise in situ
transmission electron microscopy (TEM) method with a micro-electromechanical system
(MEMS) material testing system. They also performed a study on the effect of electron
irradiation parameters on the resulting MWCNT strength. They found that as the irradi-
ation-induced defect density increased, the tensile strength decreased, with that of three
nonirradiated samples and a sample irradiated at a higher dose being ~100 GPa on aver-
age and 35 GPa, respectively. Yamamoto et al. [29] performed a study of the effect of acid
treatment on the tensile strength of CVD-grown MWCNTs (~9 um long), using a piezo-
actuated nanomanipulator. The acid treatment introduced deep nanoscale defects as well
as negatively charged functional groups onto the surface of the MWCNTs. The defects in
these acid-treated MWCNTs had a channel-like structure, as if a ring of material was cut
away from the MWCNT around its circumference [29]. By comparing the SEM images of
MWCNTs acquired before and after fracture, it was found that all the nanotubes tested
fractured in the so-called sword-in-sheath failure mode; the fracture of the acid-treated
MWCNTs mostly occurred at the nanodefects. Tensile-loading experiments revealed that
the tensile strengths of pristine MWCNTs were in the range of 2-48 GPa (mean, 20 GPa).
However, the acid-treated MWCNTs with nanoscale defects possessed a tensile strength
of 1-18 GPa (mean, 6 GPa), which is approximately 70% lower than that of the pristine
MWCNTs. These results indicated that the channel-like defects associated with the acid
etching were typically the weakest points in the acid-treated MWCNT structure and that
stress concentration was present at the defect region. In these studies, the tensile strength
was calculated from either the fractured cross-sectional area (effective strength) or the
cross-sectional area of the outermost layer of the MWCNT. Few research groups have
examined the nominal (or engineering) strength and its Weibull distribution, which are
required for investigations of crack bridging characteristics and mechanical properties of
composites reinforced with MWCNTs (a detailed discussion is given in [52]). Yu et al. [37]
calculated the nominal tensile strengths to be in the range of 1.4-2.9 GPa, which is much
lower than the effective tensile strength (11-63 GPa).

Here, we review our recent studies in which the strength properties of individual MWCNTs
synthesized by a CVD method, followed by a series of high-temperature annealing steps that
culminate with annealing at 2900°C, are investigated by a manipulator tool operated inside
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an SEM [52-54]. The relationship between the MWCNT structure and strength properties of
MWCNTs with a significantly different nanostructure is investigated through tensile tests
of individual MWCNTs, transmission electron microscope (TEM) observations, and Raman
spectroscopy analysis.

2. Structural characterization of carbon nanotubes

MWCNT materials (acquired from Hodogaya Chemical, Japan) synthesized by a catalytic CVD
process were thermally annealed in a graphite crucible using a resistance-heated graphite ele-
ment furnace at 1200, 1800, 2200, and 2600°C under an argon atmosphere [53]. The temperature
was raised at a heating rate of approximately 60°C/min to the predetermined temperature and
held there for 1 h before cooling to ambient temperature. The average outer diameter, inner
diameter, and length of the MWCNTs are approximately 70, 7 nm and 7.8 um, respectively.
Figure 1 shows typical TEM images of the four types of MWCNTs. At an annealing temperature
of 1200°C (Figure 1a), the sample consists of turbostratic elementary domains 2-3 graphene lay-
ers thick. Each elementary domain is tilted at an angle with respect to the nanotube axis, forming
larger wrinkled layers. When the annealing temperature increased to 1800°C (Figure 1b), the tur-
bostratic structure disappears, and instead undulated fringes are formed by hooking the adjacent
elementary domains together, i.e., both the in-plane and c-axis crystallite sizes appear to increase
in this temperature range. For the samples annealed at 2200°C (Figure 1c), even though the
undulated structure seems to remain unchanged, the graphitic planes become aligned, and the
crystallite sizes increase further. With thermal annealing at 2600°C (Figure 1d), the undulating
structure disappears, and the MWCNTs consist of nested graphitic cylinders that are almost per-
fectly aligned with the nanotube axis. However, these MWCNTs are observed to possess struc-
tural defects such as abrupt structural changes from constant-diameter cylinders and unevenly
spaced lattice fringes. Hereafter, these kinds of MWCNTs are referred to as H-MWCNTs.

Spinnable MWCNT arrays were obtained by a thermal CVD method using C,H, and FeCl,
as the base material and the catalyst, respectively. The procedure for the fabrication of the
MWCNT arrays follows [55]. The average outer diameter and inner diameter were approxi-
mately 40 and 7 nm, respectively, and the length of the MWCNTs was ~700 pm. The MWCNTs
were thermally annealed in a graphite crucible (Kurata Giken SCC-U-80/150) using a resis-
tance-heated graphite element furnace at 2000°C in a vacuum, followed by heat treatment
at 2400 and 2900°C under an argon atmosphere. Figure 2 shows TEM images of some of
the MWCNTs. The as-grown MWCNTs consist of slightly undulating graphitic cylinders
with respect to the nanotube axis (Figure 2a). Additionally, these MWCNTs possess several
types of structural defects, such as kinks and bends, discontinuous flaws, and remnant catalysts
(Figure 2c—f). For the samples annealed at 2400°C, the degree of waviness of the nanotube
walls seems to decrease. Following thermal annealing at 2900°C (Figure 2b), the undulated
structure disappears, and the MWCNT consists of nested graphitic cylinders that are almost
perfectly aligned with the nanotube axis. However, structural defects such as discontinuous
flaws and kinks and bends are still observed for a subset of the samples. The structural defect
densities for the MWCNTs prepared in this study are summarized in Table 1. The thermally
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Figure 1. TEM images showing structural evolution of H-MWCNTs [53]. Annealing temperatures are (a) 1200°C, (b)
1800°C, (c) 2200°C, and (d) 2600°C.

annealed MWCNTs possessed a smaller amount of structural defects, characterized by dis-
continuous flaws and kinks and bends and no remnant catalyst compared with the as-grown
MWCNTs. In this chapter, we call these nanotubes S-MWCNTs.

Next, we used Raman spectroscopy to evaluate whether any structural evolution occurs dur-
ing thermal annealing. The Raman scattering spectrum of the MWCNTs shows a pair of bands
around 1360 cm™ (D-band) and 1590 cm™ (G-band) [56]. Thus, the relative intensity ratio of
the G-band to D-band peak, i.e., R = I_/I,, is known to depend on the number of defects in
the nanotubes [57]. The Raman intensity ratios (R) of the H-MWCNTs and S-MWCNTs are
shown in Figure 3. The Raman spectra of the MWCNTs showed a pair of bands near 1360 and
1590 cm™. The R values of the H-MWCNTs increased from 1.0 to 10.1 with increasing anneal-
ing temperature. For the S-S MWCNTs, there is no clear difference in the R values between
the as-grown MWCNTs and those annealed at 2000°C (R = 3.2 and 3.8), suggesting that both
types of MWCNTs have the same degree of crystallinity. On the other hand, the R values
increase with increasing annealing temperature over the temperature range 2000-2900°C

93



94  Carbon Nanotubes - Recent Progress

Figure 2. TEM images of the (a, c-f) as-grown SSMWCNTs and (b) MWCNTs thermally annealed at 2900 °C [52]. Arrows
indicate the position of structural defects such as (c) kinks and bends, (d, e) discontinuous flaws (i.e., discontinuity in
nanotube layers and voids and holes), and (f) remnant catalyst.

Annealing temperature (°C)  Kinks and bends (/fum) Discontinuous flaws (/pum) Remnant catalysts (/pum)

As-grown 1.9 6.4 1.2
2400 1.1 2.5 0
2900 1.6 17 0

Table 1. Structural defect densities for three types of SSMWCNTs [52].

(R =23.3). This result suggests that defects in the structure of the MWCNTs were removed by
annealing to produce a more stable graphite planar structure.

3. Tensile properties

3.1. Fracture behavior

Uniaxial tensile tests on individual MWCNTs were carried out with a manipulator inside
the vacuum chamber of a SEM (JEOL JSM6510), as shown in Figure 4. Further details of
the experimental procedure are described elsewhere [29]. In brief, AFM cantilevers served as
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Figure 3. Raman intensity ratio as a function of MWCNT annealing temperature [52, 53].

force-sensing elements, and the force constants of each were obtained in situ prior to the ten-
sile tests using the resonance method developed by Sader et al. [58]. An individual MWCNT
was clamped onto the cantilever tip by local electron-beam-induced deposition (EBID) of a
carbonaceous material [59]. The applied force can be calculated as follows (Figure 1d):

F = k(Ax-AL) (1)

where k is the force constant, Ax is the displacement of the cantilever, and AL is the nanotube
elongation. The nanotube elongation was determined by counting the number of pixels in
the acquired SEM images. The movement rate of the XY motion stage of the manipulator for
the tensile tests was approximately 0.1 pm/s. After the MWCNT broke, both cantilevers with
attached MWCNT fragments were transferred to a TEM sample stage and examined in the
TEM to determine the outer diameters. We measured the full cross-sectional area, including
the inner hole of each of the broken MWCNTs, using TEM and used the measured values to
calculate the tensile strength.

The fracture morphology of MWCNTs is divided into two groups: the complete fracture of
nanotube walls (clean break or sword and sheath failure mode) and sword-in-sheath failure mode,
which depends on their crystallinity and existence of structural defects. Two series of SEM and
TEM images for each of the two individual H-MWCNTs, captured before and after breaking, are
shown in Figure 5. In the first series (Figure 5A1-A5), a H-MWCNT annealed at 1800°C with a
gauge length of 13.1 um was clamped onto the cantilever and tungsten wire tips by local EBID
and then loaded in increments until failure. After breaking, the fragment of the same MWCNT
attached to the cantilever tip had a length of 13.3 um (Figure 5A2 and A4). The other fragment
of the same MWCNT attached to the tungsten wire had a length of at least 0.2 um (Figure 5A3

95
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Figure 4. (a, b) Nanomanipulator system used for tensile tests on individual MWCNTs. (c) A SEM image of two AFM
cantilever tips holding a MWCNT, which is attached at both ends to the AFM silicon tip surface by electron beam
deposition of carbonaceous material. (d) Schematic description of cantilever displacement during the tensile test.

and A5), indicating that the MWCNT underwent failure in the so-called clean break manner
(Figure 6A1-A3), as observed for CVD-grown MWCNTs under tensile loading [38]. Similar clean
break-type failure was observed for H-MWCNTs annealed at 1200 and 2200°C. In contrast, the
H-MWCNTs annealed at 2600°C broke in the outer walls, and the inner core was pulled away
from the outer walls (Figure 5B1-B3), i.e., they underwent failure in a sword-in-sheath failure
mode (Figure 6B1-B3), as observed for arc discharge-grown MWCNTs under tensile loading
[11, 37]. An 11.1-um-long section of this MWCNT was loaded and fractured in the middle of the
gauge length. The resulting fragment attached to the cantilever tip had a length of at least 2.4 um
(Figure 5B2), whereas the other fragment on the tungsten wire had a length of at least 10.6 um
(Figure 5B3). Thus, the sum of the fragment lengths far exceeded the original section length. This
apparent discrepancy can be explained as resulting from a sword-in-sheath-type failure.

Next, SEM and TEM images of an individual as-grown S-MWCNT linked between two
opposing AFM cantilever tips before and after tensile loading are shown in Figure 7. An
as-grown S-MWCNT having a gauge length of 3.2 um was clamped onto the cantilevers and
then loaded in increments until failure. After breaking, the fragment of the same MWCNT
attached to the high-force constant cantilever tip had a length of 0.5 um (Figure 7b1), while
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Figure 5. Two series of SEM and TEM images for each of two individual H-MWCNTs, captured before and after their

breaking [53]. Annealing temperatures are (A1-A5) 1800°C and (B1-B3) 2600°C.
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Figure 6. Schematic description of possible fracture mechanisms of MWCNTs annealed at different temperatures [53].
Shown are examples of (A1-A3) clean break-type failure and (B1-B3) sword-in-sheath-type failure.

the other fragment of the same MWCNT attached to the force-sensing cantilever had a
length of approximately 3.8 um (Figure 7b2). Thus, the sum of the fragment lengths (4.3 um)
exceeded the original section length. However, the length of the sword part of the nanotube
(1.1 um, Figure 7c) was shorter than that of the MWCNT attached to the high-force constant
cantilever tip (1.9 um). This suggests that the inner walls may break at positions that are far
away from the outer walls, as shown in Figure 7d. This behavior can explain the sword and
sheath failure. Of the 23 tested as-grown S-MWCNTs, 9 MWCNTs fractured as a clean break,
and the remaining 14 MWCNTs failed leaving a sword and sheath failure.
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Figure 7. SEM images of SMWCNT (a) before and (b) after the tensile test [54]. TEM image of the broken MWCNT is
indicated in (c). TEM image in (c) shows the tips of the MWCNT that failed leaving the sword and sheath failure. (d)
Schematic description of sword and sheath failure.

In addition to the evaluation of the fracture behavior of the MWCNTs mentioned above,
we identified the fracture locations of individual S-MWCNTs broken in the uniaxial ten-
sile tests using a piezo manipulator inside the vacuum chamber of the SEM and TEM. Of
the five tested MWCNTs, three MWCNTs underwent failure at a discontinuous flaw, and
the remaining two MWCNTs fractured at a kink and bend. A series of TEM images for
an individual as-grown S-MWCNT, captured before and after breaking, are shown in
Figure 8. We found that the fracture of this MWCNT occurred at a kink and bend struc-
ture and occurred as a clean break. Figure 9 shows the characteristic features observed
in a MWCNT, which fractured at a discontinuous flaw. The MWCNT fractured leaving a
sword and sheath failure (Figure 7d). Furthermore, this MWCNT featured hole defects on
the surface of its outer wall and the fracture occurred at a hole defect. This finding sug-
gests that the fracture properties of such MWCNTs are dominated by the aforementioned
structural defects.

3.2. Mechanical properties

The dependences of the nominal tensile strength upon the fracture cross section ratio
and Raman intensity ratio are shown in Figure 10. The fracture cross section ratio was
calculated by dividing the fractured cross-sectional area by the full cross-sectional area
of the MWCNTs, including the inner hole. A higher fracture cross section ratio (for a
given outer diameter) means a larger number of fractured walls in the MWCNT. It can
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Figure 8. TEM images of SSMWCNT fractured at the kink and bend (a, b) before and (c, d) after the tensile test [52].
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Figure 9. TEM image of SMWCNT fractured at the discontinuous flaw [52].

be seen from Figure 10a that the H-MWCNTs annealed at 1800 and 2200°C and the
as-grown S-MWCNTs had an intermediate level of crystallinity, as measured from the
Raman intensity ratio (R = 1.4-4.9), compared with that of the H-MWCNTs thermally
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annealed at 1200 and 2600°C (R values of 1.0 and 10.1, respectively). Figure 10b shows
that the MWCNTs with an intermediate level of crystallinity produced complete frac-
ture of the nanotube walls (clean break or sword and sheath failure) and exhibited higher
nominal tensile strength. The slightly lower value of the fracture cross section ratio of
the as-grown S-MWCNTs compared with that of the H-MWCNTs thermally annealed
at 1800 and 2200°C was caused by the larger hollow core. Although the H-MWCNTs
annealed at 1200°C failed in a clean break manner (Figure 10b), their nominal tensile
strength was observed to be small (~1 GPa) because of their relatively low crystallin-
ity (R = 1.0) which reflects their amorphous graphite structure and many defects. The
amorphous structure might explain the low load-bearing ability of these MWCNTs.
When the annealing temperature was 2600°C, an abrupt decrease in both the nominal
tensile strength and the fracture cross section ratio was observed, although the crystal-
linity considerably increased (R = 10.1). This result can be attributed to a decrease in the
number of cross-linking defects, i.e., interwall sp® bonding, owing to the high-tempera-
ture thermal annealing. The removal of cross-linking defects decreases the load transfer
from the outer walls to the inner ones, resulting in multiwall-type sword-in-sheath failure
(i.e., decrease of the fracture cross section ratio) and degradation of the load-bearing
ability. These results suggest that improvements to the nominal tensile strength of
MWCNTs might be achieved by inducing appropriate interactions between adjacent
nanotube walls to enable sufficient load transfer to the MWCNT inner layers. This
effect should be balanced to permit an adequate load transfer between the inner and
outer walls to give clean break fractures. On the other hand, the nominal tensile strength
for the thermally annealed S-MWCNTs at 2900°C shows nearly the same value as that

UL v v L LR | T T T T T T T T T T
a S-MWCNT  H-MWCNT b S-MWCNT
10| @ As-grown O 1200°CH 10F @ as .
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Figure 10. Nominal tensile strength of the MWCNTs as a function of (a) Raman intensity ratio and (b) fracture cross
section ratio [52].
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of the as-grown S-MWCNTs, even though a slight decrease in the strength is observed
for the thermally annealed S-MWCNTs. This result suggests that the structural changes
observed over this annealing temperature range may not have a significant impact on
the nominal tensile strength of the S-MWCNTs. The H-MWCNTs had small defects,
such as vacancies, Stone-Wales defects, or cross-linking defects, but no discontinuous
flaws and kinks and bends, as shown in the S-SMWCNTs. As a result, thermal annealing
led to a decrease in the small defects with concomitant increases in the nominal tensile
strength (0.9 to 5.9 GPa). On the other hand, although the as-grown S-MWCNTs exhibit
an intermediate level of crystallinity (R = 3.2), they include structural defects such as
discontinuous flaws and kinks and bends. Such structural defects and hole defects were still
observed in the thermally annealed S-MWCNTs (Table 1). Thus, the annealing treat-
ments led to no major changes in the controlling defects and had no major effects on
the fracture morphology and nominal tensile strength of the S-SMWCNTs, despite their
high crystallinity.

3.3. Weibull distribution

A Weibull plot of the nominal tensile strength of the MWCNTs is shown in Figure 11.
Supplementing the experimental results of this study, Figure 11 also gives some results
evaluated using data from the literature for previously reported CVD-grown MWCNTs and
arc discharge-grown MWCNTs [37, 38, 40, 52, 53]. These nominal values were calculated
based on the literature values. Table 2 shows the outer diameter, nominal tensile strength,
and Weibull scale and shape parameters of the MWCNTs. As with other brittle materials,
the strength distribution of CNTs does not follow a Gaussian distribution, and failure of
nanotubes is described by Weibull-Poisson statistics. If o__is the failure strength of a nano-
tube, the cumulative distribution function f(o__ ) for the two-parameter Weibull distribution
is defined as [39]:

£ - 1-exp|-(%2)] @

where f(o_ ) is the probability of failure, « is the scale parameter, and g is the shape param-
eter. The 8 values of the MWCNTs are calculated to be in the range of 1.6-3.0. The compara-
tively low value of the shape parameter for MWCNTs indicates a wide variability in their
tensile strength, more so than that of carbon fibers [60] and SiC fibers [61] (5 = 15 and 7-11,
respectively). This may result from the irregular nanotube structure, which reflects a larger
tube defect density relative to carbon fibers and SiC fibers.

4. Conclusions

In this chapter, we reviewed the nominal tensile strength and Weibull scale and shape
parameters of the nominal tensile strength distribution of MWCNTSs based on our recent pre-
vious studies. The comparatively low value of the shape parameter for MWCNTs resulted
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2
CVD-grown MWCNTs
O Barber et al., 2005 [38]
Tr 1 @ S-MWCNT (As-grown) [52]
O S-MWCNT (2900°C) [52]
QE o+ 4 O H-MWCNT (1200°C) [53]
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c
= 1 Arc discharge-grown MWCNTSs
£ 2oL 4 O Yuetal, 2000 [37]
A Ding et al., 2007 [40]
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Figure 11. Weibull plot for the nominal tensile strength of MWCNTs [52].
MWCNT type Outer diameter Nominal tensile  Scale parameter, Shape parameter, Ref.
(nm) strength (GPa) a (GPa) B )
Arc-discharge-grown 25+7 1.6+1.0 1.9 2.0 [37]
CVD-grown 97 +25 1.5+1.1 1.7 1.6 [38]
Arc-discharge-grown 11+3 34+26 3.8 1.6 [40]
S-MWCNT (CVD, as-grown) 36+7 5221 59 2.7 [52]
S-MWCNT (CVD, 2900°C) 35+6 3.8+1.6 4.4 2.4 [52]
H-MWCNT (CVD, 1200°C) 90 +40 09+0.5 1.1 1.6 [53]
H-MWCNT (CVD, 1800°C) 72 +21 6.0+2.7 6.8 2.1 [53]
H-MWCNT (CVD, 2200°C) 69+ 16 58+2.0 6.6 3.0 [53]
H-MWCNT (CVD, 2600°C) 67 £12 2011 2.3 2.0 [53]

Table 2. Measured properties for MWCNTs. Shown are the outer diameter, nominal tensile strength, and Weibull scale
and shape parameters. The outer diameter and nominal tensile strength data are presented as average values + standard
deviations.

from the irregular nanotube structure, which reflects a larger tube defect density relative
to conventional fiber materials. Nonetheless, the MWCNTs with an intermediate level of
crystallinity produced complete fracture of nanotube walls and exhibited higher nominal
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tensile strength, suggesting that there is an optimal nanotube defect density for increasing
the nominal tensile strength, not too low but also not too high, so as to permit an adequate
load transfer between the nanotube walls. To improve the properties of macroscopic CNT
composite performance, the structure and properties of MWCNT yarns and sheets must
be optimized at all hierarchical levels: from individual MWCNTs to MWCNT bundles,
MWCNT networks, and MWCNT yarns and sheets. Future research efforts aimed at each of
the following levels should be pursued to improve mechanical properties, particularly the
nominal tensile strength of CVD-grown MWCNTs: (1) improved synthesis methods should
be developed to reduce structural defects such as discontinuous flaws and kinks and bends; and
(2) the degree of inter-wall cross-linking and load transfer between adjacent nanotube walls
should be optimized by posttreatments, such as thermal annealing and electron irradiation.
We believe that the above improvements might enable the realization of higher nominal ten-
sile strength. More well-defined CNT architectures should contribute to enhanced mechani-
cal properties as well as improved the electrical and thermal properties of MWCNT yarns
and composites.
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