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Abstract

This paper proposes a GARCH-type model allowing for time-varying volatility, skew-
ness, and kurtosis assuming a Johnson’s SU distribution for the error term. This distri-
bution has two shape parameters and allows a wide range of skewness and kurtosis. We
then impose dynamics on both shape parameters to obtain autoregressive conditional
density (ARCD) models, allowing time-varying skewness and kurtosis. ARCD models
with this distribution are applied to the daily returns of a variety of stock indices and
exchange rates. Models with time-varying shape parameters are found to give better fit
than models with constant shape parameters. Also, a weighted forecasting scheme is
introduced to generate the sequence of the forecasts by computing a weighted average
of the three alternative methods suggested in the literature. The results showed that the
weighted average scheme did not show clear superiority to the other three methods.

Keywords: GARCH models, conditional volatility, skewness and kurtosis

1. Introduction

Many papers deal with the departures from normality of asset return distributions. It is well

known that the distributions of stock return exhibit negative skewness and excess kurtosis; see

among others [2, 9, 14, 15]. The higher moments of the return specifically, excess kurtosis (the

fourth moment of the distribution) makes extreme observations more likely than in the normal

case, which means that the market gives higher probability to extreme observations than in

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
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normal distribution. However, the existence of negative skewness (the third moment of the

distribution) has the effect of accentuating the left-hand side of the distribution, which means

that a higher probability of decreases given to asset pricing than increases in the market.

The generalized autoregressive conditional heteroscedasticity (GARCH) models, introduced by

Engle [5] and Bollerslev [1], allow for time-varying volatility1 but not for time-varying skewness

or time-varying kurtosis. Different GARCH models have been developed in the literature to

capture dependencies in higher order moments, starting with Hansen [7] who proposed a

skew-Student distribution to account for both time-varying excess kurtosis and skewness. A

significant evidence of time-varying skewness found [9]. Others [11, 12] found a significant time

varying in both skewness and kurtosis, while [3, 15, 16] found little evidence of either. With

regard to the frequency of observation, Jondeau and Rockinger [11] found the presence of time-

varying skewness and kurtosis in daily but not weekly data, while others including [2, 7, 9]

found an evidence of time-varying skewness and kurtosis in weekly and even monthly data.

Regarding daily data [4, 12, 18] found an evidence of time-varying skewness and kurtosis in

daily data. The chapter employed GARCH(1,1) model as the performance of the model proved

compared large number of volatility models; for more details, see Hansen and Lunde [8].

This paper contributes to the literature of volatility modeling in two aspects. First, we jointly

estimate time-varying volatility, skewness, and kurtosis assuming Johnson SU distribution for

the error term. The method is applied to two different daily returns: stock indices and

exchange rates. Second, a new alternative scheme is introduced to generate the sequence of

the forecasts.

The rest of the paper is organized as follows. Following this introduction, Section 2 presents

the empirical results regarding the estimation of the model. Section 3 compares the models. In

Section 4, the new forecasting scheme is presented, while Section 5 gives concluding remarks.

2. Empirical results and methodology

2.1. Data and preliminary findings

The time series data used for modeling volatility in this paper consists of two sets of financial

data. The first set includes daily returns of five stock indices: NASDAQ100 (US), Germany

(DAX30), Ishares MSCI South Africa index (EZA), Shanghai stock exchange composite index

(SSE), and Ishares MSCI Canada index (EWC).2 The second data set includes daily returns of

five exchange rates series: British Pound (USD/GBP), Australian Dollar (USD/AUD), Italian

Lira (USD/ITL), South Africa Rand (USD/ZAR), and Brazilian Real (USD/BRL).3 The two data

1In general terms, volatility refers to the fluctuations observed in some phenomenon overtime. In terms of modeling and

forecasting literature, it means “the conditional variance of the underlying asset return” [17].
2Some of the closing price indices were put into US-dollar and some were put into other currencies. For unification of

foreign exchange rates, all closing price indices were converted into American US dollar. These closing price indices are

obtained from Yahoo Finance (http://finance.yahoo.com).
3The exchange rates have been retrieved from the website (http://www.oanda.com).
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sets include daily closing prices from August 6, 2001, through December 10, 2013, for all stock

indices and from July 1, 2005, to September 17, 2013, for all exchange rate series with a total of

3001 observations for each data set. The estimation process for the two sets of data was run

using 2001 observations as in-sample, while the remaining 1000 observations were used for the

out-of-sample forecast. Based on the empirical evidence, it is common to assume that the

logarithmic return series rt = 100 * [ln(pt) � ln(pt � 1)] (where Pt and Pt�1 are the price at the

current day and previous day, respectively) is weakly stationary. Table 1 reports the descrip-

tive statistics for all return series. It shows that all data exhibit excess kurtosis (leptokurtosis)

and skewness, which represents the nature of departure from normality. The Jarque-Bera (JB)

statistics for normality test show that the null hypotheses of normality are strongly rejected for

all daily returns of stock and exchange rate series.

2.2. Methodology

Preliminary results in the preceding section provided evidence of a significant deviation from

normality and obvious leptokurtosis in all daily return series. This suggests specifying

GARCH models that capture these characteristics. In presenting these models, there are two

distinct equations or specifications, one for the conditional mean and the other for the condi-

tional variance. For the models employed in this paper, the mean equation for all stock return

series is the AR(1) model with a constant, and for all exchange rate return series, we used the

MA(1) model without a constant. After estimating the mean equation, the next step was to

identify whether there is substantial evidence of heteroscedasticity for the daily returns of

stock and exchange rate series. Table 2 provides the Ljung-Box statistics of order 20 for ε2t , ε
3
t

and ε
4
t , where εt is the error term from the mean equation. The results show that the Ljung-Box

Assets N Mean S.D. Skewness Kurtosis Jarque-Bera

Stock indices

NASDAQ100 2000 0.011 1.789 0.084 7.139 1429.85*

DAX30 2000 0.032 1.795 0.053 6.473 1929.78*

SSE 2000 0.048 1.764 �0.078 6.929 1292.92*

EZA 2000 0.076 2.403 �0.354 14.436 10968.85*

EWC 2000 0.049 1.673 �0.473 9.327 3420.18*

Exchange rates

USD/GBP 2000 0.007 0.485 0.658 11.419 6066.76*

USD/AUD 2000 �0.013 0.702 0.481 14.254 10659.08*

USD/ITL 2000 �0.004 0.467 �0.197 8.185 2260.57*

USD/ZAR 2000 0.001 0.877 1.010 17.404 17672.41*

USD/BRL 2000 �0.016 0.961 0.441 10.048 4215.97*

*Significant at the 5% level.

Table 1. Descriptive statistics for daily returns.
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statistics on the squared residuals ε2t , ε
3
t , and ε4t are significant for the presence of time-varying

volatility, skewness, and kurtosis for all daily returns of stock and exchange rate series.

2.2.1. Distributional assumptions

To complete the basic GARCH specification, an assumption about the conditional distribution of

the error term εt is required. The expectation is that the excess kurtosis and skewness displayed

by the residuals of conditional heteroscedastic models will be reduced, when a more appropriate

distribution is used. The Johnson’s SU distribution is resorted to in this study. This distribution

has two shape parameters that allow a wide range of skewness and kurtosis levels of the type

anticipated, and it is used in financial returns data [4, 18]. The Johnson’s SU distribution was

derived by Johnson [10] through transformation of a normal variable. Letting z ~ N(0,1) the

standard normal distribution, the random variable y defined by the transformation:

z ¼ γþ δ sinh�1 y� ζ

λ

� �

(1)

where sinh�1 is the inverse hyperbolic sine function defines a Johnson’s SU variable. The form

of the density of the Johnson’s SU distribution, which will be used for the estimation proce-

dure, is that due to Yan [18]:

f y yð Þ ¼
δ

λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ y�ζ
λ

� �2
r φ γþ δ sinh�1 y� ζ

λ

� �� �

(2)

Series ε
2
t

ε
3
t

ε
4
t

Stock indices

NASDAQ100 1834.3 (0.000) 305.1 (0.000) 507.1 (0.000)

DAX30 2132.9 (0.000) 148.4 (0.000) 676.1 (0.000)

SSE 443.2 (0.000) 24.6 (0.216) 52.4 (0.000)

EZA 2597.2 (0.000) 305.8 (0.000) 647.8 (0.000)

EWC 3614.3 (0.000) 272.1 (0.000) 984.2 (0.000)

Exchange rates

USD/GBP 1020.8 (0.000) 98.6 (0.000) 190.6 (0.000)

USD/AUD 2525.9 (0.000) 678.2 (0.000) 889.8 (0.000)

USD/ZAR 975.5 (0.000) 89.2 (0.000) 39.128 (0.006)

USD/ITL 536.2 (0.000) 94.477 (0.000) 77.6 (0.000)

USD/BRL 1555.3 (0.000) 406.1 (0.000) 1030.9 (0.000)

Note. For Ljung-Box statistics, the p-values are reported in parentheses.

Table 2. Ljung-Box statistics with order 20 of ε2t , ε
3
t and ε4t where εt is the error term for the mean equation for all daily

returns of stock and exchange rate series.
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where y ∈ R, φ is the density function of N(0, 1), ξ and λ > 0 are location and scale parameters,

respectively, while γ, δ > 0 can be interpreted as skewness and kurtosis parameters, respec-

tively. The parameters are not the direct moments of the distribution. The first four moments,

the mean, variance, third central moment, and fourth central moment, respectively, of the

distribution according to Yan [18] are as follows:

μ ¼ ζþ λω1=2sinhΩ (3)

σ2 ¼
λ2

2
ω� 1ð Þ ω cosh 2Ωþ 1ð Þ (4)

μ3 ¼ �
1

4
ω2 ω2 � 1
	 
2

ω2 ω2 þ 2
	 


sinh 3Ωþ 3 sinhΩ
� �

(5)

μ4 ¼
1

8
ω2 � 1
	 
2

ω4 ω8 þ 2ω6 þ 3ω4 � 3
	 


cosh 4Ωþ 4ω4 ω2 þ 2
	 


cosh 2Ωþ 3 2ω2 þ 1
	 
� �

(6)

The quantities Ω and ω in the moment formulas are Ω = γ/δ and ω = exp(δ�2). The skewness

and kurtosis are jointly determined by the two shape parameters γ and δ. The standardized

Johnson’s SU innovations exist when ξ = 0 and λ = 1, but the mean and the variance are not 0

and 1, respectively. These can be done by setting the parameters in the following manner:

ζ ¼ �ω1=2sinhΩ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2
ω� 1ð Þ ωcosh 2Ωþ 1ð Þ

r

" #�1

(7)

λ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2
ω� 1ð Þ ω cosh 2Ωþ 1ð Þ

r

" #�1

(8)

2.2.2. Maximum likelihood

Under the presence of heteroscedasticity (autoregressive conditional heteroscedasticity (ARCH)

effects) in the residuals of the daily returns of stock and exchange rate series, the ordinary least

square estimation (OLS) is not efficient, and the estimate of covariance matrix of the parameters

will be biased due to invalid ‘t’ statistics. Therefore, ARCH-type models cannot be estimated by

simple techniques such as OLS. The method of maximum likelihood estimation is employed in

ARCH models. For the formal exposition of the approach, each realization of the conditional

variance ht has the joint likelihood of realization:

L ¼
Y

T

t¼1

ffiffiffiffiffiffiffiffiffiffi

1

2πht

s

 !

exp
�ε2t
2ht

� �

(9)

The log likelihood function is:

Log Lð Þ ¼ �
T

2
Ln 2πð Þ � 0:5

X

T

t¼1

ht � 0:5
X

T

t¼1

ε2t
ht

� �

(10)

The parameter values are selected so that the log likelihood function is maximized using a

search algorithm by computers.
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2.2.3. Model estimation with time-varying volatility, skewness, and kurtosis

As it was shown in Section 2.2, when the residuals were examined for heteroscedasticity, the

Ljung Box test provided strong evidence of ARCH effects in the residuals series, which

suggests proceeds with modeling the returns volatility using the GARCH methodology. The

model to be estimated in this study is the standard GARCH(1, 1) model with constant shape

parameters, and also, we impose dynamics on both shape parameters to obtain autoregressive

conditional density (ARCD) models.4 This allows for time-varying skewness and kurtosis

assuming Johnson Su distribution for the error term in the two cases. Before presenting the

estimation results obtained with both the stock return series and the exchange rate return

series, the four nested models to be estimated are summarized as follows:

For stock return series:

Mean equation

rt ¼ μþ φ1rt�1 þ εt (11)

εt ¼
ffiffiffiffi

ht
p

zt, zt ¼
ffiffiffiffi

ht
p

zt � JSu ξt;λt;γt; δt
	 


Variance equation (GARCH)

ht ¼ b0 þ b1ε
2
t�1 þ b2ht�1 (12)

Skewness equation

γt ¼ c0 þ c1zt�1 þ c2z
2
t�1 þ c3γt�1 (13)

Kurtosis equation

δt ¼ d0 þ d1zt�1 þ d2z
2
t�1 þ d3δt�1 (14)

For all stock return series, the study is going to use GARCH(1,1) model with a similar specifi-

cation to that of Hansen [7] for shape parameters (γt, δt) but employs the standardized

innovation zt�1 instead of nonstandardized εt�1 as in Eqs. (13) and (14).

For exchange rate return series:

Mean equation

rt ¼ θ1εt�1 þ εt (15)

εt ¼
ffiffiffiffi

ht
p

zt, zt ¼
ffiffiffiffi

ht
p

zt � JSu ξt;λt;γt; δt
	 


Variance equation (GARCH)

4ARCD is the approach, where dynamics imposed on shape parameters and skewness or kurtosis are derived from the

time-varying shape parameters.
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ht ¼ b0 þ b1ε
2
t�1 þ b2ht�1 (16)

Skewness equation

γt ¼ c0 þ c1zt�1Izt�1<y
þ c2zt�1Izt�1 ≥ y

þ c3γt�1 (17)

Kurtosis equation

δt ¼ d0 þ d1 zt�1j jIzt�1<y
þ d2 zt�1j jIzt�1 ≥ y

þ d3δt�1 (18)

For the exchange rate return series, a specification similar to that of [11] for shape parameters

(γt, δt) is used with the exception that it utilizes the standardized innovation zt�1 instead of

nonstandardized εt�1 as in Eqs. (17) and (18). It also considers the absolute standardized

shocks for the shape parameter in Eq. (18), Ghalanos [6]. So, first, we start by estimating the

two standard models for the conditional variance: the AR(1)-GARCH(1,1) model (Eqs. (11) and

(12)) for the stock return series and MA(1)-GARCH(1,1) model (Eqs. (15) and (16)) for the

exchange rate return series. Second, the generalizations of both the standard GARCH and

GARCH models with time-varying skewness and kurtosis (GARCHSK) as in Eqs. (11)–(14)

for the stock return series and Eqs. (15)–(18) for the exchange rate return series are estimated.

The results for the stock return series are presented in Tables 3 and 4 for both the standard

GARCH and GARCHSK models, respectively. As expected, the results indicate high and

significant presence of conditional variance, since the coefficient of lagged conditional variance

(b2) is high, positive, and significant. Volatility is found to be persistent, since the coefficient of

lagged volatility (b1) is positive and significant, indicating that high conditional variance is

followed by high conditional variance. The sum of the two estimated coefficients (b1 + b2) in the

estimation process is very close to one, implying that large changes in stock returns tend to be

Parameters NASDAQ100 DAX30 SSE EZA EWC

Mean equation μ 0.0536* 0.0940* 0.0207 0.1535* 0.0976*

φ �0.0578* �0.0813* 0.0025 �0.0534* �0.0461*

Variance equation b0 0.0082 0.0128* 0.0284* 0.0596* 0.0202*

b1 0.0499* 0.0646* 0.0756 0.1011* 0.0619*

b2 0.9468* 0.9311* 0.9225* 0.8894* 0.9285*

Log-likelihood �3589.94 �3588.5 �3651.1 �4178.55 �3308.61

AIC 3.5969 3.5955 3.6580 4.1855 4.1445

ARCH-LM test for heteroscedasticity

Statistic (T*R2) 6.596 7.775 0.5993 1.385 4.032

Prob. chi-square (5) 0.2525 0.1691 0.9880 0.9259 0.5447

*Significant at the 5% level.

Table 3. Maximum likelihood estimates of AR(1)-GARCH(1,1) model for stock return series.
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followed by large changes, and small changes tend to be followed by small changes. This

confirms that volatility clustering is observed in the stock returns series. For the skewness and

kurtosis equations, it is found that for all stock return series, days with high conditional

skewness and kurtosis are followed by days with high conditional skewness and kurtosis

except DAX30 in kurtosis case, since the coefficients for lagged skewness (c3) and for lagged

kurtosis (d3) are positive and significant. In summary, there is a significant presence of condi-

tional skewness and kurtosis for all stock return series, since at least one of the coefficients

associated with the standardized shocks or squared standardized shocks to (skewness and

kurtosis) or to lagged (skewness and kurtosis) is found to be significant.

The results for the five exchange rates are presented in Tables 5 and 6 for GARCH and

GARCHSK models, respectively. As expected, the results are the same as in the case of stock

return series, i.e., the results also indicate highest significant presence of conditional variance.

Volatility is found to be persistent, and volatility clustering is also observed in exchange rate

return series. A significant presence of conditional skewness and kurtosis for all exchange rate

return series is confirmed, since at least one of the coefficients associated with the standardized

Parameters NASDAQ100 DAX30 SSE EZA EWC

Mean equation μ 0.0155 0.0816* 0.0555 0.1312* 0.0851*

φ �0.0567* �0.0947* �0.0154 �0.0512* �0.0540*

Variance equation b0 0.0104* 0.0167* 0.0506* 0.0620* 0.0250*

b1 0.0578* 0.0717* 0.1009* 0.0931* 0.0762*

b2 0.9436* 0.9239* 0.8997* 0.8998* 0.9183*

Skewness equation c0 �0.0038* 0.0035* 0.0015* �0.0261* �0.0256*

c1 0.00002 �0.0083* �0.0054* 0.0838* 0.0163

c2 0.00355* �0.0037* �0.0017* 0.0004 0.0192*

c3 0.9939* 1.0000* 0.9898* 0.8661* 0.9165*

Kurtosis equation d0 0.0001 0.7193* 0.9625* 0.2245* 0.4362

d1 0.9869* 0.3126* 0.2684* 0.4848* 0.5166*

d2 0.0799 0.2929* 0.0591 0.0000 0.2638*

d3 0.8459* 0.0019 0.5469* 0.8143* 0.4358*

Log-likelihood �3559.79 �3578.15 �3620.83 �3294.5 �3406.96

AIC 3.5728 3.5911 3.6338 4.1344 3.4200

ARCH-LM test for heteroscedasticity

Statistic (T*R2) 6.942 6.604 1.678 0.7606 5.393

Prob. chi-square (5) 0.2250 0.2518 0.8917 0.9795 0.3698

*Significant at the 5% level.

Table 4. Maximum likelihood estimates of AR(1)-GARCH(1,1) model with time-varying skewness and kurtosis for stock

return series.
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Parameters USD/GBP USD/AUD USD/ITL USD/ZAR USD/BRL

Mean equation θ 0.28470* 0.1886* 0.2495* 0.2619* 0.0945*

Variance equation b0 0.0009* 0.0015* 0.0006 0.0165* 0.0114

b1 0.0384* 0.0485* 0.0331* 0.0553* 0.1041

b2 0.9579* 0.9505* 0.9658* 0.9175* 0.8948*

Log-likelihood �907.732 �1528.337 �922.161 �2257.187 �2159.827

AIC 0.9137 1.5343 0.9282 2.2632 2.1658

ARCH-LM test for heteroscedasticity

Statistic (T*R2) 5.169 2.900 4.019 9.646 28.35

Prob. chi-square (5) 0.0754** 0.7155 0.1340** 0.0859 0.0016

*Significant at the 5% level.
**Significant at the 1% level.

Table 5. Maximum likelihood estimates of MA(1)-GARCH(1,1) model for exchange rate return series.

Parameters USD/GBP USD/AUD USD/ITL USD/ZAR USD/BRL

Mean equation θ 0.2978* 0.2111* 0.2626* 0.2590* 0.0978*

Variance equation b0 0.0009 0.0016 0.0006 0.0139* 0.0086*

b1 0.0502* 0.0597* 0.0425* 0.0760* 0.2626*

b2 0.9489* 0.9449* 0.9582* 0.9119* 0.8348*

Skewness equation c0 �0.0306 0.0368* �0.0189 0.0168* �0.0047

c1 0.0237 0.0610* 0.0195 0.0589* �0.0051

c2 0.0808* 0.0036 0.0658* 0.0058 0.0150*

c3 0.0000 0.4814 0.0000 0.9018* 0.8807*

Kurtosis equation d0 0.2075 0.2939* 0.2128 0.4497 0.0405

d1 0.4029* 0.5678* 0.3459* 1.0000* 1.0000*

d2 0.0050 0.0000 0.0235 0.0000 0.0000

d3 0.8217* 0.7851* 0.8364* 0.5342* 0.9077*

Log-likelihood �895.695 �1516.323 �910.919 �2227.667 �2135.46

AIC 0.9077 1.5283 0.9229 2.2397 2.1475

ARCH-LM test for heteroscedasticity

Statistic (T*R2) 4.299 2.4075 3.308 8.659 9.116

Prob. chi-square (5) 0.1165 0.7904 0.1912** 0.1235 0.1045

*Significant at the 5% level.

Table 6. Maximum likelihood estimates of MA(1)-GARCH(1,1) model with time-varying skewness and kurtosis for

exchange rate return series.
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shocks (either negative or positive) to (skewness & kurtosis) or to lagged (skewness & kurtosis)

are found to be significant.

Finally, it is worth noting that from the bottom of Tables 3–6, the value of Akaike information

criterion (AIC) decreases monotonically when moving from the simpler model (standard

GARCH) to the more complicated ones (GARCHSK) for all return series. Therefore, for all return

series analyzed, the GARCHSK model specification seems to be the most appropriate one

according to the AIC. Note that the ARCH-LM test statistics for all return series did not exhibit

additional ARCH effect. This shows that the variance equations are well specified and adequate.

3. Comparison of models

One way to start comparing the models is to compute the likelihood ratio test. The LR test statistic

has been used to compare the standard GARCHmodel (restricted model) and GARCHSK model

(unrestricted model), where Johnson Su distribution is assumed for the standardized error zt in

both specifications. The results are contained in Table 7. The value of the LR statistic is quite large

in all return series. This means that the GARCHSK model is showing superior performance than

the standard GARCH model with constant shape parameters.

4. A new forecast scheme

In the literature, three alternative ways for generating the sequence of the forecasts, namely the

recursive, rolling, and fixed schemes are suggested, see [13]. In this paper, the estimation

Series LogL (GARCH) LogL (GARCHSK) LR

Stocks

NASDAQ100 �3589.94 �3559.79 60.3*

DAX30 �3588.5 �3578.15 20.7*

SSE �3651.1 �3620.83 60.54*

EZA �3308.61 �3294.5 28.22*

EWC �3415.2 �3406.96 16.48*

Exchange rates

USD/GBP �907.732 �895.695 24.07*

USD/AUD �1528.337 �1516.323 24.03*

USD/ITL �922.161 �910.919 22.48*

USD/ZAR �2257.187 �2227.667 59.04*

USD/BRL �2159.827 �2135.46 48.73*

*Significant at the 5% level.

Table 7. Likelihood ratio tests for all daily returns of stock and exchange rate series.
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sample of the models for all return series is based on R = 2000 observations, while the last P =

1000 observations are used for the out-of-sample forecast. Only the case of generating one-step

ahead forecasts using the three alternative methods to generate a sequence of P one-step ahead

forecasts is considered. For the estimation sample sizes R for all return series, the study will

consider five different values for P for the three alternative schemes, namely P = 200, 400, 600,

800, 1000.

In this section, an attempt is made to introduce a new alternative scheme to generate the

sequence of the forecasts by computing a weighted average of the last three alternative methods.

The weights used are the reciprocals of the MSE of the methods. The rationale behind this is that

a method with large mean square forecasting errors (MSE) (i.e., less reliability) should be given a

smaller weight. The suggested name for the new method is “weighted average scheme.” The

four forecasting alternative schemes are applied using the estimated GARCHSKmodels for stock

and exchange rate return series, which are given in the previous section and the results are

shown in Table 8.

Table 8 presents the averages of the mean square forecasting errors over all levels of out-of-

sample forecast (P = 200, 400, 600, 800, 1000) for the recursive, rolling, fixed, and weighted

average schemes for all daily returns of stock and exchange rate series. The results show that

the average forecasting mean squares errors for the four forecasting methods for all return

series differ only either in the second decimal place or third decimal place. Although the

weighted method shows clear superiority to the recursive and fixed methods, it failed to beat

the rolling method which outperforms all other three methods in these data. We attribute the

fair performance of weighted method compared to the rolling method possibly because of the

Forecasting alternative schemes

Series Recursive Rolling Fixed Weighted

Stock

NASDAQ100 1.521857 1.522096 1.522586 1.522166

DAX30 2.256312 2.238891 2.254930 2.249675

SSE 1.736101 1.736698 1.736048 1.736175

EZA 3.759198 3.752719 3.759654 3.756829

EWC 2.031167 2.027740 2.031093 2.029841

Currency

USD/GBP 0.093255 0.092812 0.092784 0.092932

USD/AUD 0.255625 0.255306 0.255633 0.255505

USD/ITL 0.178520 0.178018 0.178496 0.178318

USD/ZAR 0.491262 0.489874 0.491256 0.490684

USD/BRL 0.377914 0.376564 0.377805 0.377420

Table 8. Averages of the mean square forecasting errors over all levels of out-of-sample forecast (P = 200, 400, 600, 800,

1000) for all forecasting alternative schemes for all daily returns of stock and exchange rate series.
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small differences in the mean square errors of the un-weighted methods. We expect it to

perform better in cases, where the three methods differ markedly with respect to their mean

square errors.

5. Conclusions

This chapter proposes a GARCH-type model that allowing for time-varying volatility, skew-

ness, and kurtosis where assuming a Johnson’s SU distribution for the error term. Models

estimated using daily returns of five stock indices and five exchange rate series. The results

indicate significant presence of conditional volatility, skewness, and kurtosis. Moreover, it is

found that specifications allowing for time-varying skewness and kurtosis outperform specifi-

cations with constant third and fourth moments. Also, a weighted average forecasting scheme

is introduced to generate the sequence of the forecasts by computing a weighted average of the

three alternative methods namely the recursive, rolling, and fixed schemes are suggested. The

results showed that the weighted average scheme did not show clear superiority to the other

three methods. Further work will consider linear and nonlinear combining methods and

different forecasting horizons to forecast stock and return series.
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