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Abstract

In causal inference research, the issue of the treatment endogeneity is commonly addressed
using the two-stage least squares (2SLS) modeling with instrumental variables (IVs), where
the local average treatment effect (LATE) is the causal effect of interest. Because practical
data are usually heavy tailed or contain outliers, using traditional 2SLS modeling based on
normality assumptions may result in inefficient or even biased LATE estimate. This study
proposes four types of Bayesian two-stage robust causal models with IVs to model normal
and nonnormal data, and evaluates the performance of the four types of models with IVs.
The Monte Carlo simulation results show that the Bayesian two-stage robust causal model-
ing produces reliable parameter estimates and model fits. Particularly, in different types of
the two-stage robust models with IVs, the models that take outliers into consideration and
use Student’s t distributions in the second stage to model heavy-tailed data or data
containing outliers provide more accurate and efficient LATE estimates and better model
fits than other distribution models when data are contaminated. The preferred models are
recommended to be adopted in general in the two-stage causal modeling with IVs.

Keywords: Bayesian methods, two-stage causal modeling with instrumental variables,
nonnormal data, robust method using Student’s t distributions

1. Introduction

Causal inference and experimental researchers are often interested in the average treatment

effect (ATE), measured by the outcome difference between participants who are assigned to the

treatment and those being assigned to the control. The estimation of ATE for the whole popula-

tion is neither reliable nor feasible when certain conditions are not achieved or assumptions are

violated [6, 9]. The treatment effects for only a subset of participants is instead estimated, which

is called the local average treatment effect (LATE) [2, 13]. Different studies may have different

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
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LATEs, depending on the subgroup of interest. Often the subgroup of interest is those who have

been assigned to the treatment and have actually received the treatment [3]. One way to estimate

the LATE is to incorporate instrumental variables (IVs), which are correlated with both the

endogenous regressors and error terms when the linearity assumption of the traditional linear

models is violated and the endogenous regressors are correlated with the errors. Instrumental

variables are incorporated in the analysis to estimate the LATE, or a part of the treatment effect

whose estimation is not contaminated by the violation of the linearity assumption.

Two-stage least squares (2SLS) modeling [1] is widely used to estimate the LATE with IVs. In

the first stage, IVs are used to predict the partial treatment effect that can be explained by the

variations of IVs, and in the second stage, the fitted treatment values are used to predict the

experimental outcome, and to estimate the LATE. In estimating the LATE in traditional 2SLS

modeling with IVs, it is typically assumed that the measurement errors at both stages are

normally distributed. However, practical data in social and behavioral research usually violate

the normality assumption and often have heavy tails or contain outliers [25]. Failure to take the

nonnormal data into consideration but instead treating the heavy-tailed data or data

containing outliers as if they were normally distributed may result in unreliable parameter

estimates and inflated type I error rates [35, 38–40], which will eventually lead to misleading

statistical inference.

Routine methods to accommodate heavy-tailed data or data with outliers include data trans-

formation and data truncation. However, transformed data are often difficult to interpret

especially when the raw scores have meaningful scales [17], and the exclusion of outliers may

lead to underestimated standard errors and reduced efficiency [14, 32]. Alternatively, different

robust procedures have been developed to provide reliable parameter estimates, the associated

standard errors, and statistical tests. The rationale of most robust procedures is to weigh each

observation according to its distance from the center of the majority of the data, so that outliers

that are far from the center of the data are downweighted [10, 11, 37]. In recent research, more

and more robust methods have been used to estimate complex models, such as linear and

generalized linear mixed-effects models [19, 26], structural equation models [15, 31], and

hierarchical linear and nonlinear models [20, 29].

Over the past decades, robust procedures based on Student’s t distributions have been devel-

oped and advanced to model heavy-tailed data or data containing outliers [14, 33]. For exam-

ple, Student’s t distributions have been applied under the structural equation modeling

framework and were found to produce reliable parameter estimates and inferences [15, 16]; in

robust mixture models, Wang et al. [30] used the multivariate t distribution to fit heavy-tailed

data and data with missing information, Shoham [24] implemented a robust clustering algo-

rithm in mixture models by modeling data that are contaminated by outliers using multivari-

ate t distributions, Seltzer et al. [21] and Seltzer and Choi [22] conducted sensitivity analysis

employing Student’s t distributions in robust multilevel models and downweighted outliers in

level two (the between-subject level), and Tong and Zhang [28] and Zhang et al. [36] advanced

the Student’s t distributions to robust growth curve models and provided online software to
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carry out the analysis. Although robust methods based on Student's t distributions have been

used in different modeling frameworks, few have been adopted in the causal modeling, where

heavy-tailed data or data containing outliers are not uncommon [18].

Recently, Shi and Tong [23] implemented a robust Bayesian estimation method using Student's

t distributions to the two-stage causal modeling with IVs to fit data that contain outliers or are

normally distributed concurrently at both stages. However, in the two-stage causal models

with IVs, data at either stage are equally likely having outliers or are nonnormally distributed.

Previous studies have noticed such a situation. For example, Pinheiro et al. [19] used a robust

estimation to the linear mixed-effects model and applied the multivariate t distribution to both

the random effects and intraindividual errors simultaneously. Tong and Zhang [28] conducted

a robust estimation to growth curve modeling and modeled the measurement errors and

random effects separately with t distributions or normal distributions rather than the same

distribution for the two effects. Therefore, this article extends the study of Shi and Tong [23]

and proposes four possible types of two-stage causal models with IVs to the data. The study

evaluates the performance of the robust method in four types of models. In the following

section, the robust method based on Student's t distributions is reviewed. Then, the two-stage

causal models with IVs, the associated LATE, and the corresponding four types of models are

introduced. Next, a Monte Carlo simulation study is conducted to evaluate the performance of

the robust method in four possible types of two-stage causal models with IVs. In the end,

conclusions are summarized and discussions are provided.

2. Robust methods based on Student’s t distributions

As a robust procedure, the fundamental idea of using Student's t distributions to model heavy-

tailed data or data containing outliers is to assign a weight to each case and properly downweight

cases that are far from the center of the majority of the data [10, 11, 37]. Suppose a population of k

random variables, y, follow a multivariate t distribution, with mean vector μ, scale matrixΨ, and

degrees of freedom ν, denoted by t (μ, Ψ, ν). The probability density function of y can be

expressed as:

p yjμ, Ψ, νð Þ ¼
Ψj j�

1
2 Γ

νþ k
2

� �

Γ
1
2

� �k
Γ

ν

2

� �

ν

k
2

� �� 1þ
y� μð ÞTΨ�1 y� μð Þ

ν

 !�
νþkð Þ
2

: (1)

The maximum likelihood estimates of model parameters under the model with t distribution

assumptions satisfy

Σ
n
i¼1wiAiΨ

�1
i yi � μ
� �

¼ 0; (2)

where n is the total sample size, yi is a sample from y, Ai is the partial derivatives of μ, and
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wi ¼
νþ τi

νþ σ
2
i

(3)

is the weight assigned to case i. In the equation for wi, τi is the dimension of the parameter for

each i and σ
2
i
is the squared Mahalanobis distances σ

2
i
¼ y

i
� μ

� �T
Ψ

�1
y
i
� μ

� �

. Note that

(yi � μ) is the distance between each observation and the population mean, and a large (yi � μ)

indicates a potential outlier as well as a large squared Mahalanobis distance σ
2
i
. The outliers

are downweighted in the analysis because the weight wi decreases with increasing squared

Mahalanobis distances σ2
i
; given fixed degrees of freedom ν, and dimensions τi [14].

The shape of a t distribution is controlled by its degrees of freedom ν, and ν can be set a priori

or estimated in the analysis. Under certain conditions, the degrees of freedom have been

recommended setting a priori. Lange et al. [14] and Zhang et al. [36] suggested fixing the value

for the degrees of freedom of Student's t distributions when sample size is small, as small

sample sizes could lead to biased degrees of freedom estimate. Moreover, Tong and Zhang [28]

argued that by fixing the degrees of freedom, more accurate parameter estimates and credible

intervals can be obtained when model specification is built on solid substantive theories. In

contrast, estimating the degrees of freedom can make the model more flexible. When the

degrees of freedom ν are freely estimated, Student's t distributions have an additional param-

eter ν, compared with normal distributions. As the degrees of freedom ν increase, the Student's

t distribution approaches a normal distribution.

There are several advantages in using Student's t distributions for robust data analysis [28].

First, unlike the nonparametric robust analysis, Student's t distributions have parametric

forms, and inferences based on them can be carried out relatively easily through maximum

likelihood estimation or Bayesian estimation methods. Second, the degrees of freedom of

Student's t distributions control the weight of outliers and can flexibly set a priori or be estimated.

Third, when data have heavy tails or contain outliers, considering Student's t distribution as a

natural extension of the normal distribution is rather intuitive.

3. Bayesian two-stage robust causal modeling with IVs

In causal Ordinary Least Squares (OLS) regression, when the error terms are related to some

regressors, the estimated ATE is biased due to the violation of the linearity assumption. Variables

that are related to both endogenous regressors and errors are used as instruments to differentiate

the correlations between endogenous regressors and errors, leaving only a part of the treatment

effects that have not been contaminated by the violation of the linearity assumption to be

estimated, and such variables are called instrumental variables (IVs). The ATE of interest

becomes the LATE of interest. For example, Currie and Yelowitz [8] studied the effect of public

housing voucher program of having a larger housing unit on housing quality and educational

attainment. Based on the fact that some families in voucher program tradeoff physical housing

amenities and reductions in rental payments that are bad and have negative effects for the

housing quality and their children, some regressors are correlated with errors and become

endogenous. Previous theory supports that a household having an extra number of kids is
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entitled to a larger housing unit, whether there are extra kids in the household and the sex

decomposition of the extra kids are chosen as the IVs, to study the voucher program effect to

participants who have one girl and one boy (i.e., having sex decomposition) in the household. It

was found that the voucher program participants who have the sex decomposition in the

household are more likely to have better housing quality and educational attainment. The

example shows that when IVs are introduced, the external validity is traded for the improvement

of the internal validity, and the ATE (i.e., all of the voucher program participants) becomes the

LATE (i.e., program participants who have extra kids and who have the sex decomposition).

One commonly used framework to estimate LATE is the 2SLSmodeling with IVs. Let di and yi be

the treatment and the outcome for individual i, respectively, and Zi = (zi1,…, ziJ)
0 be a vector of

instrumental variables for individual i (i = 1,…, N). Here, N is the sample size and J is the total

number of instrumental variables. In the first stage of the 2SLS model, the IVs Z are used to

predict the treatment d. In other words, the portion of variations in the treatment d is identified

and estimated by the IVs Z; and then the second stage relies on the estimated exogenous portion

of treatment variations in the form of the predicted treatment values to estimate the treatment

effect on the outcome y. A typical form of the 2SLS model with IVs can be expressed as:

di ¼ π10 þ π11Zi þ e1i; (4)

yi ¼ π20 þ π21
bdi þ e2i; (5)

where π10 and π11 = (π11, …, π1J)
0 are the intercept and regression coefficients for the linear

model where the treatment d is regressed on the IVs Z, respectively; and π20 and π21 are the

intercept and slope for the linear model where the outcome y is regressed on the predicted

treatment values of bd, respectively. The IVs help estimate the treatment effects in which the

causal effect of IVs on the treatment is first estimated in Eq. (4), and the causal effect of this

estimated partial treatment effect on the outcome is then estimated in Eq. (5). From the model,

π11 is the causal effect of the IVs Z on the treatment Z, and π21 is the treatment effect on the

outcome y for a subset of participants whose treatment effect has been partialled out and

explained by the IVs Z. π21 is the causal effect of interest and is called LATE. There are several

advantages in using 2SLS modeling to estimate LATE. First, unlike method of point estimate

such as Wald estimator [4], 2SLS modeling also provides standard error estimate and confi-

dence intervals of the LATE, making statistical inferences more efficient. Second, when 2SLS

models are used, covariates could be controlled simultaneously at both stages of the 2SLS

model when the effect of Z on d and the effect of bd on y are estimated. Mathematically, the

estimated LATE bπ21 in 2SLS can be derived as:

bπ21 ¼
cov yi;

bdi
� �

var bdi
� � ¼

cov yi, bπ10 þ bπ11zi1 þ⋯þ bπ1JziJ
� �

var bπ10 þ bπ11zi1 þ⋯þ bπ1JziJ
� � ¼

bπ11cov yi; zi1
� �

þ⋯þ bπ1Jcov yi; ziJ
� �

bπ2
11var zi1ð Þ þ⋯þ bπ2

11var zi1ð Þ
:

(6)

Traditional causal 2SLS models with IVs are commonly estimated using OLS methods or

maximum likelihood estimation from the frequentist approach. The measurement errors at

both stages, e1i and e2i, are assumed to be normally distributed as e1i � Nð0, σ2e1Þ and
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e2i � Nð0, σ2e2 Þ. Because practical data usually violate the normality assumption, it was

proposed from a Bayesian approach that the normal distributions can be replaced by

Student's t distributions for heavy-tailed data or data containing outliers [23, 28, 36]. In the

two-stage causal model with IVs, data at either stage are equally likely to be nonnormal or

containing outliers. Therefore, we propose four possible types of Bayesian two-stage causal

models to data with (a) normal measurement errors at both stages, denoted as Bayesian

normal model, (b) t measurement errors in the first stage and normal measurement errors in

the second stage, denoted as Bayesian nonnormal-s1 model, (c) normal measurement errors in

the first stage and t measurement errors in the second stage, denoted as Bayesian nonnormal-

s2 model, and (d) t measurement errors at both stages, denoted as Bayesian nonnormal-both

model. The four types of Bayesian two-stage causal models have the same mathematical

model expressions as those from the frequentist approach. Namely, for the Bayesian normal

model, measurement errors are assumed to be distributed as e1i � Nð0, σ2e1Þ and

e2i � Nð0, σ2e2 Þ; for the Bayesian nonnormal-s1 model, the measurement errors are assumed

to be distributed as e1i � tð0, σ2e1 , ν1Þ and e2i � Nð0, σ2e2Þ; for the Bayesian nonnormal-s2

model, the measuremenet errors are assumed to be distributed as e1i � Nð0, σ2e1Þ and

e2i � tð0, σ2e2 , ν2Þ; finally, for the Bayesian nonnormal-both model, the measurement errors

are assumed to be distributed as e1i � tð0, σ2e1 , ν1Þ and e2i � tð0, σ2e2 , ν2Þ. All four types of

models are estimated using Bayesian methods.

In the Bayesian approach, we obtain the joint posterior distributions of the parameters based

on the prior distributions of the parameters and the likelihood of the data information. Making

statistical inferences directly from the joint posterior distributions is usually difficult. Gibbs

sampling, a Markov chain Monte Carlo (MCMC) method is a widely used algorithm to draw a

sequence of samples from the joint posterior distribution of two or more random variables,

given that the conditional posterior distributions of the model parameters can be obtained [7].

In specific, Gibbs sampling alternately samples parameters one at a time from their conditional

posterior distribution on the current values of other parameters, which are treated as known.

After a sufficient number of iterations, the sequence of samples constitutes a Markov chain that

converges to a stationary distribution. This stationary distribution is the sought-after joint

posterior distribution of the parameters [12].

The Gibbs sampling algorithm is used to obtain the LATE estimate for the two-stage causal

model with IVs. Because the t distribution can be viewed as a normal distribution with

variance weighted by a Gamma distribution, the data augmentation method is used here to

simplify the posterior distribution. Specifically, a Gamma random variable ω is augmented

with a normal random variable because if ωi � G ν

2 ;

ν

2

� �

, and yi|ωi ~ N(μ, Ψ/ωi), then yi ~ t

(μ,Ψ, ν). The detailed steps of the Gibbs sampling algorithm for the Bayesian nonnormal-

s2 model are given below. The Gibbs sampling procedures for the other models are

similar.

1. Startwith initialvalues π
0ð Þ
1 , π

0ð Þ
2 , σ

2 0ð Þ
e1 , σ

2 0ð Þ
e2 , ν 0ð Þ, ω

0ð Þ
i , where π

0ð Þ
1 ¼ π

0ð Þ
10 , π

0ð Þ
10

� �0
and

π
0ð Þ
2 ¼ π

0ð Þ
20 , π

0ð Þ
21

� �0
.
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2. Assumeat the jth iteration, wehave π
jð Þ
1 , π

jð Þ
2 , σ

2 jð Þ
e1 , σ

2 jð Þ
e2 , ν jð Þ, ω

jð Þ
i , where π

jð Þ
1 ¼ π

jð Þ
10 , π

jð Þ
10

� �0

and π
jð Þ
2 ¼ π

jð Þ
20 , π

jð Þ
21

� �0
.

At the (j+1)th iteration,

3. Step 3

3.1 Sample π
jþ1ð Þ
1 from p π1jσ

2 jð Þ
e1 , di,Zi, i ¼ 1,…, N

� �
;

3.2 Sample σ
2 jþ1ð Þ
e1 from p σ

2
e1jπ

jþ1ð Þ
1 , di,Zi, i ¼ 1,…, N

� �
;

3.3 Sample σ
2 jþ1ð Þ
e2 from p σ

2
e2jπ

jð Þ
2 ,bdi, yi,ω

jð Þ
i , i ¼ 1,…, N

� �
;

3.4 Sample ν(j + 1) from p νjω
jð Þ
i , i ¼ 1,…, N

� �
;

3.5 Sample ω
jþ1ð Þ
i , i ¼ 1,…N, from p ωijν

jþ1ð Þ, σ
2 jþ1ð Þ
e2 ,bd

i
, yi,π

jð Þ
2 , i ¼ 1,…, N

� �
;

3.6 Sample π
jþ1ð Þ
2 from p π2jω

jþ1ð Þ
i , σ

2 jð Þ
e2 ,bd

i
, yi, i ¼ 1,…, N

� �
.

4. Repeat Step 3.

4. Evaluation of four types of distributional 2SLS models

In this section, the performance of the four types of two-stage robust causal models is evaluated

through a Monte Carlo simulation study. Data are generated from a general causal inference

model as presented in Eq. (7). Full Bayesian methods are used for the estimation of all four types

of two-stage causalmodels. In specific, noninformative priors are applied to allmodel parameters,

conditional posterior distributions of all model parameters are obtained and Markov chains are

generated through Gibbs sampling algorithm, convergence tests are conducted and finally statis-

tical inferences for the model parameters are made. Free software (R Development Core Team,

2011) R [41] and OpenBUGS [42] (Thomas, O’Hara, Ligges, & Sturtz, 2006) were used for the

implementation of MCMC algorithms and model estimation. A total of 20,000 iterations was

conducted for each simulation condition, with the first 10,000 iterations as the burn-in period.

4.1. Study design

Data are generated from a general causal inference model

yi ¼ 3þ 0:5xi þ ei; (7)

where yi is the causal outcome, xi is the causal treatment, and ei is the measurement error.

Three potential influential factors are considered. First, sample size (N) is either 200 or 600.

Second, correlation between x and e(Φ) is manipulated to be either 0.3 or 0.7, reflecting

relatively weak or strong linear relationship between the treatment and the measurement
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error. Third, a proportion of observations that contains outliers is manipulated. The proportion

of outliers (OP) is considered to be 0, 5, or 10%. When the OP is 0%, data contain no outliers

and measurement errors ei are normally distributed. When the OP is above zero, data contain

outliers. For outliers, the measurement errors are generated from a different normal distribu-

tion with the same standard deviation, but a larger mean (eight times of the standard devia-

tion). An IV is also generated from a normal distribution and correlated with x with the

correlation coefficient being 0.6.

If we fit a linear regression to the generated data, we will immediately notice that the residuals

and the regressors are not independent. Therefore, we adopt the two-stage causal model with

IVs. The four types of two-stage models (normal model, nonnormal-s1 model, nonnormal-s2

model, and nonnormal-both model) are used to fit the data. In the first stage, the IV is used to

predict the endogenous treatment, and the estimated treatment is then used in the second

stage to estimate the LATE. Based on Eq. (6), the theoretical LATE is 5/6.

As discussed previously, Bayesian methods using Gibbs sampling algorithm are used to obtain

the LATE estimates in four types of two-stage causal models. The bias and standard error (SE)

of the LATE estimate for each of the four distributional models are assessed. In addition, the

deviance information criterion (DIC) [27] for each condition is examined to study the model fit.

A lower value of DIC indicates a better model fit.

4.2. Results

The bias and SEs of the LATE estimates from four types of models when ϕ = 0.3 are presented

in Table 1.

In almost all cases, models that use normal distributions to model the normal data and that use

Student's t distributions to model the data with outliers provide the best estimates with smaller

bias and SEs among other types of two-stage causal models. For example, when N = 200, the

normal model provides smaller bias and SE for normal data; similarly, nonnormal-s2 and

nonnormal-both models lead to the smaller bias and SEs when they are used to fit data

containing outliers. This shows that using Student’s t distributions to model data containing

Normal model Nonnormal-s1 model Nonnormal-s2 model Nonnormal-both model

N Data OP Bias SE Bias SE Bias SE Bias SE

200 Normal 0% 0.001 0.154 �0.004 0.154 �0.004 0.155 �0.003 0.155

Nonnormal 5% 0.210 0.283 0.200 0.281 �0.022 0.177 �0.020 0.171

10% 0.342 0.379 0.341 0.378 �0.060 0.157 �0.050 0.155

600 Normal 0% �0.021 0.076 �0.023 0.076 �0.023 0.077 �0.023 0.076

Nonnormal 5% 0.180 0.168 0.170 0.167 �0.064 0.099 �0.060 0.096

10% 0.390 0.230 0.380 0.210 �0.077 0.099 0.070 0.098

Table 1. Bias and SEs of the LATE estimates for all the conditions when Φ = 0.3.
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outliers is an effective way to accommodate heavy-tailed data or data containing outliers, and

this finding is consistent with the previous research [34, 36]. In causal inference study, because

practical data at either stage are equally likely having outliers or are normally distributed in

the two-stage causal model with IVs, we fit all four types of distributional models and try to

decide which one is the best-fitted model. From the results, modeling heavy-tailed data or data

containing outliers with nonnormal-both model provides more reliable parameter estimates

than traditional methods that ignore the data distributions and model all data exclusively with

normal distributions.

Although it is always a good choice to model normal data with normal distributions and

heavy-tailed data or data containing outliers with Student’s t distributions, in practice,

researchers may not know whether the first stage or the second stage of the model should

account for the nonnormality. The simulation results show that when data contain outliers, the

nonnormal-s2 model and nonnormal-both model that use t distributions in the second stage

produce the smallest bias and SEs of the LATE estimates. This is probably because the causal

effect of interest, LATE, is housed in the second stage, and using Student's t distribution to

model outliers in that stage is effective in capturing the LATE. On the contrary, in the normal

model or the nonnormal-s1 model, the normal distribution is being used to model the second

stage data that are heavy tailed or contain outliers. For example, for all the nonnormal data

that contain outliers (i.e., OP = 5 or 10%), the nonnormal-s2 model and the nonnormal-both

model, both of which use t distributions to model data in the second stage, outperform other

models, providing smaller bias and SEs of the LATE estimates regardless of sample size (N)

and proportion of outliers (OP). Comparing between nonnormal-s2 and nonnormal-both

models, the nonnormal-both models perform slightly better than the nonnormal-s2 model

does. Take N = 600 and OP = 10% as an example, the bias and SEs for the nonnormal-s2 model

are �0.077 and 0.099, whereas those for the nonnormal-both model are slightly smaller to be

0.070 and 0.098, showing that fitting the nonnormal data with Student's t distributions at both

stages has the best performance in terms of accuracy and efficiency of the LATE estimate.

Table 2 presents the results for DICs for the four types of two-stage causal models when

Φ = 0.3.

In practice, DIC can be used as a model selection criteria. To select the best-fitted parsimonious

model, we first fit all four types of models to the data, and then select the model with the

N Data OP Normal model Nonnormal-s1 model Nonnormal-s2 model Nonnormal-both model

200 Normal 0% 1145.09 1145.83 1145.82 1146.54

Nonnormal 5% 1380.18 1380.82 1241.48 1242.04

10% 1488.71 1489.43 1315.18 1315.87

600 Normal 0% 3418.20 3419.25 3419.23 3420.53

Nonnormal 5% 4126.86 4128.00 3705.62 3706.93

10% 4448.88 4450.07 3922.32 3923.73

Table 2. DICs of all the distributional models when Φ = 0.3.
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smallest DIC. Notice that for normal data, all four types of models have similar DIC values.

When data contain outliers, nonnormal-s2 and nonnormal-both models provides the smallest

DIC, indicating that these types of models fit the data better. In all data conditions in the study,

the DICs of the nonnormal-s2 model and the nonnormal-both model are very similar, and

either model can be adopted.

The proportions of outliers contained in the data have effect on the performance of the

nonnormal-s2 model and the nonnormal-both model. Specifically, the larger the proportions

of outliers, the more salient the advantages of the nonnormal-s2 and nonnormal-both models.

For example, for the nonnormal data with N = 200 and OP = 5%, the bias from the normal

model, the nonnormal-s2 model and the nonnormal-both model is 0.210, �0.022, and �0.020,

respectively; when OP becomes 10%, the bias from the normal model jumps to 0.342, whereas

the bias from the nonnormal-s2 model changes slightly to �0.060 and that from the

nonnormal-both model is �0.050. Similarly, the preferred models provide less biased LATE

estimates when sample size is small, and the advantage of the preferred models is more

apparent under small sample conditions (e.g., [23]).

When Φ = 0.7, consistent with the results from previous conditions when Φ = 0.3, when data

have outliers, using Student's t distributions to model the data provides more accurate and

efficient LATE estimates and better model fits than using normal distribution to model the

data. The advantage of using t distributions is more obvious when sample size is small and the

proportion of outliers is large.

5. Discussion

In causal inference research, the issue of the treatment endogeneity is commonly addressed

in the 2SLS model with IVs, where the LATE is the causal effect of interest. Because practical

data usually violate the normality assumption, using normal distributions to model heavy-

tailed data or data containing outliers may result in inefficient or even biased LATE estimate.

In the 2SLS model with IVs, data at either stage are equally likely having outliers or are

normally distributed. To address this problem, this study proposes four possible types of

Bayesian two-stage robust causal models with IVs to the data, and evaluates the perfor-

mance of the robust method using Student's t distributions in the causal modeling. The

Monte Carlo simulation results show that modeling normal data with normal distributions

and normal or heavy-tailed data or data containing outliers with Student's t distributions

gives good performance in terms of accuracy, efficiency, and model fit. When data are

normally distributed, the methods that either use normal distributions or the Student's t

distributions perform equally well as they provide similar bias, SEs and DICs. In the pres-

ence of outliers, the nonnormal-s2 and the nonnormal-both models that take outliers into

consideration and use Student's t distributions in the second stage to model heavy-tailed

data or data containing outliers outperform other distribution models that use normal

distributions to model either exclusively all the data or the second stage data in two-stage

causal models with IVs with smaller bias and higher efficiency. In addition, the nonnormal-

s2 model and the nonnormal-both model have smaller DICs than the other two models,
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suggesting evidence of better model fit. The nonnormal-s2 and nonnormal-both models are

especially preferred when sample size is small and the proportion of outliers is large as they

produce more accurate and efficient LATE estimates.

Note that fitting the nonnormal-both model to data may require longer Markov chains as

degrees of freedom for t distributions at both stages need to be estimated. We also want to be

cautious to simply use Student's t distributions to model all the data as this method is numer-

ically not optimal all the time and computationally time consuming [28]. Additionally,

Student's t distributions are sensitive to the skewness, so some nonnormally distributed data

may not be modeled by them. If data are highly skewed, alternative robust method, such as

robust methods based on skewed-t distributions may be considered [5].
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