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Abstract

Hemolytic anemia results when red blood cells (RBCs) are destroyed prematurely by a 
number of agents. Obligate intracellular parasites like the Plasmodium species proliferate 
by infecting RBCs, growing through different stages of their life cycles, expanding their 
population to unsustainable numbers and eventually rupturing the cell membranes in 
order to transmit and infect new RBCs. In this manner, more RBCs are infected by the 
parasites and destroyed together with some nonparasitized cells. Membranes of RBCs are 
altered and deformed by parasite antigens expressed on the surfaces of both parasitized 
and nonparasitized cells, which lead to their premature phagocytosis and destruction by 
the reticuloendothelial system. Parasites and the hemoglobin waste products produced 
by them are released when the RBCs burst. Activated leukocytes take up the hemoglobin 
waste (hemozoin which is a polymerized heme), which stimulates the innate immune sys-
tem leading to the synthesis and secretion of pro- and anti-inflammatory cytokines, che-
mokines, growth factors and mediators. Together with the destruction of RBCs in malaria, 
imbalance between pro- and anti-inflammatory events results in the modification of ery-
throid cell proliferation leading to severe malarial anemia (SMA) and other pathophysiol-
ogies of malaria. While current malarial management is targeted at the destruction of the 
parasite, it is the malaria-related pathophysiology (disease aspect of malaria) like severe 
malarial anemia that results in the high malaria morbidity and mortality. Antidisease 
approaches promise to be more effective at malarial management. Triterpenes with anti-
oxidant, pro-oxidant, anti-inflammatory and antiparasitic effect show effects at retarding 
and abrogating severe malarial anemia. Asiatic acid, amongst other triterpenes like olea-
nolic acid, masilinic acid administered through oral or transdermal route improves severe 
malaria anaemia providing promise in the management of malaria pathophysiology.

Keywords: malaria, severe malarial anemia, Plasmodium falciparum, pro-inflammation, 
anti-inflammatory, antidisease, cytokines, chemokines, growth factors, rhoptry protein 
ring surface protein 2, tumor necrosis factor
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1. Introduction

Anemia remains one of the most obdurate diseases affecting the general public in Africa 
where it contributes close to a quarter of the continent's nutrition-related Disability Adjusted 

Years (DAILY's) lost for the past decade and half [1]. There are several causes of anemia with 

micro-nutrient deficiencies, iron deficiency and parasitic infections contributing a major share 
in Sub-Saharan Africa [2]. Among the parasitic infections that contribute to global anemia, 

malaria, schistosomiasis and soil transmitted helminth (STH) compose a considerable disease 
burden in school children in developing countries [3]. There is a similar geographic distri-

bution and polyparasitism of Plasmodium falciparum, schistosomiasis and STH infections in 

different epidemiologic settings in Africa that has been observed to date, with considerable 
contributions to anemia [4, 5]. With many factors contributing to anemia in general, estab-

lishing the relative contribution of malaria to anemia is complex, as malarial anemia is more 
frequently present in combination with other conditions.

The multifactorial causes of anemia make the disease a continuous and nagging problem to the 

human populations in different parts of the world, more so in the underdeveloped and developing 
world. The disease burden contributed by anemia had been projected to decrease worldwide in this 

century; however, signs on the ground seem to portray a different picture altogether. Hemoglobin 
(Hb) concentrations are used for the diagnosis of anemia and assessment of its severity.

Anemia can be defined, generally, as a decrease in Hb and related hematologic indices accord-

ing to the individual's age, gender, physiologic state and geographic location [6].

In pregnant women, premature labor with low birth weight babies may be caused by ane-

mia [7, 8]. Small for age live birth infants, still births and high perinatal maternal and infant 

mortality are all common features of anaemia [9]. Anemia caused by nutritional inadequacies 

may result in stunted growth and underweight infants that predisposes to several infectious 

and noninfectious diseases of childhood [10] and has a phenotypic presentation with chronic 

severe malarial anemia (SMA).

2. Definitions of severe malarial anemia

Severe malarial anemia (SMA) is defined by an Hb concentration of <5 g/dl or a hematocrit 
of <15% in children <12 years of age (<7 g/dl and <20%, respectively, in adults) together with 
a parasite count >10,000/μl, which distinguishes it from other diseases with similar presen-

tations. Besides malnutrition, human immunodeficiency virus (HIV), schistosomiasis, soil 
transmitted helminth (STH) as causes of anemia, Plasmodium infections (malaria) contribute 
a major portion of the debilitating illness to the global disease burden [11]. SMA is a compli-

cation of severe malaria, which results from infection caused by the apicomplexan protozoan 
parasite of the genus Plasmodium. The Apicomplexa (also called Apicomplexia) are a large 
phylum of parasitic alveolates. Most of them possess a unique form of organelle that com-

prises a type of plastid called an apicoplast and an apical complex structure. The organelle is 
an adaptation that the apicomplexan applies in penetration of a host cell.
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Any of the complications such as severe malarial anemia, significant bleeding, shock (com-

pensated or decompensated), nonrespiratory acidosis and hypoglycemia can develop rapidly 

and progress to death within hours or days [12, 13].

Severe malaria is differentiated from other conditions by the demonstration of asexual forms 
of the malarial parasites in the blood in a patient with a potentially fatal manifestation or 

complication of malaria such as SMA in whom other diagnoses have been excluded. Even 
though the complications have been considered to be almost unique to P. falciparum infec-

tion, in recent years, many cases of severe malaria, including deaths, have been reported in 

Plasmodium vivax and Plasmodium knowlesi malaria. The case fatality of P. falciparum malaria is 

around 1%, and this accounts for more than half a million deaths per year all over the world, 
in which 80% of these deaths are caused by cerebral malaria. The incidence of complications 
and deaths due to the other two types is much lower.

Pregnancy anemia or maternal anemia is defined by an Hb of <110 g/L (11 gdL) and a hema-

tocrit less than 31% [14]. In malaria, these values tend to be extremely low making SMA a 
critical clinical emergency in pregnancy and infancy where it displays distinct physiologic 

and morphologic characteristics between the two groups.

SMA threatens to kill the next generation. In the pregnant women and children <5 years, 
malarial infection develops into a fatal SMA more often than in any other population group 

due to reduced immune protection. This trend is also seen in malaria of endemic areas where 

natural immunity is supposed to develop over time due to higher exposure to the reinfection.

There is an increased demand for RBC synthesis in pregnancy, and the intrusion by the 

parasite creates a dilemma from decreased efficiency of nutrient utilization. Under reduced 
immunity, parasitemia increases persistently, resulting in increased level of parasite toxins 
that inhibit bone marrow functionality. The anti-immune response of pregnancy is meant to 

protect the fetus from autoimmune destruction. The same scenario is observed in SMA dur-

ing infancy; however, the cause of reduced immunity in this case is from immature immune 

system activation and reduced maternal immunoglobulins.

Compounding the disease prevalence are factors such as parasite virulence, parasite-host 

interactions, host characteristics, and socio-economic conditions that play out an intricate 

web resulting in SMA. The production of pro-and anti-inflammatory cytokines, certain 
genetic traits, α or β-thalassemia, Duffy (Fy) blood groups and sickle cell traits remain the 
most common predisposing host factors to SMA. Malarial parasite species, disease endemics, 

Plasmodium multiplication rates, drug resistance and antigenic polymorphism all contribute 

to parasite factors that lead to SMA.

3. Malarial anemia etiology

Approximately 30–40% of deaths caused by P. falciparum are associated with SMA development. 

The multifactorial causes of SMA range from increased removal of circulating parasitized and 

nonparasitized red blood cells (pRBC's and npRBC's) to reduced synthesis of erythrocytes in 
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the erythroid germinal centers. While the molecular mechanisms underlying the SMA remain 

obscure, malarial parasites' ability to remodel RBC's morphology and physiology through ligands 

found on both the parasite and RBC's membrane has been investigated in the past few years. 

Immunologic mechanisms associated with malarial pathophysiology seem to be more effective in 
increasing SMA. Elicitation of immunologic and inflammatory processes by malarial parasite anti-
gens and immunokines plays a major role in the complex milieu that results in SMA. Coinfections 
with other parasites may increase SMA susceptibility as they aggravate malaria-associated 

inflammation. A normocytic and normochromic RBCs' morphologic appearance is a common 
presentation of anemia in malaria, which is characterized by the absence of spherocytes and schis-

tocytes although there may be abundance of fragmentocytes and eliptocytes typifying increased 

hemolysis. High frequencies of hemoglobinopathies and iron deficiencies in areas of high malarial 
prevalence may change the picture to microcytytosis and hypochromasia [15].

Severe malarial anemia displays inadequate reticulocytosis in the presence of the anemia sig-

nifying that there is reduced synthesis of RBC's and not just increased hemolysis. In malaria, 

hematocrit gradually decreases, after an apparent initial steady state even with the onset of fever, 

showing either an increase in reticulocytosis or an absence of hemolysis within the first 24 h after 
infection. The decrease in hematocrit is independent of treatment initiation and may even occur in 

the absence of overt parasitemia on peripheral blood films, blood transfusion and adequate anti-
malarial treatment. In P. falciparum, parasite sequestration in the microvasculature may account 

for the parasite-negative peripheral blood smears accompanying decreasing hematologic indi-

ces. These parasites continue to shed soluble antigens, hemoglobin metabolites and derivatives 

that drive various syndromes of malaria like SMA. This may explain the continued decline in 
hematologic indices despite the evidently low parasitemia and the malarial anemia pathogenesis, 

which implicates bone marrow dysfunction as displayed by low reticulocytosis [16, 17]. When 

Hb decreases, the normal body physiology upregulates the bone marrow erythroid progenitors 

and reticulocytes are increased as an indicator of this process. Failure to increase immature red 
blood cells in circulation during overt anemia states indicates dyserythropoiesis and/or ineffec-

tive erythropoiesis associated with the myeloid progenitors' proliferation, which is common in 

malaria. Bone marrow suppression of the erythroid blast cells has been evidenced in children 

exposed to multiple reinfections, receiving inadequate treatment or experiencing treatment 
failure that tend to become asymptomatic during acute P. falciparum infections showing partial 

immunocompromised state [18] against an expected hyperimmune reactivity of an inflammatory 
condition like malaria. Inadequate erythropoietin production or effectiveness, the effect of the 
inflammasome on erythropoiesis, concomitant parasitic and bacterial infections contribute to the 
complex milieu culminating in SMA as well. Red blood cell membrane modifications by attached 
parasite ligands remodel the cells to a phenotype tagged for destruction through phagocytosis.

4. Effects of parasites on cell membranes leading to severe malarial 
anemia

Anemia is described as a decrease in Hb concentration, which is directly related to RBC's mass 

within the circulation. Infection with P. falciparum, which is associated with a rapid develop-

ment of SMA, is also known to influence pRBC's sequestration in the microvasculature of 
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different tissues and organs that include skin, lung, gut, muscle, heart, and brain. Parasitized 
RBCs are commonly sequestered from circulation together with npRBCs that carry parasite 

antigens. Rosetting (aggregation of pRBCs into rings of four or more cells) and agglutination 
(combining of pRBCs and npRBCs to form clumps) are common phenomena that occur due 

to ligands that are found on the surfaces of pRBCs and npRBCs, which result in reduction of 

freely circulating RBCs and eventually on RBC's mass and Hb concentration. Cytoadherence 

of pRBC's to the microvasculature, rosetting and cell-cell agglutination are processes facilitated 
by several ligands of P. falciparum trophozoites and schizonts. These pRBC’s surface protrud-

ing molecules cause pathological cell-cell communication. These ligands such as P. falciparum 

erythrocyte membrane protein 1 (PfEMP-1) [19, 20] enable pRBCs to bind to endothelial cell 

(EC) receptors, e.g., leukocyte differentiation antigen CD36, intercellular adhesion molecule 1 
(ICAM-1), integrin, chondroitin sulfate and hyaluronic acid [21].

Some of these ligands are necessary for the formation of the host cell-parasite connection, 

which allows invagination of the erythrocyte bilayer leading the parasite engulfed into the 

RBC. As a result, an intracellular parasite vacuole is formed and provides an environment for 

parasitic multiple stage growth. During the process of parasite-protein-mediated internaliza-

tion as well as during the intracellular proliferation, several other parasite proteins bearing a 

host-targeting (HT) or plasmodial expert element (PEXEL) are also exported into RBCs [22, 23], 

providing a myriad of host cell-parasite communication paradigms.

Intracellular proliferation and parasite antigens release cause considerable reduction in RBC 

membrane stability and alters cell surface characteristics leading to eventual pRBC’s mem-

brane rupture. The ability of RBCs to change shape allows them to pass through the spleen fil-
tration mechanisms. Infection in the cell membranes causes them to be more rigid and unable 

to change shape when passing through capillaries and become prone to phagocytosis and 

hemolysis.

Some of the exported parasite ligands adhere to the membranes of npRBCs. Parasite ligand 
deposition on npRBC's tags these cells and pRBCs for rapid reticuloendothelial system 

pooling and sequestration by the spleen, which removes them from circulation resulting in 

SMA. Cytoadherence and auto-agglutination, emanating from the various ligand-epitope 

interactions, also removes a considerable amount of cells from circulation exacerbating 
SMA. Reduced RBC’s flexibility occurs with a very few ligands being found on the surface of 
the cells reducing the half-life of such marked cells. However, such tagging only occurs on a 

subset of erythrocytes to account for the rapid setting of SMA encountered in malaria mean-

ing that host cell-parasite ligand interactions along with other mechanisms play profound 

role in the creation of overt SMA.

5. Host cell-parasite ligand interactions and severe malarial anemia

The interaction between host cell and parasite ligands is a complex process of an inefficient inva-

sion mechanism that may be completed in a small fraction of infection-targeted RBCs. As a result, 

many ligands need to be secreted and shed off into plasma resulting in many of these pRBC-
adhesive proteins being present in high concentrations in plasma. These free molecules adhere to 
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npRBCs triggering IgG and complement binding. Subsequently, cells binding immunoglobulin 

(Ig) and complements are cleared from circulation through phagocytosis by macrophages and 

hemolysis. This results in a critical hemoglobin reduction. Furthermore, HT/PEXEL-containing-
proteins are released into plasma from pRBCs and adhere to npRBCs. These processes are 

repeated over and over again as the parasite intracellular cycle ends, concomitantly increasing 

the disease. Aberrant signaling circuits are also increased in the affected cells heralding their 
apparent need for removal from circulation by macrophages and exacerbating SMA.

Parasite proteins in rhoptries and merozoites surface membranes are candidates associated 

with SMA development. Merozoites are blood asexual forms of the parasites that are released 
in the circulation when pRBC’s ruptures. As these parasites are intracellular, they invade new 

cells for the continued propagations of more asexual and sexual forms. To execute invasion, 
the parasite aligns its apical surface to the surface on RBCs. Rhoptries are structures protrud-

ing from the parasites. The merozoite uses the rhoptry proteins for anchoring on the surface 

of the RBC targeted for invasion. During the invasion processes, merozoites use rhoptries, 

which are also secretory structures on the merozoites apical end, to release their contents at the 

junction between the parasite and the erythrocyte. The P. falciparum proteins such as rhoptries 

secretory protein-2 (RSP-2) or rhoptries-associated protein-2 (RAP-2) have been found to be 

located at the surface of pRBCs as well as on npRBCs [24]. The presence of these proteins on 

the surface of npRBCs is possibly a result of failed invasion or when they adhere to the sur-

face of these cells, they shed off from the merozoites into the plasma. Specific antibodies then 
opsonize the adhered RSP-2/RAP-2 complex accelerating complement-mediated RBC's lysis as 
well as macrophage uptake of targeted npRBCs [25]. In this way, the parasite is able to facilitate 

hemolysis of both npRBCs and pRBCs without necessarily entering the cell (Figure 1).

5.1. Parasite rhoptry protein ring surface protein 2 (RSP-2/RAP-2) and severe malarial 
anemia

It has been shown that the parasite RSP-2 not only tag npRBC's surfaces, but it extends to 
erythroid precursor cells in the bone marrow (BM) eliciting SMA [26] (Figure 1). The RSP-2 

is transferred to the surface of the host cell around the site of contact with the merozoite. 

Gradually, the protein spreads over the entire surface of the cell by slow, lateral movements 

in both the npRBCs and pRBCs, leading to their premature identification and destruction by 
the reticuloendothelial system. P. falciparum-infected individuals respond to the infection by 

increasing the proliferation of phagocytic macrophages and their activity on tagged RSP-2 

npRBCs and pRBCs.

There are other nongross RBC’s membrane abnormalities that result in RBC’s clearance in 

addition to adhesive-interacting ligands, RSP-2-antibody phagocytosis and complement acti-

vation. These changes are not observable by the light microscope as there are no obvious 

cell membrane morphologic abnormalities that have been noted. The subtle changes are due 

to oxidative damage of cell membranes, phosphatidylserine (PS) externalization or expo-

sure and reduced deformability, which contribute to increased RBC's clearance leading to 

SMA. The involvement of ligands in RBC's clearance is mediated through stimulation of the 

inflammasome and its role in erythropoiesis in malaria [27].
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Despite massive RBC's destruction in malarial infection, there is also a delayed compensa-

tion of RBCs in overt anemic individuals due to defective erythropoiesis. Acute infection in 

children shows a picture of normal to small erythroid precursors in bone marrow (BM). There 

is considerable change noted on the erythroid cells morphology in malaria induced anaemia. 

These include multinucleated erythroid cells, karyorrhexis, incomplete or unequal mitotic 
divisions, intercytoplasmic bridges and cytoplasmic budding. A higher proportion of the 

erythroid progenitors are held in G
2
 phase in SMA as compared with healthy individuals. 

Figure 1. Proposed model of dysregulation in innate immune responses in severe malarial anemia. Based on 

concomitant measurement of innate inflammatory mediators (using multiplex technologies) in children with varying 
severities of malarial anemia, a model to describe how dysregulation in innate inflammatory mediators promotes 
suppression of erythropoiesis in children with SMA was developed. Phagocytosis of hemozoin (PfHz) by monocytes 

causes of altered production of innate inflammatory mediators. Elevated inflammatory mediators are shown with an 
arrow facing up against text, those that are decreased in children with SMA are shown with arrow facing down. Solid 
lines indicate positive (+) signalling (upregulation), whereas dashed lines indicate suppression (-) (downregulation). 

Children with SMA have decreased levels of IL-12 in response to ingestion of parasitized red blood cells (pRBC) and/
or hemozoin by monocytes. Suppression of IL-12 in children with SMA is due to PfHz-induced IL-10 over-production. 

TNF-α can induce PGE2 and nitric oxide (NO); however, these effector molecules are suppressed in children with 
SMA. Suppression of PGE2 allows over-production of TNF-α, which is associated with enhanced SMA severity. MIF 
is suppressed in children with falciparum malaria, which is associated with phagocytosis of PfHz by monocytes and 

enhanced SMA severity. Levels of IFN-α, IL-1β, RANTES and SCGF are decreased in children with SMA. Reduced 
production of innate inflammatory mediators, along with increased TNF-α, IL-6, MIP-1α and MIP-β, likely contributes 

to the development of SMA by suppressing the erythropoietic response. Reduced NO and reactive oxygen species 
(ROS) generation in children with falciparum malaria may promote ineffective parasite killing and, thereby, prolong 
parasitemia, and children with malarial anemia have elevated levels of NO and ROS that can directly inhibit 

erythropoiesis (adapted from open access source: Perkins et al. [27]).
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RSP-2 has been observed to be transferred to erythroid precursors only when there has been a 

direct contact with merozoites, in vitro. In vivo, these proteins are also known to be tagged to 

these cells [28]. Subsequently, erythroid precursors tagged with RSP-2 are destroyed through 

complement activation and cytokine oxidative stress linked apoptosis processes.

Noteworthy is that colony-forming units (CFU's) and other stages of the erythroid lineage 
suffer the same fate in the presence of cytophilic antibodies accounting for their reduced num-

bers in SMA. The antibody-RSP-2 complex on the surface of erythroblasts triggers the decline 
of these cell lines through phagocytosis or morphologic alterations observed in erythroid cells 

in the BM and the mediators of this process are closely linked to the inflammasome in SMA.

In addition to the described BM involvement in SMA, studies in Gambian children have dem-

onstrated that SMA was defined by erythroid hyperplasia with dyserthropoiesis and a hyper-

cellularity with an inefficient reticulocyte production index (RPI) [29] shown as <2.0. RPI is a 
measure of the extent to which the reticulocyte count has risen (or not) in response to the level 
of anemia, which indicates that SMA is the result of erythroid suppression [30], arbitrated by 

inflammatory molecules. Concomitant erythroid hyperplasia and reduced RPI signifies a cel-
lular maturation check point or bottleneck that is introduced in SMA.

6. Severe malarial anemia and the inflammasome

Inflammation is a process that tends to control the proliferation of hostile entities and foreign 
bodies when the physiologic aspect of the body is invaded by pathogens or when there is a 

physical injury at both macroscopic and microscopic levels. The inflammasome is composed, 
among other mediators, of both pro-inflammatory cytokines typically denoted as T-helper 
cells type 1 (Th1) and anti-inflammatory cytokines denoted as T-helper cells type 2 (Th2), 
which tend to counteract each other into a balance state under normal physiologic states. 

SMA in children shows a close relationship of the disease with an imbalance between the 

Th1 and Th2 cytokines and chemokines (Figure 1). In an attempt to control parasitemia, the 
host releases an array of pro-and anti-inflammatory cytokines, chemokines, growth factors, 
and effectors as part of a wholesome innate immune response. Depending on the timing and 
magnitude of the inflammatory response to the infection and release of the cytokines, para-

sitemia may be controlled successfully or uncontrolled parasitemia may cause imbalance of 

the inflammatory milieu with damage to the host and suppress the erythropoietic response 
[30].

Understanding the context in which inflammatory response to malarial infection culminates 
in SMA involves a close scrutiny of the microenvironment in which the cellular components 

and mediator interact. The process by which erythroid progenitors proliferate and differenti-
ate into non-nucleated reticulocytes in the BM is called erythropoiesis. Erythroblastic islands, 
where erythropoiesis takes place, are specialized cellular niches composed of a central mac-

rophage surrounded by erythroblasts in which cells proliferate, differentiate and enucleate 
[31]. The pro-erythroblast, which goes through four mitotic cycles, is the earliest recognizable 

erythroblast that gives rise to reticulocytes. Basophilic polychromatic erythroblasts give rise 

Current Topics in Anemia196



to orthochromatic erythroblasts, which expel their nuclei to generate reticulocytes. The well-
coordinated mechanism is characterized by a decreased cell size, more condensed chromatin 

material, progressive hemoglobinization and marked membrane organizational alterations. 

The role of various cytokines and chemokines in the regulation of erythropoiesis is revealed 

by the intimate interaction of the myeloid progenitors, macrophages and erythroblasts during 

RBC's production.

The erythroid hyperplasia seen in SMA excludes erythropoietin deficiency as a cause of 
inadequate erythropoiesis of malaria intimating that the aberrant inflammatory response 
mounted by the cytokine milieu as the culprit. Associated with the hypercytokinemia is the 

ingestion by neutrophils, monocytes and macrophages of the inflammatory mediator hemo-

zoin (Hz, a parasite-derived polymerized heme), which is known to influence the dysregula-

tion of inflammatory responses through synthesis of a number of cytokines with subsequent 
induction of SMA [32]. P. falciparum Hz (PfHz) is a brown/black pigment that accumulates in 
phagocytic cells in the BM, which is formed during the intraerythrocytic asexual replication 
cycle when P. falciparum metabolizes host Hb as a source of amino acids [33]. During the for-

mation of the insoluble PfHz, toxic iron-rich heme known as ferriprotoporphyrin IX (FP-IX) is 
aggregated by heme polymerase. The engulfing of PfHz is a good indirect measure of seques-

tered parasite burden, recent schizogony, disease severity, decreased hematocrit and degree 

of erythropoiesis suppression in children with P. falciparum-induced SMA [34, 35].

The phagocytozed PfHz triggers the innate immune response through the toll-like receptors 

(TLR's) [36] with downstream cytokine elicitation promoting RANTES suppression by a path-

way involving IL-10 [37].

When and how much of interleukin 12 (IL-12), interferon gamma (INF-γ) and tumor necro-

sis factor alpha (TNF-α) are released is critical to minimize and preserve erythropoiesis. 
Activation of this pro-inflammatory cytokines elicitation should be timely abrogated by type 
2 cytokine IL-10, transforming growth factor beta (TGF-β) and IL-4 to avoid host damage by 
the inflammatory process [38]. TNF-α is critical for parasite killing and prevention of para-

site replication directly as well as through macrophage migration inhibitory factor (MIF) and 
through nitric oxide synthase type 2 (NOS2-inducible nitric acid synthase) and generation of 
nitric oxide (NO), which kills parasites directly [39]. Inflammatory responses are commonly 
exacerbated by the TNF-α induction of cyclooxygenase-2 (COX-2), which drives prostaglan-

din E synthesis (PGE) with subsequent generation of malarial symptoms such as fever, head-

ache, nausea, vomiting, diarrhea, anorexia, myalgia and thrombocytopenia [40, 41].

During the early phases of malarial infection, natural killer cells, αβ-T cells and regulatory 
γδ-T are activated to produce IFN-γ [42], a prototypical type 1 cytokine for childhood malaria 

[43]. Individuals who produce IFN-γ from monocytes when immunized with asexual malar-

ial parasites are able to resist infection by P. falciparum as has been seen in West Africa, Mali, 

Burkina Faso and Sudan as well higher Hb concentration and reduced prevalence of SMA are 
observed in Kenyan children challenged with pre-erythrocytic antigens [44]. Over-production 

of the innate inflammatory mediators is associated with anemia, and it has been observed that 
persistent macrophage activation is significantly greater in children with malarial complica-

tions through BM suppression, dyserthropoiesis and erythrophagocytosis [45].
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There is a strong alliance between the interleukins Iβ and 1α, potent endogenous pyrogens, 
which promotes inflammatory response against invading pathogens [46], with TNF-α in the 
enhancement of NO and IFN-γ production. Sustained release of IL-1β, as experienced in 
malaria, has the potential of inducing several hematologic and immunologic anomalies with 

anemia as a candidate [47, 48]. However, cytokine IL-1β has a protective role in certain hap-

lotypes, which are predisposed to produce higher levels of this cytokine and prevents anemia 

development [49].

One of the cytokines, IL-6, has been demonstrated to be increased in malaria with peripheral 

blood mononuclear cells (PBMC) being the source of the increased cytokine production dur-

ing acute malaria [50]. IL-6 mediates the protective immunity against the pre-erythrocytic 

phases of malaria by inducing Ilβ and TNF-α. During the erythrocytic stage, IL-6 controls 
parasitemia through boosting up specific immunoglobulin (Ig) G antibodies. However, 
lack of control over parasitemia and the resulting progression toward severe disease may 

explain the association between elevated levels of IL-6 and enhanced pathophysiology [27]. 

Macrophage migration inhibitory factor (MIF) is a ubiquitous molecule produced by T cells, 
monocytes-macrophages and the anterior pituitary in response to pro-inflammatory stimuli 
[27]. Notably, there is a rapid mobilization and expression of large concentrations of MIF 
during acute inflammation as the cytokine is stored in preformed vesicles only to be released 
without de novo gene expression.

The pro-inflammatory properties of MIF are important for both innate and adaptive immune 
response in both parasitic and bacterial infections [27, 51]. In animal models, elevated MIF 
concentrations have strong connexion with SMA while mice with MIF knockout gene have 
less anemia and higher survival chances when infected with Plasmodium chabaudi compared 

with the wild type [52]. In humans, however, there is an opposite picture of elevated MIF 
protein (in circulation) and MIF transcripts (in PBMC) being connected to less severe falci-
parum malaria [53]. Fascinating is the fact that worsening SMA is linked to decreasing cir-

culating MIF concentrations as well as blood leukocytes MIF transcripts in Kenyan children. 
Remarkably, MIF concentration in peripheral blood was not significantly inter-related to 
reticulocyte responses in these children. Correction for age, gender and parasitemia, how-

ever, did show that elevated levels of monocyte chemotactic protein [MCP] were significantly 
associated with both SMA and decreased MIF production.

Phagocytosis of PfHz by PBMC causes dysregulation in MIF production in an apoptosis-inde-

pendent manner. Consequently, PfHz presence in malaria suppresses peripheral blood MIF 
production, thus enhancing severity of anemia. The intricacy by which PfHz is involved in 

the malarial parasite life cycle makes it the central molecule to SMA development and other 

malarial pathophysiologies. Therefore, PfHz as a heme metabolism waste product deliber-

ately synthesized by the parasite may be regarded as a long-term strategy for its survival.

Interleukin 23 is another pro-inflammatory mediator involved in conditioning the SMA 
pathogenesis, which is also important in mediating anemia development in autoimmune dis-

eases [54] and chronic inflammation [55]. The subunits making up IL-23 are designated p19 

and p40, and this cytokine shares a number of common properties with IL-12. Among these 

characteristics is the p40 subunit, ability to bind the IL-12Rβ1 receptor, release from activated 
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myeloid antigen presenting cells, type 1 immune response promotion, suppression by both 

IL-10 and IL-12 p40 homodimers. A striking feature observed with IL-23 is its sustained eleva-

tion when both IL-12 and IL-10 are suppressed [56]. In cultured PBMC, hemozoin induces 

sustained IL-23p19 transcript concentrations for more than 72 h, whereas IL-12p40 and IL-10 

transcripts rapidly decline after reaching peak at 24 h [57]. In other words, IL-23 is important 

in the pathogenesis of SMA (through PfHz influence), whereas IL-12 and IL-10 play pivotal 
role in the regulation of IL-23 synthesis in P. falciparum infection.

Interleukin 12 is a heterodimer protein made up of 35 and 40 kDa subunits, which is a pro-

totypical cytokine of type 1 immune response interfacing inflammation and immunity. The 
main IL-12 secreting cells include dendritic cells, monocytes and B-cells, which can be acti-

vated by bacterial cell wall components, intracellular pathogens and the ligation of CD40. 

By stimulating the synthesis of IFN-γ and TNF-α from T-cells and natural killer (NK) cells, 
IL-12 augments Th1 response to infection. Secretion of IL-12 can be promoted by several 

cytokines and chemokines to include granulocyte macrophage-colony stimulating factor 

(GM-CSF) and IFN-γ, while others negatively regulate its production such as IL-4, IL-10, 
IL-11, IL-13, monocyte chemotactic protein (MCP)-1/CCL2, and TGF-β. Reinfection with P. 

falciparum and development of SMA are averted through the administration of recombinant 

IL-12 together with the less efficacious chloroquine showing that IL-12 is crucial in the pre-

vention of malarial anemia and dyserythropoiesis. The protective role of IL-12 in malaria lies 

in its ability to stimulate antibody production and its ability to act as a hematopoietic growth 

factor. Low concentrations of IL-12 are associated with SMA through, in part, the influence 
of PfHz phagocytosis that influences upregulation of monocyte-derived IL-10 which in turn 
suppresses the IL-12p40 subunits [58].

Cytokine involvement in SMA induction includes influencing iron trafficking. Moreover, 
cytokines play a critical role in the maturation of erythroid cells. Interleukin 6 (IL-6) induces 

hepcidin production and expression in the liver, (a master regulator of iron trafficking), 
resulting in decreased iron availability. Also well-known is the involvement of transforming 

growth factor beta (TGF-β) in the inhibition of erythroblast proliferation and the maintenance 
of the hematopoietic stem cells (HSC) in a state of quiescence to preserve the stem cell pool 

and avoid the exhaustion of the same. Neutralization of TGF-β results in the release of early 
HSC progenitors from quiescence [59].

Tumor necrosis factor alpha (TNF-α) is involved in the cleavage of GATA-1, which is a major 
erythroid transcription factor. Interferon gamma (IFN-γ) induces production of TNF-related 
apoptosis-inducing ligand (TRAIL) by macrophages, which inhibits erythroblast differentia-

tion. This is suggestive of a critical role of these cytokines in SMA. Furthermore, suppression 
of IL-12, which is strongly associated with pediatric SMA, decreases the production of IFN-γ 
and IFN-α. Infection induces IL-10 synthesis which in turn suppresses IL-12 associated with 
hemozoin (Hz) acquisition by monocytes [58, 60].

SMA in children is, therefore, invariably associated with increased circulating concentrations 

of TNF, IL-6, IL-1b, interleukin-1-receptor agonist (IL-1RA), macrophage inflammatory pro-

tein 1alpha (MIP-1α) and macrophage inflammatory protein 1beta (MIP-1β) [61, 62]. What is 

astonishing is the finding that prostaglandin E (PGE) and nitric oxide (NO) are suppressed in 
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SMA even though the increased TNF level is expected to induce higher concentration of these 
inflammatory mediators. However, reduction in PGE may permit over synthesis of TNF-α 
enhancing anemia severity. Suppression of NO in children with SMA promotes ineffective 
parasite eradication while suppressing erythropoiesis in the BM. In pediatric SMA, IL-12p70 

and INF are associated with positive prediction of Hb (elevated Hb) whereas IL-2R, IL-13 and 
eotaxin predict Hb negatively (favor profound anemia development) [62].

7. Pro-inflammatory (Th2) cytokines involvement in severe malarial 
anemia pathogenesis

By preventing over-production of pro-inflammatory mediators, anti-inflammatory cytokines 
like IL-10 render protection against SMA development. The later stages of the innate immune 

response in P. falciparum infection seek to downregulate the potentially pathogenic pro-inflam-

matory responses necessary for parasitemia eradication. Severity of malarial anemia can be 

predicted by the IL-10-TNF-α ration with low values associated low Hb concentration and 
hematocrit. Therefore, timing of the anti-inflammatory response relative to the proinflammatory 
cytokines activity and concentration has a strong influence on the malarial outcomes. Statistically 
significant positive association has been identified between IL-10 in the systemic circulation and 
malarial pigment containing leucocytes, indicating the regulatory role of PfHz in the develop-

ment of systemic malarial pathology when it upregulated IL-10 production (Figure 2).

Figure 2. Chemical structure of asiatic acid. Formula C
30

H
48

C
5
. MW: 488.69912. (G/mole). Redox characteristics: hydrogen 

bond donor (HBD) 7.1 and hydrogen bond acceptor (HBA) 4.176 [79].

Current Topics in Anemia200



Downregulation of TNF-α and IL-10, TGF-β1 (an anti-inflammatory and growth factor) tends 
to protect against severe malaria in mice. Importance of TGF-β in the pathogenesis of malaria 
is attributable to the cytokines that can influence the erythropoiesis either positively or nega-

tively [63]. Serum concentration of the soluble form of TGF-β1 co-receptor, endoglin (sEng 
or CD105/TGF-βRIII), is elevated significantly in children with severe falciparum infection 
showing the importance of the cytokine in malarial pathogenesis and possibly SMA [64].

8. Severe malarial anemia pathogenesis and chemokines

Chemokines or chemotactic cytokines play a critical role in immune system activation, hema-

topoiesis, angiogenesis and antimicrobial activities. The chemokines’ macrophage inflamma-

tory protein 1α (MIP-1α)/CCL3 (C-C chemokine) and the C-X-C chemokine (IL-8/CXCL8) 
were the first to be investigated in acute P. falciparum malaria where a positive correlation 

with parasitemia was found with IL-8CXCL3. There is a much higher concentration of IL-8 in 
acute malaria that is necessary for the activation of neutrophils in severe nonfatal malaria that 

may be associated with slow cure rate after malarial chemotherapy. Chemokine production 

or suppression signal transduction depends on the phagocytosis of PfHz through oxidative 
stress-dependent and oxidative stress-independent mechanisms [65]. In both humans and 

PBMC, MIP-1α/CCL3, MIP-1β/CCL4 proteins and transcripts tend to be increased in produc-

tion by the introduction of PfHz [66].

Normal T-cell expression, secretion (RANTES, CCL5) and regulated activation play a critical 
role in SMA pathogenesis. Secreted by monocytes, macrophages, fibroblasts, NK and T-cells, 
CD 34+ hematopoietic progenitors, RANTES protein is sequestered in platelets granules and 
is released by thrombin-stimulated platelets for both innate and adaptive immune response. 

Furthermore, RANTES stimulates hematopoiesis, angiogenesis, cell proliferation and devel-
opment [67]. Through PfHz-induced suppression, both RANTES protein and transcripts tend 
to be decreased in malaria. Higher amount of RANTES tends to be protective against SMA 
[68]. Suppression of RANTES is closely associated with inefficient erythropoiesis and malaria-
induced thrombocytopenia, which is promoted by PfHz through an IL-10-dependent mecha-

nism. In this regard, thrombocytopenia appear to be the main cause of reduced RANTES 
which in turn tends to suppress erythropoiesis in SMA.

9. Role of growth factors in severe malarial anemia

Growth factors play a pivotal role in the erythropoiesis cascade. A longitudinal study of 

malaria has shown that serum concentrations of granulocyte-colony stimulating factor 

(G-CSF) were elevated at day 0 in complicated malaria followed by a decline to within refer-

ence interval on day 7. Significant correlation of G-CSF with procalcitonin, parasite density 
and erythropoietin is a common finding at the beginning of malaria [69]. G-CSF has a nega-

tive impact on erythropoiesis, and an increased concentration of the growth factor leads to 

SMA development. With high parasite density associated with elevated levels of G-CSF, the 
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increased erythropoietin is a compensatory mechanism to protect against SMA development 

through a mechanism driven by both hypoxia and oxidative stress common in complicated 
malaria [70]. While G-CSF promotes erythropoiesis, it acts in synergy with TNF-α in increas-

ing the eradication of parasites in erythrocytic cycle by neutrophils.

The genes/gene pathway that leads to the SMA pathogenesis has been human stem cell growth 
factor (SCGF, C-type lectin domain family member 11A-CLEC11A) which is up-regulated 
after PfHz stimulation of human PBMC’s [71]. Primarily secreted by myeloid and fibroblasts 
possessing burst-promoting activity for human bone marrow erythroid progenitors, SCGF is 
a hematopoietic growth of 323-amino acid that is cleaved to a 245-amino acid SCGF-β active 
form. In children with SMA, SCGF tends to be suppressed and positively correlated with 
Hb concentration, erythropoietic response suppression and high concentrations of naturally 

acquired monocytic PfHz. Genetic polymorphism of the SCGF also tends to protect against 
SMA development and suppression of erythropoiesis in parasitized children [72].

10. Role of effector molecules in severe malarial anemia pathogenesis

Relative expression of inflammatory mediators largely determines the various clinical out-
come of malaria. The relative concentrations and timing of release of pro-and anti-inflamma-

tory cytokines, chemokines and growth factors have a direct effect on cellular response as well 
as on the down-stream effector molecule production. The most notable down-stream effectors 
include NO, reactive oxygen species (ROS) and prostaglandins E2 (PGE2).

The toxic free radical NO has an effect on SMA development. The catalysis of l-arginine by 

NO synthase (NOS) produces equimolar amounts of l-citrulline and NO and in malaria the 

inducible NOS (iNOS or NOS2) is responsible for most of the NO production from mono-

cytes, macrophages and neutrophils [73]. Pro-inflammatory cytokines (IL-12, IFN-γ, TNF-α) 
upregulates iNOS-generated NO synthesis, whereas Th2 (anti-inflammatory) cytokines (IL-
10, TGF-β) downregulates NOS2 expression in malaria. NO is both protective as it has potent 
parasiticidal properties limiting parasitemia and pathogenic effects as it sustained high level 
predispose to anemia through BM suppression, dyserythropoiesis and erythrophagocytosis.

ROS appear to be both protective and pathologic in P. falciparum malaria. Increased concen-

trations of the free radical have observed to accompany accelerated parasitaemia clearance in 

Gabonese children as well as controlling of peripheral parasitaemia in children with severe 

malaria [74]. In Kenyan children with severe malaria, ROS damaged the RBC membranes [74]. 

Severe malarial cases associated with significantly elevated markers of oxidative stress like high 
malondialdehyde concentrations, high protein carbonyl, high nitrite, low ascorbic acid and ele-

vated plasma copper concentrations are suspected to have SMA [74]. The arachidonic acid prod-

uct, PGE
2
, has an inverse relationship with SMA development. Cyclooxygenase (COX) enzyme 

(prostaglandin-H
2
 synthase) exists in two isoforms: COX-1 (PGH synthase-1) and COX-2 (PGH 

synthase-2). COX-1 catalyzes the immediate formation of PGE
2
, whereas COX-2 catalyzes the 

delayed formation of PGE
2
 involved in the regulation of the inflammatory response and immu-

nity to invading pathogens. Acquisition of intraleukocytic PfHz in placental malaria reduces 
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mononuclear cell PGE
2
 production [75]. Furthermore, plasma bicycle-PGE

2
 (stable end metabo-

lite of PGE
2
) and PBMC COX-2 ex vivo expression are significantly reduced in severe malaria. 

De novo COX-2 transcripts biosynthesis is inhibited when monocytes phagocytose PfHz [76]. 

Ingestion of PfHz by monocytes and the effects of antipyretics used to treat malarial fever pro-

mote overproduction of TNF-α and worsening of malarial pathophysiology like SMA when 
erythroid progenitors are targeted for apoptosis [76–78]. PfHz (in synergy with TNF-α) directly 
inhibits erythroid cell development by interfering with the erythropoietic cascade through 

induction of oxidative stress-driven erythroid precursor cell apoptosis and through cytokine-
mediated inflammation effects on erythroid development leading to SMA.

11. Severe malarial anemia management

The only treatment that has been available for SMA has been largely blood transfusion in 

various forms. Erythropoietin supplementation has not been successful as most patients 
with SMA tend to have high concentrations of the hormone amidst a low reticulocyte count 

indicating a nonresponsive BM. Equally so has been the ferrous iron supplements that have 
proven to have worse outcomes and had to be prematurely stopped. As has been shown, SMA 

is a synergistic onslaught from the parasite producing PfHz, which is eventually taken up by 

activated leukocytes and breeds both pro-and anti-inflammatory mediators whose sustained 
synthesis results in malarial pathophysiology and derangements. Aiming the treatment at the 

parasite has been successful, to some extent. However, the continued harangue of the parasite 
among many populations is a tacit implication that more is required to eradicate or control 

the malarial pandemic. Aiming malarial treatment at the pathophysiology is an avenue cur-

rently being explored with commendable results.

Administration of the phytochemical triterpenes, asiatic acid and other triterpenoids has been 

shown to have antiparasitic effects and reduction of SMA development in murine malaria. 
Addressing the pathophysiology of malaria while eradicating parasitemia seems to provide a 

provocative approach that encompasses inflammation, immunoreactivity, glucose homeosta-

sis, renal failure and other aspects, which commonly complicates malaria in humans.

11.1. Severe malarial anemia and asiatic acid administration in murine malaria

Hypothetically, drugs that may inhibit or reverse malarial pathophysiology or the disease 

components have a higher chance of controlling malaria even without parasite eradication. 

This may include targeting SMA, which is an independent malarial mortality predictor in 

pregnant women and children [80]. The concept of malarial pathophysiology being referred 

to as malarial disease and its management being denoted as antidisease in malaria is a novel 

term in malaria handling terminology introduced to differentiate this approach from the anti-
parasitic treatment [80].

Triterpenes with antidisease properties in other conditions similar to malaria, like inflamma-

tion in sepsis and hypoxia in anemia are able to eradicate the Plasmodium parasite as well as 
resolve the ensuing pathophysiology. Triterpenes with pleiotropic functions, sufficient to be 
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antidisease as well as antiparasitic, have been reported. Betulinic acid (BA), ursolic acid (UA), 
maslinic acid (MA) and oleanolic acid [OA] have been shown to have moderate activity in vitro 

against the chloroquine-insensitive (K1) and chloroquine-sensitive (T9-96) P. falciparum para-

sites. MA, a possible multitargeting antimalarial, effectively inhibits proteolytic processing of 
the malarial merozoite surface protein [MSP1] complex, inhibits the metalloproteases and has 
several putative binding sites for the parasite antigens [81]. This multitarget phenomenon sup-

presses the parasitemia in more than one way. Furthermore, the age-old preoccupation with 
targeting single process of the parasite infective cycle (which is mutation prone) is avoided, 

and host-related responses potentiating antidisease and antiresistance outcomes are involved 

[80]. Asiatic acid (AA), an amphiphilic triterpene (Figure 2), has known for its antioxidant 
and pro-oxidant capacity, anti-inflammatory and antinociception activity in mice [82], calcium 

release-associated apoptosis induction [83, 84] and a potent immunomodulator. Asiatic acid 

shares structural and bioactivity properties with OA, MA, UA and BA. Targeting the patho-

physiology of malaria, SMA, as well as the parasite provides new mechanisms for combating 

malaria. Noteworthy is that AA is known to attenuate, inhibit or ameliorate the above factors 
in other diseases, which formulate the bedrock of malarial disease and its sequelae.

11.2. Glycosylphosphatidylinositols (GPI) and severe malarial anemia

Immunity against severe malaria is partly antiparasitic and partly antitoxic (toxic effects in 
response to parasite factors) [85]. The majority of the adults in malarial endemic areas have 

resistance to severe malaria and subsequently to SMA.

The induction of innate pro-inflammatory cytokine responses is mediated by germline-
encoded pattern-recognition receptors, such as toll-like receptors (TLR), which recognize con-

served microbial structures, i.e., pathogen-associated molecular patterns (PAMP) [86]. Among 

the malarial PAMP, glycosylphosphatidylinositols (GPI) are considered the main pathoge-

nicity factor [87]. While GPI structure is conserved among Plasmodium species, human and 

Plasmodium GPI differ considerably but provide potential therapeutic points [88]. Several 

functionally important parasite proteins, including MSP-1, MSP-2 and MSP-4, are anchored 

to the cell membranes through GPI moieties and are also abundantly present free of protein 

attachment in membranes of pathogenic protozoa [89]. P. falciparum GPI have been found to 

induce the production of NO, TNF, IL-1b in murine macrophages in vitro, and a synthetic 
malarial GPI glycan was demonstrated to be immunogenic in vivo [90].

AA modulates immunity by selective induction of mitochondria-dependent apoptosis of 

activated lymphocytes in the prevention of murine fulminant hepatitis [91], a mechanism 

that may be extendable to malaria. Using membrane DNA array technique, a wound-healing 
derivative of AA [2-Oxo-3, 23-isopropylidene-asiatate (AS2006A)] exerting anti-inflammatory 
effect was identified. The anti-inflammatory mechanism involved selective cytotoxicity to 
activated macrophage cell line (L-929). By upregulating the expression of apoptosis-inducing 
genes caspase-8, c-myc, inducible nitric oxide synthase (iNOS), mdm2, NF-kβα, I-kβα and 
NF-kβ p105, the phytotherapeutics controlled inflammation [93]. This alludes to AA exerting 
anti-inflammatory effect by cytochrome c release, caspase 3 activation and poly (ADP-ribose) 
polymerase cleavage mechanism as did AS2006A [92].
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In principle, GPI drives inflammation that leads to SMA and AA by curbing cytokine release 
and correcting dyserythropoiesis may be said to inhibit GPI effect.

11.3. Preservation of blood volume by asiatic acid through immune system modulation

The effect of AA in alleviating hemodynamic and metabolic alterations in metabolic syn-

drome is through restoration of endothelium nitric oxide synthase (eNOS)/iNOS expres-

sion [93]. Similar influence of AA in malaria may be anticipated where eNOS/iNOS ratio 
determines the bioavailability of NO necessary for vascular proliferation and angiogenesis. 

These are useful processes in the inhibition of SMA. By maintaining RBC's concentration in 

malaria, besides preventing SMA, AA also contributes toward modulation of hemodynamic 

systems.

The hematologic indices such as Hb concentration, RBC's volume and % hematocrit (%Hct) 
were depressed with increasing percentage of parasitemia, while oral administration of AA 

has been shown to preserve these parameters and ameliorated SMA. SMA has been shown 

to persist even when parasitemia has been resolved driven by an aberrant immune system 

and PfHz-induced oxidative stress, and the immune system modulation of AA may correct 
SMA, which is also relentless even after overt infection has dissipated. By suppressing para-

sitemia as well as having an effect on the retardation and correcting SMA, AA is a potential 
antidisease agent in malaria. Although not investigated, there is a possibility that other factors 

(including inflammatory mediator-impaired erythropoiesis) influencing SMA development 
are inhibited by AA. Destruction of pRBCs occurs when the schizonts mature and merozoites 

rapture cell membranes. pRBC's destruction is accompanied by the lysis of npRBCs at a ratio 

of 8.5 RBCs for each pRBCs hemolyzed through phagocytosis and increased oxidative stress. 
By selectively inducing apoptosis of activated macrophages and monocytes, AA may reduce 

the phagocytic activity of leukocytes in malaria as has been shown by SMA retardation. Also, 

the antioxidant facet of AA may preserve RBC's membrane deformability and reduce the 
trapping of the cells by the spleen.

SMA develops as the RBC mass is reduced rapidly without concurrent replacement as a result 

of ineffective erythropoiesis. This occurs when erythroid progenitor apoptosis is induced by 
oxidative stress. The high concentrations of EPO observed in SMA are at variance with the 
low degree of reticulocytosis present, indicating reduced BM response to anemia due to ery-

throid progenitor destruction. The antioxidant capacity of AA, by preserving erythroblast 
cells, corroborates with increasing EPO to alleviate SMA through increased reticulocytosis. 
Moreover, by reducing parasitemia, AA not only preserves erythroid precursor response in 

infection but also increases blood volume through normalizing reticulocytosis [94] that pre-

vents overt SMA development.

11.4. Asiatic acid reduces oxidative stress and reduces red blood cell’s destruction

The other mechanism by which npRBCs are destroyed in malaria involves increased eryth-

rocytic oxidative stress and parasite antigens, which cause RBC's membrane to be less 
deformable and more fragile. This shortens RBC's life spans. These cells are trapped during 
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splenic sequestration and destroyed through phagocytosis. AA has known for its antioxi-
dant, anti-inflammatory and immunomodulatory properties that protects cell membranes 
from oxidative damage and rigidity, reduced erythrophagocytosis and reduced parasite 
proliferation. MA, a phytochemical similar in structure and polypharmacology with AA, 

has multitargeted inhibitory properties against malaria with possible blockade of parasite 

maturation from early ring to schizont stages [95]. BA and UA also share carbon skeleton 
with MA and AA. Analogs of these two triterpenes are antiplasmodial through disruption of 

parasite calcium homeostasis [96] and averting SMA through reduction in parasite densities. 

These together with AA inhibit parasitic proliferation limiting RBC's hemolysis and pre-

serving hematologic indices. The pleiotropic biologic effects of AA influence host control of 
the parasite proliferation. By modulating the immune system and removing erythropoiesis-

suppressive effect of parasitic infection, hematologic indices are corrected preventing the 
development of SMA.

11.5. Asiatic acid, hepcidin, iron homeostasis and severe malarial anemia

The resolution of SMA (normalized hematologic indices) indirectly indicates the abrogation 

of the immunologic and inflammatory processes by AA. The persistence of SMA beyond 
parasitemia eradication is orchestrated and sustained by immunologic sequelae, which 

upregulate hepcidin synthesis and modulation of iron metabolism, and the fact that SMA 

is inhibited by AA administration, suppression of hepcidin synthesis and continuation of 

normal iron metabolism is a factor that is associated with the beneficial effect of triterpenes 
in malaria [97].

12. Conclusion

The pathogenesis of SMA is largely driven by dysregulation and imbalance between pro- and 

anti-inflammatory cytokines, chemokines, growth factors, and effector molecules. Alterations 
in the phenotypic presentations of these innate inflammatory mediators is due, at least in 
part, to the phagocytosis of PfHz by monocytes, resident macrophages (including those in 

bone marrow), and neutrophils. The mechanisms that lead to the profoundly low Hb con-

centrations witnessed in children with SMA are due to hemolysis and phagocytosis of pRBCs 

and npRBCs, and to a large extent, by suppression of erythropoiesis that is driven by PfHz-

generated dysregulation in innate inflammatory mediators.

One of the emerging novel methods for managing the malarial diseases is in aiming at amelio-

rating the disease aspects through utilization of antidisease initiatives. The administrations of 

triterpenes with known antidisease properties are indicating potential for averting SMA devel-

opment through maintaining the hematologic indices in severe malaria. The use of AA, MA, 

OA and other phytochemicals holds potentials in eradication of SMA and pathophysiology 

of malaria through their antioxidant, anti-inflammatory and immunomodulation capabilities. 
This introduces a new era in the management of SMA.
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