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Abstract

Nanocomposites have been attracting more attention in various fields. In this chapter,
ZnO-supported fly ash-sepiolite (ZnO-FA-Sep) was prepared as a ternary composite for
the evaluation of adsorption capacities and photocatalytic activities. Characterization
studies supplied information about the surface morphology variation before and after
ZnO loading within the FA-Sep environment. Strong dark adsorption capacities of the
supported catalysts improved their photocatalytic performances, in terms of methyl
orange (MO) decolorization and degradation processes. This study not only provided
important inspirations for developing support materials but also opened new features to
facilitate the photocatalyts' performances.

Keywords: supported catalyst, methyl orange, adsorption, kinetics, photocatalysis

1. Introduction

Adsorption has been used extensively in industrial processes for separation and purification.

Recent research has been focused on the development of low cost adsorbents. Among many

alternatives, fly ash cost-effectively improves the performance of products it is added to [1].

Although, significant quantities are being used in a range of applications, it mainly works in

tandemwith cement in the production of concrete products. However, there is still large amount

of fly ash production. An efficient usage of fly ash creates positive environmental impacts. Fly

ash use conserves natural resources and avoids landfill disposal of ash products. By making

concrete more durable, life cycle costs of roads and structures are reduced. Furthermore, fly ash

use partially displaces production of other concrete ingredients, resulting in significant energy

savings and reductions in water consumption and greenhouse gas emissions.

Sepiolite is a natural hydrated magnesium silicate fibrous clay with a composition of Si12Mg8
O30(OH)4(OH2)4�8H2O. It exhibits high surface area, porosity, good chemical stability and
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mechanical behavior [2, 3]. Its applications focused on the use as additives and adsorbents. The

crystalline structure is composed of alternating silicate blocks and cavities. The presence

of silanol groups (Si-OH) makes use of sepiolite as a support for metals and metal oxide

nanoparticles [4].

ZnO is one of the most promising photocatalysts under the ultraviolet radiation to protect the

environment by degradation of organic pollutants in water and air. In general, a photocatalytic

reaction starts with the generation of electrons and holes by photoexcitation. Then, these charge

carriers migrate to the surface of the photocatalyst and react with adsorbed electron acceptors

and donors, respectively. Thus, an efficient photocatalyst requires a suitable band-gap, facile

separation and transportation of electrons and holes for the feasibility of potential redox reac-

tions. ZnOwith its high photo sensitivity and large bandgap plays a significant role for reduction

and oxidation processes. However, usage of ZnO nanoparticles in catalytic slurries alone creates

fast charge carrier recombination and requires long-time centrifugation for the removal process.

An effective way to overcome these difficulties is to immobilize the ZnO nanoparticles on the

inner and outer surfaces of inorganic porous supports with the formation of nanocomposite

materials [5, 6]. These materials induce high surface area, large pore volume, good dispersion

and strong adsorptivity. A synergetic effect is expected in the coexistence of ZnO and a support

which eventually transfer species from the support to ZnO or vice versa by the interface created

between two phases. Hence, an increase in reaction rates is expected and ZnO/support compos-

ites have been postulated as suitable alternative photocatalysts in environmental applications.

The adsorption on the cenospheres and/or plerospheres of fly ashes makes use of them as ideal

support materials. Synthesis, characterization, adsorption property and photoactivity of ZnO- or

TiO2-loaded fly ash composites are recently examined for anti-corrosion in coatings and also

degradation of inorganic and organic pollutants to provide additional way to utilize the waste

fly ash [7–13]. Photoactive ZnO nanoparticles supported on sepiolite are also reported for

applications in decontamination of pollutants [14–19]. The immobilization of ZnO nano-

particles can be improved within the sepiolite framework due to the net negative charge of

the sepiolite. Thus, charge separation efficiency and high adsorption capability can enhance

the removal performance for the photodecomposition of organic pollutants.

This chapter is focused on a ternary photocatalyst; ZnO-supported fly ash-sepiolite (ZnO-FA-

Sep) by taking advantage from the above-mentioned unique characteristics of fly ash and

sepiolite. This composite can be considered as the first approximation of in situ formation of

ZnO nanoparticles in presence of a clay (Sep) and an ash material (FA). With this objective, the

as-prepared supported catalysts are characterized, structurally examined and evaluated via

adsorption ability, kinetics and photocatalytic performance.

2. Preparation and characterization of the photocatalysts

ZnO catalysts were synthesized via a co-precipitation route [20]. In a typical preparation step,

0.5 M (or 0.25 or 0.125 M) Zn(NO3)2�6H2O was added gradually to 0.5 M (or 0.25 or 0.125 M)
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Na2CO3 solution under vigorous stirring for 2 h at room temperature. The resulting product
was collected by centrifugation, washed with deionized water several times, dried at 100�C
overnight and calcined at 500�C. Finally, the samples were designated as 0.125 M ZnO, 0.25 M
ZnO and 0.5 M ZnO.

Raw Sep and FA used as supports in this study were obtained from Eskişehir-region of
Anatolia and Soma (Turkey), respectively. They were characterized by X-ray diffraction and
SEM-EDX analyses [18, 19]. Supported catalysts were prepared with the addition of FA-Sep
dispersions (1:1 w/w, stirred about 12 h) into the above-mentioned ZnO solutions. The
resulting product was collected by centrifugation, washed with deionized water for several
times, dried at 100�C overnight and calcined at 500�C. Finally, the catalysts were designated as
0.125 M ZnO-FA-Sep, 0.25 M ZnO-FA-Sep and 0.5 M ZnO-FA-Sep.

X-ray diffraction patterns were recorded on an X-ray diffractometer (Rigaku-D/MAX-Ultima-
diffractometer, 40 kV, and 40 mA) equipped with graphite monochromatized Cu-Kα1 radiation
(λ = 1.54 Å) at a scan rate of 2� min�1. Brunauer-Emmett-Teller (BET)-specific surface area and
pores size were determined from the nitrogen adsorption apparatus (Quantachrome Nova
2200e) at 77 K. Prior to the measurements, the samples were pretreated in a vacuum at 473 K
for 24 h. The morphology of the products was investigated by scanning electron microscopy
(ESEM-FEG/EDAX Philips XL-30) running at an accelerating voltage of 20 kV. The elemental
composition of the composites was determined by energy dispersive X-ray spectroscopy (EDS).
X-ray photoelectron spectroscopy (XPS) data were recorded with a Thermo Scientific K-Alpha
Photoelectron Spectrometer using Al Kα (12.5 kV) X-ray source. Calibration of the instrument
was done via carbon peak [21, 22]. UV-visible (UV-vis) absorption spectra were recorded with a
Shimadzu UV-2450. Diffuse reflectance measurements (DRS) were recorded by using an inte-
grated sphere reflectance accessory with BaSO4 reference.

The photodegradation of methyl orange (MO)-probe molecule in this study was carried out at
room temperature in a homemade photocatalytic reactor under UV light (Philips TL 15 W/
5BLB, λ = 365 nm, an incident photon flux of 4.7 � 1015 photons s�1) [12, 18]. A typical reaction
system included 0.2 g of a catalyst and 200mL of a known concentration of MO. The suspension
was stirred in the dark for 30 min. Thereafter, irradiation was started and UV-vis absorption
spectra were recorded to monitor both degradation and decolorization processes. The decrease
of the band at 274 nm indicated degradation of MO’s aromatic moiety while the one at 464 nm
was followed for the decolorization of MO solution. All experiments were performed at room
temperature and at pH = 8 (3.27 mg L�1 MO in the presence of 0.5 M ZnO-FA-Sep) without
concerning the degradation intermediates. Also, measurements were conducted at least twice
and the average value was recorded. The degradation and decolorization rate percentages of
MO were calculated by the following equation:

Degradation or decolorizationð Þ% ¼
C0 � C
C0

� 100 (1)

where C0 was the initial concentration of MO and C was the concentration of MO after “t”
minutes irradiation.
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3. Structural characterization

3.1. XRD analysis

XRD patterns of Sep, FA, FA-Sep and the supported catalysts are shown at both low-angle
(2θ < 10

�

) and high-angle (20
�

< 2θ < 60
�

) ranges (Figure 1A). The characteristic d 1 1 0 reflection
of the Sep appears at 7.24

�

(2θ ) with a basal spacing of 12.19 Å. The pattern of FA includes
amorphous aluminosilicate glass (as major) phase. Quartz (SiO2) reflections of d 1 0 0, d 1 0 1
and d 1 1 0 are detected at 20.8, 26.6 and 36.6

�

(2θ), respectively. Minor constituents of calcite
(CaCO3) reflections of d 1 0 1 and d 1 0 4 are observed at 30� and 48� (2θ), respectively. Lime
(CaO) reflection at 62

�

(2θ ) of d 104 is also noticed. For the FA-Sep support, the intensities of d
1 1 0 reflection and all other high angle peaks decrease. Supported catalysts reveal d 1 0 0, d
0 0 2, d 1 0 1, d 1 0 2, d 1 1 0, d 1 0 3 and d 2 0 0 crystal planes of ZnO at 31.9, 34.6, 36.4, 47.7,
56.7, 63.1 and 66.6� (2θ), respectively (JCPDS file no. 36-1451). The peak position and basal
spacing of the d 1 1 0 reflection do not change significantly for the FA-Sep and supported
catalysts due to the non-expandable nature of the Sep. The ZnO signals are intensified with the
increasing loading concentrations while the retained FA-Sep peaks decrease significantly.

Scherrer’s equation is used to evaluate ZnO crystalline sizes (DZnO) in the supported catalysts.
According to the d 1 0 1 reflection of ZnO, DZnO values are found as 16.1, 13.1, 9.85 and
11.7 nm for 0.25 M ZnO, 0.125 M ZnO-FA-Sep, 0.25 M ZnO-FA-Sep and 0.5 M ZnO-FA-Sep,
respectively (Table 1). Hence, formation of ZnO aggregates is inhibited in the presence of the
FA-Sep support. The reduction in the ZnO crystalline sizes in the form of supported catalysts
and the decrements in the FA-Sep reflections may suggest distribution of ZnO nanoparticles
over the surface and bulk.

Figure 1A. XRD patterns of Sep, FA-Sep and supported catalysts (Z: ZnO).
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3.2. SEM (EDX) analysis

Figure 1B shows SEM images of Sep, FA, FA-Sep, 0.25 M ZnO-FA-Sep and elemental mapping

images of the supported catalyst. The Sep exhibits a wavy pattern among the layers. The FA

displays spherical (with air holes) and non-shaped particles. For the FA-Sep, the structures of

the Sep and FA are retained with Si, Ca and Al major, Mg and Fe minor constituents. The

Catalysts DZnO (nm)a BET (m2 g�1)b Vpore (cm
3 g�1)c Rpore (Å)d

0.25 M ZnO 16.08 7.58 0.012 17.7

FA – 1.80 0.003 14.9

Sep – 104.5 0.140 14.9

FA-Sep – 46.4 0.006 15.6

0.125 M ZnO-FA-Sep 13.11 61.7 0.111 14.9

0.25 M ZnO-FA-Sep 9.85 62.3 0.121 15.4

0.5 M ZnO-FA-Sep 11.66 50.2 0.097 14.8

aCalculated from the (1 0 1) diffraction peak of ZnO using the Scherrer equation.
bDetermined from nitrogen adsorption–desorption isotherms using BET equation.
cDetermined from cumulative adsorption pore volume using BJH method.
dDetermined from adsorption pore size using BJH method.

Table 1. Crystalline sizes (DZnO), surface areas (BET), total pore volumes (Vpore) and pore radius (Rpore) of 0.25 M ZnO,

supports and supported catalysts.

Figure 1B. SEM and mapping images of Sep, FA, FA-Sep and 0.25 M ZnO-FA-Sep.
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appearance of 0.25 M ZnO-FA-Sep is different from the morphologies of Sep, FA and FA-Sep.

The mixed structure of FA spheres and Sep layers suggests hosting of ZnO nanoparticles

simultaneously on the spheres and/or non-shaped particles. This is proved by the EDX-spot

analysis where Zn percentages are founds as 29 and 69% on the spheres ‘a’ and ‘b’ and 66% on

the non-shaped particle ‘c’, respectively. Dominating Zn signals in the mapping images verify

the dispersion of ZnO nanoparticles on the FA-Sep support.

3.3. Nitrogen adsorption-desorption isotherms

Nitrogen adsorption-desorption isotherms and pore size distributions are shown in Figure 1C

andD, respectively. The non-porous FA and 0.25 M ZnO reveal Type II isotherms. For the Sep,

Figure 1C-F. (C) nitrogen adsorption/desorption isotherms of Sep, FA, FA-Sep, 0.25 M ZnO, supported catalysts, (D)

pores size distribution plots of Sep, FA, FA-Sep, 0.25 M ZnO, supported catalysts, (E) diffuse reflectance spectra of Sep,

FA,FA-Sep, 0.25 M ZnO, supported catalysts, (F) Kubelka-Munk transformed reflectance spectra of supported catalysts.
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FA-Sep and supported catalysts, Type II isotherms are also detected with sites of different

affinity to nitrogen and multilayer coverage at high P/P0. Almost similar pore radius is

detected for all catalysts and the supports (Table 1). The FA-Sep composite and supported

catalysts exhibit lower surface areas and pore volumes in comparison to the Sep. This suggests

an increment in the number of hosted FA spheres and/or ZnO nanoparticles. In the meantime,

supported catalysts possess higher surface areas and pore volumes than the FA-Sep. Thus,

enhanced adsorption capacities and degradation abilities are expected in the existence of the

supported catalysts.

3.4. UV-vis DRS analysis

UV-vis absorption spectroscopies of the FA, Sep, FA-Sep and supported catalysts are presented

in Figure 1E. Absorption profiles of the supports are similar with extensions in between 200

and 600 nm. 0.25 M ZnO shows its characteristic edge below 400 nm. All supported catalysts

reveal this edge with a slight blue shift relative to 0.25 M ZnO and longer wavelength tails are

not detected. The band gap energies for 0.125 M ZnO-FA-Sep, 0.25 M ZnO-FA-Sep and 0.5 M

ZnO-FA-Sep are evaluated by linear extrapolation and taking the intercept on the x-axis as

Figure 1G-I. (G) XPS survey analysis of FA-Sep and 0.5 M ZnO-FA-Sep, (H) Zn 2p XPS spectra of 0.5 M ZnO-FA-Sep, (I)

O 1s XPS spectra of 0.5 M ZnO-FA-Sep.
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3.10, 3.12 and 3.18 eV, respectively (Figure 1F). Thus, supported catalysts have suitable band

gap energies for the degradation of MO under UV-A irradiation.

3.5. XPS analysis

XPS analysis is also performed to control the surface structure of the 0.5 M ZnO-FA-Sep. The

survey scan reveals Zn peaks in addition to the Al (75.6 eV), Si (103 eV), Ca (347.07 eV), O

(531.47 eV) and some Auger peaks of the FA-Sep support (Figure 1G). The doublet in Zn peaks

corresponds to Zn 2p3/2 and 2p1/2 core levels (Figure 1H). Zn exists mainly in the form of Zn2+

oxidation state on the catalyst surface owing to the sharpness in Zn 2p3/2 peak [23]. The broad

O 1 s signal of the 0.5 M ZnO-FA-Sep catalyst is deconvoluted by four subspectral parts

(Figure 1I). CaO and Al2O3 (531.03 eV, 26.9% spectral area), oxygen in the form of Zn(OH)2
(531.69 eV, 18.5% spectral area), SiO2 (532.59 eV, 22.3% spectral area) and adsorbed water

(533.58 eV, 32.2% spectral area) are labeled as the components of the supported catalyst.

4. Adsorption and photocatalytic applications

4.1. Control experiments

Prior to the evaluation of photoactivities of the supported catalysts in detail, two control

experiments are designed. As a first step, photolysis of MO is tested under UV illumination

and a negligible degradation is found (Figure 2A). Then, FA-Sep, 0.25 M ZnO-FA-Sep and 0.5M

ZnO-FA-Sep are examined without irradiation. In the presence of FA-Sep, the remaining MO

percentages in the solution are detected as 84% for decolorization and 85% for degradation.

However, supported catalysts reveal better adsorption capabilities in comparison to FA-Sep,

which further enhanced with the ZnO loading concentration. Accordingly, 0.25 M ZnO-FA-Sep

demonstrates 75% (for decolorization) and 73% (for degradation) MO staying in solution within

30 min and thereafter no significant change is noticed. Contrarily, 0.5 M ZnO-FA-Sep shows

rapid decrements in both decolorization (7%) and degradation (5.3%) processes within 80 min.

MO exists in the anionic form in water since its natural pH (5.85) is higher than its pKa (3.4)

value [24]. The alkaline character of FA-Sep (pH = 10) solution, hence, induces repulsive forces

among the MO molecules and FA-Sep. However, the weak interaction between positively

charged species (Fe2O3, TiO2 as minor phases) within the disordered FA-Sep structure and

negatively charged MO moiety induce decrements in MO percentages. The attraction may

proceed through the chromophoric (dN]Nd) group and declines the absorption band at

464 nm. Simultaneously, weakening in the conjugation disrupts the benzenic rings and

decreases the 274 nm band. The presence of ZnO nanoparticles in the supported matrixes is

expected to increase the contact among the supported catalysts and MO molecules which

eventually facilitate the degradation and decolorization processes.

In the second set, the photoactivities of the supported catalysts are controlled under irradiation

(Figure 2B). The lowest MO remaining percentages with slower rates are obtained in the

presence of 0.125 M ZnO-FA-Sep within 130 min (45% for decolorization and 47% for degra-

dation). The increment in the ZnO concentration improves the performances of the catalysts.

Advanced Chemical Kinetics150



0.5 M ZnO-FA-Sep shows the best activity with the lowest MO remaining percentages (15% for

decolorization and 12% for degradation) in less than 10 min. Rapid photodegradation of MO is

facilitated, due to the synergistic effect of: (1) its adsorption on the mixed structures of FA and

Sep, and (2) its photodegradation by the ZnO nanoparticles.

Dark adsorption capacity of 0.5 M ZnO-FA-Sep catalyst is also investigated by varying the

initial MO concentrations from 3.27 to 32.7 mg L�1 (Figure 2C and D). It is evident that the

amount of adsorbed MO at low initial concentrations is smaller than the corresponding

amount at higher initial values, while MO removal percentages decrease significantly with

increasing initial MO concentration. The highest MO remaining percentages are noticed with

32.7 mg L�1 MO concentration as 73.2 and 71.2% after 120 min for decolorization and degra-

dation processes, respectively. The removal rate of MO is fast up to 30–40 min, and then

Figure 2. (A) Photolysis of MO and dark adsorption experiments of FA-Sep and supported catalysts, (B) photocatalytic

activities of the supported catalysts, (C) MO remaining percentages for decolorization and (D) MO remaining percentages

for degradation.
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gradually decreases with the increase in contact time due to the saturation on the catalyst

surface. Contrarily, the lowest MO percentages (around 10% for decolorization and 16% for

degradation) are obtained within 60 min for 3.27 mg L�1 initial MO concentration. Although

surface active sites are more available, very fast adsorption rate and short extraction time are

achieved for lower MO concentrations.

4.2. Adsorption equilibrium and kinetics

The isotherm analysis of the equilibrium data is examined by fitting the experimental data to

Langmuir, Freundlich, Temkin and Dubinin and Radushkevich (D-R) isotherms to find the

suitable model [25–31].

Langmuir isotherm: Langmuir isotherm assumes that the adsorption takes place at a specific

homogeneous site within the adsorbent, all sites are equivalent, and there are no inteactions

among the adsorbate molecules. The isotherm can be presented by the following equation [32]:

qe ¼
KLaLCe

1þ aLCe
(2)

where KL is the adsorption capacity and aL is the energy of adsorption. Eq. (3) presents the

linearized form of Langmuir isotherm. Figure 3A supplies data about the KL (from the y-

intercept) and aL (from the slope) values

1

qe
¼

1

KLaLCe
þ

1

KL
(3)

The theoretical maximum monolayer adsorption capacity of 0.5 M ZnO-FA-Sep, qm (mg g�1),

is also calculated as 48.8 and 28.6 mg g�1 from the ratio of KL to aL for the decolorization and

degradation processes, respectively (Table 2).

The separation factor RL (dimensionless constant) indicates the favorable adsorption within 0–

1 range [33] and depending on aL and C0 values as:

RL ¼
1

1þ aLC0
(4)

The RL values in the MO concentration range of 3.27–32.7 mg L�1 are found to vary in between

0.58–0.12 and 0.51–0.094 for decolorization and degradation, respectively.

The correlation coefficients (0.917 for decolorization and 0.858 for degradation) are reasonable

to suggest the applicability of the Langmuir model for the interpretation of the experimental

data over the whole concentration range.

Freundlich isotherm: Freundlich isotherm predicts heterogeneous adsorption surface and active

sites with different energy [34] and presented by the following equation [26] and Figure 3B.

qe ¼ KfCe
1=n (5)
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Figure 3. (A) Langmuir isotherm, (B) Freundlich isotherm, (C) Temkin isotherm, (D) Dubinin-Radushkevich isotherm.

Decolorization Degradation

Langmuir

KL 10.84 8.41

aL 0.225 0.294

qm 48.18 28.6

R2 0.917 0.858

Freundlich

KF 2.14 3.02

1/n 0.45 0.35

R2 0.864 0.652

Temkin

KT 4.62 1.79

BT 1.89 2.29

R2 0.567 0.782

Dubinin-Radushkevich

qm 8.12 1.79

E 0.79 0.91

R2 0.826 0.667

Table 2. Adsorption isotherm constants.
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where qe is equilibrium concentration (mg g�1), Ce is equilibrium liquid phase concentration

(mg L�1) and Kf is adsorption capacity. Adsorption intensity is determined by “n”. The values

of 1/n are found as 0.451 (for decolorization) and 0.354 (for degradation) indicate high ten-

dency of MO for the adsorption onto the supported catalyst. However, Freundlich model is not

suitable to describe the relation between sorbed MO molecules and their equilibrium concen-

trations owing to the lower correlation coefficients (0.864 for decolorization and 0.652 for

degradation).

Temkin isotherm: The heat of adsorption and the adsorption-binding energy relation are

explored by the following Temkin equation [35]:

qe ¼
RT

b
ln KTeCeð Þ (6)

Eq. (6) can be linearized as

qe ¼ BT lnKT þ BT lnCe (7)

where KTe is equilibrium binding constant (L mg�1), b is the heat of adsorption (J mol�1), BT is

related to the heat of adsorption as being equal to RT/b, R is the gas constant and T is the

temperature (K). The values of Temkin constants (KTe = 4.62 and BT = 1.89 for decolorization

and KTe = 1.79 and BT = 2.29 for degradation) and correlation coefficients (R2 = 0.567 for

decolorization and R2 = 0.782 for degradation) are found to be lower than the Langmuir values

(Table 2, Figure 3C). Thus, Temkin model does not fit to the corresponding experimental data

of MO adsorption on 0.5 M ZnO-FA-Sep.

Dubinin-Radushkevich (D-R) isotherm: Dubinin-Radushkevich model is based on heterogeneous

surfaces, different sorption sites and steric hindrance effect among adsorbed molecules and

bulk species [36]. The linear form of D-R isotherm is expressed by the following equation [31]:

ln qe ¼ ln qm � βε2 (8)

where qe is the amount of adsorbate per unit weight of adsorbent (mg g�1), qm is the maximum

adsorption capacity (mg g�1), β is a coefficient for adsor ption mean free energy (mol2 J�2) and

ε is the Polanyi potential (ε = RT ln(1 + 1/Ce)).

The qm values are found using the intercept of the plot as 8.12 and 7.02 mg g�1 for decoloriza-

tion and degradation, respectively (Table 2, Figure 3D).

The adsorption mean free energy (E; kJ mol�1) can be found from the slope as follows

E ¼
1
ffiffiffiffiffiffiffiffiffi

�2β
p (9)

Its value gives information about adsorption mechanism whether it is physical or chemical. If

it lies between 8 and 16 kJ mol�1, the adsorption process takes place chemically and while

E < 8 kJ mol�1, the adsorption process proceeds physically [37, 38]. Since adsorption energies
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are calculated as 0.79 kJ mol�1 for decolorization and 0.91 kJ mol�1 for degradation processes,

only physical interactions are probable among MO moiety and the supported catalyst. The

lower correlation coefficients (R2 = 0.826 for decolorization and R2 = 0.667 for degradation)

again represents the poorer fit of the experimental data.

The kinetics of MO adsorption onto 0.5 M ZnO-FA-Sep are studied in terms of pseudo-first

order [39], pseudo-second order [40], Elovich [41–43] and intraparticle diffusion [44, 45]

models.

Pseudo-first order model: Pseudo-first order model describes the adsorption rate based on the

adsorption capacity [39].

The differential equation of the model is expressed as follows:

dqt
dt

¼ k1 qe � qt
� �

(10)

where k1 is the pseudo-first order rate constant (min), qe is the adsorption capacity at equilib-

rium and qt is the adsorption capacity at time t.

Integrating Eq. (10) for the boundary conditions of qt = 0 at t = 0 and qt = qt at t = t gives

ln qe � qt
� �

¼ ln qe � k1t (11)

Accordingly, the values of ln(qe�qt) are linearly correlated with t by plot of ln (qe�qt) versus t.

The rate constant (k1) and qe can be determined from the slope and intercept of the plot,

respectively. The pseudo-first order equation fits well for the first 30 min data and then

deviations are noticed. Although rate should be proportional to the first power of MO concen-

tration, the linearity is lost for the higher initial MO concentrations. This may be attributed to

the limiting effect of pore diffusion through the adsorption process. For the rapid adsorption of

the initial stages, the first order rate constants, k1, decrease with increments in MO concentra-

tions for both decolorization and degradation processes (Table 3). It is also noticed that

calculated qe values agree well with the experimental data. The high correlation coefficients

show the applicability of pseudo-first order kinetics to the adsorption of MO onto the

supported catalyst.

Pseudo-second-order equation: The adsorption kinetics may also be described by the pseudo-

second order model [40]. The differential equation is given as follows:

dqt
dt

¼ k2 qe � qt
� �2

(12)

where k2 is the second-order rate constant of adsorption. Integrating Eq. (12) for the boundary

conditions of qt = 0 at t = 0 and qt = qt at t = t gives

t

qt
¼

1

k2q2e

� �

þ
t

qe
(13)
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The linearity obtained in the plot of t/qt versus t results in k2 value (as the intercept) and qe
value as the equilibrium adsorption capacity (from the slope). Similar to the pseudo-first order

kinetics, k2 decreases as the concentration of initial MO increases for both processes (Table 3).

Although high correlation coefficients are obtained, calculated qe values are not closer to the

experimental values. Moreover, the predicted chemical adsorption cannot be applicable since

only physical interactions are suggested betweenMOmolecules and the supported catalyst via

D-R model.

Elovich equation: The Elovich equation is based on the adsorption capacity and expressed as

follows [46–48]:

dqt
dt

¼ α exp �βqt

� �

(14)

where β is the initial adsorption rate (mg g�1 min�1) and α is the desorption constant (g mg�1).

The linearized form of Eq. (14) with boundary conditions of qt = 0 at t = 0 and qt = qt at t = t is as

follows

qt ¼ 1=β
� �

ln α β
� �

� 1=β
� �

ln t (15)

Elovich parameters are given in Table 3. The plot of qt versus ln t yields a linear relationship

with a slope of 1/ β and an intercept of (1/β) ln (α β). The high correlation coefficients

indicate suitability of the model for the evaluation of the adsorption process. The limited

number of vacant-available sites on the supported catalyst may decrease the possibility of

chemical adsorption process through increments in MO concentration. This eventually results

in smaller β values in both decolorization and degradation processes. Simultaneously, desorp-

tions from the surface may be enhanced via less strong physical attractions and increase α

values.

Interparticle diffusion model: The adsorbate species are probably transported from the bulk of the

solution into the solid phase through intraparticle diffusion/transport process. The model is

expressed by the following equation:

qt ¼ Kdifft
1=2

þ C (16)

where C (mg g�1) is the intercept and Kdiff is the intraparticle diffusion rate constant (in

mg g�1 min1/2). Kdiff can be evaluated by the linear correlation of qt versus t
1/2 (Table 3). As a

general trend, Kdiff values increase with increase of initial MO concentration but for the highest

concentrations there seems to be a constancy. This may point out the existence of restricted

diffusion for the external mass. Although C values supplies information about the thickness of

the boundary layer, experimental data do not exhibit neither an increasing nor a decreasing

trend. Thus, the adsorption mechanism cannot be explained by using this model owing to the

complex structure of the supported catalyst.
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Models Parameters Decolorization Degradation

3.27 mg L�1 8.17 mg L�1 16.3 mg L�1 24.5 mg L�1 32.7 mg L�1 3.27 mg L�1 8.17 mg L�1 16.3 mg L�1 24.5 mg L�1 32.7 mg L�1

First-order

kinetic model

k1 0.035 0.032 0.026 0.025 0.0021 0.056 0.052 0.039 0.028 0.0039

qe 3.35 4.64 10.17 9.67 6.88 2.65 4.55 6.62 9.20 9.02

R2 0.897 0.934 0.949 0.971 0.912 0.984 0.727 0.985 0.924 0.906

Second-order

kinetic model

k2 3.83 � 10�3 1.77 � 10�3 1.62 � 10�3 8.36 � 10�4 7.47 � 10�4 0.0508 7.65 � 10�3 2.12 � 10�3 1.38 � 10�3 1.02 � 10�3

qe 6.45 6.89 16.94 16.94 9.09 5.43 4.85 9.17 16.67 13.51

R2 0.697 0.941 0.846 0.856 0.852 0.916 0.987 0.998 0.903 0.898

Elowich α 0.158 0.383 0.464 0.510 0.560 0.273 0.526 0.651 1.095 1.256

β 0.683 0.621 0.248 0.229 0.219 0.633 0.534 0.442 0.273 0.271

R2 0.958 0.886 0.951 0.920 0.647 0.925 0.821 0.985 0.952 0.914

Intraparticle

diffusion

Kdiff 0.362 0.385 1.08 1.054 0.975 0.397 0.372 0.747 0.886 0.865

C 0.12 1.45 0.29 0.76 1.67 0.153 0.931 0.978 2.14 1.513

R2 0.936 0.874 0.924 0.922 0.66 0.903 0.813 0.937 0.947 0.882

Experimental

data

qe(exp) 3.02 4.67 9.21 9.15 7.16 2.65 3.79 6.99 9.52 7.90

Table 3. Adsorption kinetics constants.
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4.3. Photocatalytic degradation

4.3.1. Kinetics

The 0.5 M ZnO-FA-Sep is further used to analyze the rate of reactions in the initial concentra-

tion range of MO from 3.27 to 24.5 mg L�1(Figure 4A). The data from the photocatalytic

activities is analyzed for the following rate expression

ln
C0

C
¼ kt (17)

where C0 is taken as the equilibrium concentration of MO (mg L�1) after dark adsorption. The

linearity in the plot of ln(C0/C) versus t results confirmed the validity of pseudo-first-order

kinetics. The rate-constants (k, min�1) are calculated from the slopes of the lines.

For the initial concentration of 3.27 mg L�1, 88% degradation and 85% decolorization are

achieved within 20 min whereas only 44% (degradation) and 43% (decolorization) MO removal

are obtained even at 70 min for the concentration of 24.5 mg L�1.Similarly, k values decrease

from 0.122 to 0.036 min�1 (for degradation) and from 0.121 to 0.056 min�1 (for decolorization) as

the initial concentration of MO increases from 3.27 to 24.5 mg L�1(not shown). Since more MO

molecules are expected to be adsorbed to the surface of 0.5 M ZnO-FA-Sep as the initial concen-

tration of MO increases, the sorption of both OH� and O2 will be reduced. Thus, the number of

both photogenerated holes and •OH radicals is suppressed and resulted in lower photocatalytic

efficiencies. Meanwhile, more photons are absorbed in bulk solutions by the high concentrations

of MO. This creates the shortage of photons to activate the supported catalyst.

Additionally, Langmuir-Hinshelwood model is successfully applied to estimate the relation-

ship between the photocatalytic degradation rate and the initial concentration of organic

contaminants by the following rearranged form [49, 50].

1

R
¼

1

kKC0
þ

1

k
(18)

where R is the rate of decolorization (or degradation), K is the adsorption coefficient of MO

onto the 0.5 M ZnO-FA-Sep (L mg�1), k is the reaction rate constant (mg L�1 min�1). The linear

correlation [0.997 (for degradation) and 0.998 (for decolorization)] in the plot of (1/R) against

(1/C0) proved the validity of the model for the as-prepared supported catalysts (Figure 4B).

Accordingly, both adsorption of MO to 0.5 M ZnO-FA-Sep (K) and photocatalytic degradation

of MO by 0.5 M ZnO-FA-Sep (k) are calculated as 0.066 L mg�1 and 0.200 mg L�1 min�1 (for

degradation) and 0.177 L mg�1 and 0.154 mg L�1 min�1 (for decolorization).

4.3.2. Comparison with binary composites

The ternary-supported catalyst (0.5 M ZnO-FA-Sep) is also compared with the binary ones

(0.5 M ZnO-Sep and 0.5 M ZnO-FA) and 0.5 M ZnO (Figure 4C). After 20 min dark adsorption,

supported catalysts show lower MO percentages remaining in the solution than the 0.5 M ZnO

(97% for decolorization and 91% for degradation). Meanwhile, 0.5 M ZnO-Sep displays the
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highest percentages (74% for decolorization and 82% for degradation) among the binary

catalysts. However, the existence of FA spheres within the catalyst matrixes decreases the MO

percentages. The lowest values (17% for decolorization and 9% for degradation) are noticed in

the presence of 0.5 M ZnO-FA while relatively higher values (29% for decolorization and 26%

for degradation) are obtained with 0.5 M ZnO-FA-Sep. Under irradiation, binary catalyst

(0.5 M ZnO-Sep) does not work efficiently while the others demonstrate much lower

Figure 4. (A) Effect of initial MO concentration on the photoactivity of 0.5 M ZnO-FA-Sep, (B) Langmuir-Hinshelwood

kinetic analysis in the presence of 0.5 M ZnO-FA-Sep, (C) photoactivity comparison between 0.5 M ZnO-FA-Sep, binary

catalysts and 0.5 M ZnO, (D) reuse properties of 0.5 M ZnO-FA-Sep.
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percentages. Among which, 0.5 M ZnO-FA-Sep competes with the 0.5 M ZnO-FA within

10 min irradiation. The slight difference in the degradation and decolorization percentages

may be due the smaller variations in the ZnO crystalline sizes, BET areas and pore volumes

(DZnO = 8.12 nm, BET = 60 m2 g�1, Vpore = 0.122 cm
3 g�1 for 0.5 M ZnO-FA and DZnO = 11.6 nm,

BET = 50.2 m2 g�1, Vpore = 0.097 cm3 g�1 for 0.5 M ZnO) [12]. Although FA-Sep has a more

complex structure than the FA alone, ZnO nanoparticles in the ternary system are located on

the external surfaces of both FA and Sep showing no preference to any of these minerals as

detected in the SEM images. Moreover, FA as well as Sep crystals do not agglomerate in the

ternary composite owing to their morphological differences in shape and sizes. This creates

uniqueness for 0.5 M ZnO-FA-Sep and enhances dispersion of ZnO nanoparticles.

4.3.3. Reusability

Furthermore, to investigate the photocatalytic stability of 0.5 M ZnO-FA-Sep, cyclic experi-

ments are carried out under the same experimental conditions (Figure 4D). For each run, 0.5 M

ZnO-FA-Sep is filtrated, washed and calcined at 500�C for 2 h. After four cycles, the percentage

of MO remaining in solution is found to increase only approximately 2% (from 15 to 17% for

decolorization process) and 3% (from 12 to 15% for degradation process). The slight incre-

ments in the percentages can be attributed to the catalyst loss during each collection and

rinsing steps.

5. Conclusions

A ternary-supported catalyst has been prepared and characterized by XRD, BET, SEM (EDX),

XPS and DRUV techniques. ZnO nanoparticles are found to be dispersed on both FA and Sep

minerals. Supported catalysts exhibit higher surface areas and pore volumes than FA-Sep, FA

and 0.25 M ZnO�DZnO sizes do not exhibit significant differences depending on the ZnO

loading concentrations. EDX, mapping and XPS analysis evidence the existence of ZnO

nanoparticles. Moreover, supported catalysts exhibit an absorption edge similar to 0.25 M

ZnO with a slight blue shift. High dark adsorption capacities of the supported catalysts

improve their photocatalytic activities, which further enhanced with the ZnO loading concen-

tration. The existence of both FA and Sep with different shapes and sizes decrease their

agglomeration and expose more of their surfaces for the adsorption of ZnO nanoparticles.

Future studies will focus on the development of new composites and their applications in

environmental issues.
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