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Abstract

The ultimate goal of any surgical procedure is to improve perioperative form and func-
tion and to minimize operative and postoperative morbidity. In recent years, many 
exciting and novel technological advances have been introduced in the field of oral and 
maxillofacial surgery. One example of such technology that is continuing to increase in 
prevalence is the use of 3-dimensional (3-D) printing techniques with special properties, 
which seems hopeful for practitioners in the field of regenerative medicine. Tissue engi-
neering is a critical and important area in biomedical engineering for creating biological 
alternatives for grafts, implants, and prostheses. One of the main triad bases for tissue 
engineering is scaffolds, which play a great role for determining growth directions of 
stem cells in a 3-dimensional aspect. Mechanical strength of these scaffolds is critical as 
well as interconnected channels and controlled porosity or pores distribution. However, 
existing 3-D scaffolds proved less than ideal for actual clinical applications. In this chap-
ter, we review the application and advancement of rapid prototyping (RP) techniques 
in the design and creation of synthetic scaffolds for use in tissue engineering. Also, we 
survey through new and novel merging era of “bioprinting.”

Keywords: 3-D printing, prototyping, tissue engineering, scaffolds, bioprinting, stem cells, 
regenerative medicine, oral surgery, maxillofacial surgery

1. Introduction

Three-dimensional printing—also known as rapid prototyping—was first introduced in 
1980s; during past three decades, enormous changes and development have been performed 

by scientists through modifying this technology by uses, material, and also accuracy.

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



With increasing attention of scientific societies, recently, scientific literature bolded feasibility 
of 3-D-printed tissues and organs and its usage within laborious clinical situations. Also, this 
technology was used largely in accurate and highly customized devices, such as tracheobron-

chial splints, bionic ears, and even more. Within the field of craniofacial surgery, 3-D surgical 
models have been used as templates to create bone grafts, tailoring bioprosthetic implants, 

plate bending, cutting guides for osteotomies, and intraoperative oral splints. Using 3-D mod-

els and guides has been shown to shorten operative time and potentially reduce the complica-

tions associated with prolonged operative times.

The goal of surgical procedures for a clinician is to improve perioperative form, recovery 

of function, and also minimizing operative and postoperative morbidity. Many exciting and 

new technological advances have ushered in a new era in the field of oral and maxillofacial 
surgery over the last years, which within no exaggeration 3-D printing is the novelist and 

controversial one.

The aim of this chapter is to introduce 3-D printing method and its role in the contemporary 

oral and maxillofacial surgery and to review current advantages of its application in the field 
of regenerative medicine.

1.1. History of the technology

Three-dimensional (3-D) printing has been utilized in diverse aspects of manufacturing to 

produce different objects from guns, boats, and food to models of unborn babies. From over 
1450 articles related to 3-D printing listed in PubMed, nearly a third of them were solely pub-

lished in the last 2 years [1].

Three-dimensional (3-D) printing is a manufacturing process that objects are fabricated in a 
layering method during fusing or depositing different materials such as plastic, metal, ceram-

ics, powders, liquids, or even living cells to build a 3-D matter [2, 3]. It is a process of generat-

ing physical models from digital layouts [4, 5]. This technology demonstrates a technique that 

a product designed through a computer-aided scheme is manufactured in a layer-by-layer 

system [6]. This process is also cited as rapid prototyping (RP), solid freeform technology 

(SFF), or additive manufacturing (AM) [7].

3-D printing techniques are not brand new and have been existed since 30 years ago [8–10]. 

This technology is first introduced and invented by Charles Hull in 1986, and at first, it 
was utilized in the engineering and automobile industry for manufacturing polyurethane 

frameworks for different models, pieces, and instruments [11]. Originally, Hull employed 

the phrase “stereolithography” in his US Patent 4,575,330, termed “Apparatus for Production 
of Three—Dimensional Objects by Stereolithography” published in 1986. Stereolithography 
technique included subjoining layers over the top of each other, by curing photopolymers 
with UV lasers [12, 13].

Since then, 3-D models have been used for a diversity of different objectives. Since 1986, this 
process has started to accelerate and has honored recognition globally and has influenced dif-
ferent arenas, such as medicine.

Biomaterials in Regenerative Medicine188



The developing agora for 3-D desktop printers encourages wide-ranging experimentations in 

that subject. Generally, medical indications of these printers are such as treatment planning, 
prosthesis, implant fabrications, medical training, and other usages [4].

Having being used in military, food industry, and art, rapid prototyping is receiving a lot of 

attention in the field of surgery in the last 10 years [6, 14].

The pioneering usage of stereolithography in oral and maxillofacial surgery was by Brix and 

Lambrecht in 1985. Later this technique was used by them for treatment planning in cranio-

facial surgery [15].

In 1990, stereolithography was used by Mankovich et al. for treating patients having cranio-

facial deformities [16, 17]. They used it to simulate bony anatomy of the cranium using com-

puted tomography with complete internal components [17, 18].

By aiding in complex craniofacial reconstructions, 3-D printing has recently earned reputa-

tion in medicine and surgical fields [19–21].

Today, maxillofacial surgery can benefit from additive manufacturing in various aspects 
and different clinical cases [22]. This technique can help with bending plates, manufacturing 

templates for bone grafts, tailoring implants, osteotomy guides, and intraoperative occlusal 

splints [23–27]. Rapid prototyping can shorten surgery duration and simplify pre and intra-

operative decisions. It has enhanced efficacy and preciseness of surgeries [10].

2. Current 3-D printing techniques used in oral and maxillofacial surgery

From first innovation till nowadays, there are different kind of technologies introduced for 3-D 
printing. Binder jetting (BJ), electron beam melting (EBM), fused deposition modeling (FDM), 
indirect processes, laser melting (LM), laser sintering (LS), material jetting (MJ), photopolymer 
jetting (PJ), and stereolithography (SL) are well-known technologies of 3-D printing [14, 28, 29].

There are many different 3-D printing techniques. Benefits and disadvantages are factors to 
differ each technology system [14]. Among this variety of different techniques, there is a huge 
discussion and usage in oral and maxillofacial region for SL, FDM, and PJ [1, 28, 30].

Each technology has its own characteristics, properties, and advantages which Table 1 sum-

marizes some different three dimensional printing technologies.

3. Biomaterials available for 3-D printing

As researchers aim to investigate new materials for 3-D printing in last decade, it is obvious to 
see variety of biomaterials with different properties and also different applications. As Table 2 

summarizes all biomaterials used within studies all over the world for generating scaffolds 
for bone tissue engineering, it has to be noticed that from this large spectrum of biomaterials 
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Techniques Advantages Disadvantages

Light cured resin

1. Stereolithography (SLA)

Light sensitive polymer cured layer by 

layer by a scanning laser in a vat of liquid 

polymer.

Rapid fabrication.

Able to create complex shapes with high 
feature resolution. Lower cost materials if 

used in bulk.

Only available with light curable liquid 

polymers.

Support materials must be removed. 

Resin is messy and can cause skin 

sensitization and may irritate by 

contact and inhalation. Limited 

shelf life and vat life. Cannot be heat 
sterilized. High cost technology.

2. Photojet—light sensitive polymer is 
jetted onto a build platform from an inkjet 
type print head, and cured layer by layer 

on an incrementally descending platform.

Relatively fast. High resolution, high-quality 

finish possible. Multiple materials available 
various colors and physical properties 

including elastic materials. Lower cost 

technology.

Tenacious support material can be 

difficult to remove completely. Support 
material may cause skin irritation.

Cannot be heat sterilized. High cost 
materials.

3. DLP (digital light processing)

Liquid resin is cured layer by layer by 

a projector light source. The object is 
built upside down on an incrementally 

elevating platform.

Good accuracy, smooth surfaces, relatively 
fast.

Lower cost technology.

Light curable liquid polymers and 

wax-like materials for casting. Support 

materials must be removed. Resin is 

messy and can cause skin sensitization, 

and may be irritant by contact Limited 

shelf life and vat life. Cannot be heat 
sterilized. Higher cost materials.

Powder binder

Plaster or cementaceous material set by 

drops of (colored) water from ‘inkjet’ 
print head. Object built layer by layer 
in a powder bed, on an incrementally 

descending platform.

Lower cost materials and technology.

Can print in color. Un-set material provides 
support

Relatively fast process. Safe materials.

Low resolution. Messy powder. Low 

strength. Cannot be soaked or heat 
sterilized.

Sintered powder

Selective laser sintering (SLS) for polymers.

Object built layer by layer in powder bed. 
Heated build chamber raises temperature 

of material to just below melting point. 
Scanning laser then sinters powder layer 

by layer in a descending bed.

Range of polymeric materials including 

nylon, elastomers, and composites. Strong 

and accurate parts.

Self-supported process.

Polymeric materials—commonly nylon 

may be autoclaved. Printed object may have 
full mechanical functionality. Lower cost 

materials if used in large volume.

Significant infrastructure required, e.g., 
Compressed air, climate control. Messy 
powders. Lower cost in bulk.

Inhalation risk. High cost technology. 

Rough surface.

Selective laser sintering (SLS)—for 

metals and metal alloys. Also described 
as selective laser melting (SLM) or direct 

metal laser sintering (DMLS). Scanning 

laser sinters metal powder layer by layer in 

a cold build chamber as the build platform 

descends. Support structure used to tether 

objects to build platform.

High strength objects can control porosity. 
Variety of materials including titanium, 
titanium alloys, cobalt chrome, stainless 

steel. Metal alloy may be recycled. Fine detail 
possible.

Elaborate infrastructure requirements. 
Extremely costly technology moderately 
costly materials. Dust and nanoparticle 

condensate may be hazardous to health. 

Explosive risk. Rough surface. Elaborate 
post-processing is required: Heat 

treatment to relieve internal stresses 

in printed objects. Hard to remove 
support materials.

Relatively slow process.

Electron beam melting (EBM, Arcam). 
Heated build chamber. Powder sintered 

layer by layer by scanning electron beam 

on descending build platform.

High temperature process, so no support 

or heat treatment needed afterwards. High 

speed. Dense parts with controlled porosity.

Extremely costly technology 
moderately costly materials. Dust may 

be hazardous to health. Explosive risk.

Rough surface. Less post-processing 

required. Lower resolution.
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Techniques Advantages Disadvantages

Thermoplastic

Fused deposition modeling (FDM) 
First 3-DP technology, most used 
in ‘home’ printers. Thermoplastic 
material extruded through nozzle 

onto build platform.

High porosity. Variable mechanical 
strength. Low- to mid-range cost 

materials and equipment. Low accuracy 

in low cost equipment. Some materials 

may be heat sterilized.

Low cost but limited materials—

only thermoplastics.

Limited shape complexity for 

biological materials.

Support material must be 

removed.

Table 1. 3-D printing modalities and materials [14, 31].

Composed scaffolds Synthetic scaffolds Natural scaffolds

Nano-hydroxyapatite/

collagen/PLLA
Ceramic Polymeric Inorganic Organic

Octacalcium phosphate/

collagen

Calcium
Magnesium

Phosphate cement

(CMPC)

PLGA Silver Collagen sponge

Nano-hydroxyapatite/

polyamide 6

βTCP PLG Coral PRP

Nano-hydroxyapatite/

polyamide66

HA/TCP PLLA Silk fibroin protein Gelatin sponge

Hydroxyapatite-coated 

PLGA
Flurohydroxyapatite PGA Premineralized silk 

fibroin protein
Gelatin
Hydrogel

HA/PLGA Ca deficient 
hydroxyapatite 

(CDHA)

PLA ABB PuraMatrix

βTCP/collagen PLA-PEG Deer horn Alginate

DBM/PLA Fibronectin-
coated PLA

Partially demineralized 

bone matrix

Nano-hydroxyapatite/

polyamide

PEG-DA Bio-Oss

OsteoSet PEG-MMP Allograft

Octacalcium phosphate 

precipitated (OCP) 
alginate

PVDC Fibrin sealant

Demineralized bone 

powders/PLA
Polycaprolactone Gelatin foam

Apatite-coated PLGA Collagen gel

Hyaluronic acid based 

hydrogel

TCP, tri-calcium phosphate; HA, hydroxyapatite; DBM, demineralized bone matrix; PLGA, poly(lactic-co-glycolic acid); 
PLA, poly(d,l-lactic acid); PGA, poly(glycolic acid); PLLA, poly(l-lactic acid); PVDC, polyvinylidene chloride; PEG, 
polyethylene glycol; DA, diacrylate; MMP, matrix metalloproteinases; ABB, anorganic bovine bone; Puramatrix, a self-
assembling peptide nanomaterial.

Table 2. Types of scaffolds used in bone tissue engineering in maxillo-craniofacial region [51].

Application of 3-D Printing for Tissue Regeneration in Oral and Maxillofacial...
http://dx.doi.org/10.5772/intechopen.70323

191



just a whole bit of them are available for application in 3-D printing. As follows, we discuss 
four large categories of materials for 3-D printing of scaffolds and craniofacial tissues, which 
researches still aim to determine these materials complete properties and advantages.

3.1. Polymers and hydrogels

Polymer hydrogels are ideal candidates for the development of printable materials for tissue 

engineering. Hydrogels are known for remarkable tunability of rheological also presenting great 

mechanical, chemical, and biological properties; high biocompatibility; and similarity to native 

extracellular matrix (ECM) [32]. For three-dimensional printing of polymers and hydrogels, the 
use of materials with controlled viscosity should been noticed. This defines the range of printabil-
ity of the ink. Polymer inks, which are typically printed in the prepolymer phase, need enough 

viscosity allowing structural support of subsequent printed layers, also enough fluidity to pre-

vent nozzle clogging. For avoiding these difficulties, alginate hydrogels have been cross-linked 
with calcium ions immediately before the ink leaves the printing head or just after extrusions [33].

In recent researches, for providing suitable ink for bioprinting applications, prepolymerized 

cell-laden methacrylated gelatin hydrogels have been used successfully [34, 35]. Synthetic 

hydrogels used for cell encapsulation may limit cell-cell interactions. These interactions are 

critical for efficient cell proliferation, differentiation, and finally, tissue development. This can 
represent one of the limitations of bioprinting cell-laden hydrogels which is not present in 3-D 

printed scaffolds with cells seeded onto or in bioprinting of dense cell aggregates, which will 
discuss as follow. Hence, the requirement for the development of ECM-derived hydrogels 
that have tunable physical and chemical properties, are compatible with high cell viability, 

and provide the adequate binding sites (RGDs) for cell attachment and matrix remodeling 
during their early proliferative stage [32].

Synthetic polymers are most commonly used materials for 3-D printing in biomedical appli-

cations [36, 37]. However, since high temperature is usually involved during the printing of 

these materials, the direct incorporation of cells or growth factors in the polymer mixture is 

generally avoided as the cell viability or bioactivity [37] cannot be maintained throughout the 

manufacturing process.

Although hydrogels provide great advantages for tissue engineering applications, such as the 
ability of exposing cells to highly hydrated 3-D microenvironments that is similar to the natural 

ECM [32]. In contrast, they generally present very low stiffness (in the kPa range) compared with 
the majority of load-bearing tissues in the craniofacial complex (in the GPa range). Therefore, 
reconstruction of tissues subjected to higher mechanical loads, such as bones and teeth, usually 
requires the use of ceramic materials or composite scaffolds which provide more mechanical 
advantages, where polymers are commonly combined with inorganic fillers to increase scaffold 
stiffness [38].

3.2. Ceramics

Ceramic scaffolds are usually composed of calcium and phosphate mineral phases, such as 
hydroxyapatite [39] or b-tricalcium phosphate [40]. The noticeable ability of these scaffolds to 
upregulate osteogenesis due to inherent properties of the formation of a bioactive ion-rich cellular 
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microenvironment, also as mentioned before their ability to mechanically provide space mainte-

nance, makes these materials interesting choice for 3-D scaffold fabrication for craniofacial appli-
cations. In contrast, ceramic scaffolds are not compatible with cell encapsulation for bioprinting. 
In 3-D printed ceramic scaffolds, cells quickly populate the scaffold surface, which establishing 
close cell-cell interactions lead to promotion of cell proliferation and differentiation. On the other 
hand, ceramics with properties lead to lower rates of degradation than hydrogels, which aids in 

prolonged guided tissue remodeling and structural support. In contrast, ceramic scaffolds are 
too brittle for implantation in load-bearing defect sites. Ideal scaffolds would combine the high 
calcium content of calcium and phosphate ceramics with the outstanding toughness of natural 

bone, which perhaps can only be obtained by creating scaffolds that are biomimetically mineral-
ized and hierarchically structured, as recent researches demonstrated that in [41].

Fused deposition of ceramics (FDC) in a direct printing mode generally consists of extruding 
a slurry including a high content (>50% w/v) of inorganic components [42]. The manufactur-

ing of such scaffolds follows 3 steps:

1. Mixture phase, which involves the preparation of the slurry. The bioceramic particles are 

mixed in a solvent (aqueous or nonaqueous) with a low concentration of organic poly-

mers/surfactants, called the binder, to obtain adequate flowability.

2. Green ceramic and binder burnout phase involving the deposition of filaments of slurry 
following a predetermined pattern prior to drying and exposure to high temperature to 
burn out the organic component of the mixture.

3. Sintering phase, which involves the exposure of the green form to elevated temperature 

(above 1000°C) to initiate the migration of atoms between adjacent ceramic particles, hence 
creating physical bonds called “necks.”

It is critical for reproducible manufacturing of 3-D rapid prototyped bioceramics to have 

shape retention, a challenge that can be reached by adjusting the viscosity of the slurry and 
the evaporation rate of the solvent [43].

3.3. Composite materials

Printable composites, which are usually in the form of copolymers, polymer-polymer mix-

tures, or polymer-ceramic mixtures [44], allow ability for the combination of variety of advan-

tageous properties of their included components, which provide a remarkable candidate as 

“bioink”. Considering the advantages of polymer composite hydrogels, such as interpenetrat-
ing polymer networks (IPNs) or hybrid hydrogels [45], the incorporation of synthetic fill-
ers to printable materials recently discussed in researches [33]. The addition of silicate fillers 
[38] and a range of nanoparticles have been used to synthesize different types of composite 
scaffolds [46] to promote greater control over viscosity and stiffness of polymer hydrogels. 
In addition, several of silica-containing hydrogels with higher expression of genes encod-

ing morphogenetic cytokines, such as bone morphogenetic proteins (BMPs) seems promising 

[47]. The combination and manufacturing mixture of hydrogels with filler materials and/or 
natural peptides with morphogenetic capacity demonstrate great future for application in 3-D 

printing in aim to reach ultimate goal in regenerative craniofacial repair.
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Figure 1. SEM view of multicellular spheroids of HUSMCs (A), CHO cells (B) and HFBs (C) (adapted from Norotte et al. [50]).

Figure 2. Principles of spheroids bioprinting technology: (a) bioprinter (general view); (b) multiple bioprinter nozzles; (c) 

tissue spheroids before dispensing; (d) tissue spheroids during dispensing; (e) schematic view of continuous dispensing 

in air; (f) schematic view of continuous dispensing in fluid; (g) schematic view of digital dispensing in air; (h) schematic 
view of digital dispensing in fluid; (i) schematic view of bioassembly of tubular tissue construct using bioprinting of self-
assembled tissue spheroids illustrating sequential steps of layer-by-layer tissue spheroid deposition and tissue fusion 

process (adopted from Mironov et al. [48]).

3.4. Cell aggregates and spheroids

Over recent years, many of researches aimed to evaluate and study cell aggregates and 

spheroids for use in tissue engineering and regenerative medicine [48]. As this method cited 
correctly and appropriately as “scaffold-free printing,” in fact small quantities of hydrogel 
are used to facilitate cell aggregation. In this method for 3-D printing, or in an appropriate 
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way called “bioprinting,” multicellular spheroids are deposited using extrusion printers and 

allowed to self-assemble into the desired 3-D structure (Figure 1). As it is clear, these systems 
allow direct fabrication of tissue constructs which in contrast to other methods have extremely 

high cell densities. Although in load-bearing tissues with high amount of mineral components 
and noticeable mechanical properties use of this methods still looks uncertain, the ability to 

position aggregates of heterotypic cells with microscale precision (Figure 2) seems promising 

as an excellent alternative to bioprint complex tissues consisting variety of cells [49].

4. Manufacturing of scaffolds with 3-D printing technology

Researches aimed to investigate novel technologies for 3-D printing and introduced some 

novel methods including phase-separation, self-assembly, electrospinning, freeze drying, sol-

vent casting/particulate leaching, gas foaming, and melt molding [52]. Using scaffolds, the 
architecture of native extracellular matrices can be mimicked at the nanoscale level and there-

fore provide the primary base for the regeneration of new tissue [53]. Originally, a “top-down” 

approach was used as a tissue engineering method for scaffold fabrication. In this method, 
cells are seeded onto a biodegradable and biocompatible scaffold and are predicted to migrate 
and fill the scaffold hence creating their own matrix. By using this technique, several avascu-

lar tissues such as bladder [54] and skin [55] have been engineered effectively. However, due 
to the limited diffusion properties of these scaffolds, this technique faces several challenges 
for fabrication of more complex tissues such as heart and liver [56]. Therefore, “bottom-up” 
methods have been developed to overcome this problem [57]. Bottom-up approaches include 
cell-encapsulation with microscale hydrogels, cell aggregation by self-assembly, generation 

of cell sheets, and direct printing of cells [58]. These complex tissue blocks can be assembled 

using various methods including microfluidics [59], magnetic fields [60], acoustic fields [61], 

and surface tension [62]. These methods are relatively easy and have provided a solid foun-

dation for the fabrication of scaffolds. However, as mentioned previously, these conventional 
methods suffer from several limitations including inadequate control over scaffold proper-

ties such as pore size, pore geometry, distribution of high levels of interconnectivity, and 

mechanical strength. As such, it is necessary to develop technologies with sufficient control 
so as to design more intricate tissue-specific scaffolds. In addition, scaffolds can be coated 
using surface modification techniques (such as introducing functional groups) to enhance 
cell migration, attachment and proliferation. Three-dimensional printing allows scaffolds to 
become more precisely fabricated (similar to that of the computer-aided design (CAD)) with 
higher flexibility in the type of materials used to make such scaffolds. Three-dimensional 
printing uses an additive manufacturing process where a structure is fabricated using a layer-

by-layer process. Materials deposited for the formation of the scaffold may be cross-linked or 
polymerized through heat, ultraviolet light, or binder solutions. Using this technology, 3-D 
printed scaffolds can be prepared for optimized tissue engineering [52].

For appropriate formation of tissue architecture, the seeding cells (often stem cells) 
require a 3-D environment/matrix similar to that of the ECM. The ECM acts as a medium 
to provide proteins and proteoglycans among other nutrients for cellular growth. The 
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ECM also provides structural support to allow for cellular functionality such as regulat-
ing cellular communication, growth, and assembly [63]. With this in mind, scientists and 

engineers originally attempted to replicate the ECM through conventional techniques, 
which consequently established a framework for using more advanced techniques, such 

as 3-D printing, to yield higher quality scaffolds. The 3-D printing technique can create 
defined scaffold structures with controlled pore size and interconnectivity and the ability 
to support cell growth and tissue formation [64–66]. The current methods for 3-D printing 

involve a CAD, which is then relayed to each 3-D printing system to “print” the desired 
scaffold structure. Through various 3-D printing technologies, discussed below, research-

ers are trying to fabricate biocompatible scaffolds that efficiently support tissue formation 
(Table 3).

5. Bioprinting advantages aiming for clinical use

The goal of tissue engineering is to create functional tissues and organs for regenerative ther-

apies and ultimately organ transplantation/replacement. Trial and error was the long and 

tedious process mainly used to advance the field of regenerative medicine by clarifying the 
success of techniques.

Researchers needed to come up with a list of requirements in order to measure their successes 

or failures in tissue fabrication [48, 67]. This list was generated from the observations of natu-

ral human tissue.

As gold standard of fabricated tissues is to be as similar as possible to natural tissues in the 
human body in different parameters, then these fabricated tissues must:

1. Be able to integrate with naturally occurring tissue, and attach via microsutures, glues [68], 

or through cell adhesion [69–71].

2. Be capable of essential functions in vivo [48].

3. Become fully vascularized in order to sustain its functionality [68, 71].

Also, the printers used for tissue fabrication required standardization as well [67, 69].

1. The bioprinting machines required set extreme sterilization methods to eliminate un-

warranted contamination with previously used materials or foreign matter from the 
environment.

2. The conditions for printing must be ideal for tissue fabrication, so factors such as humidity 

and temperature must be closely monitored.

3. Nozzle size and methods of delivery affect the viability of the materials being printed; 
therefore, there must be set ideals for delivery methods in relation to the various printing 

materials.
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Printing method Advantages Disadvantages Preclinical progress

Direct 3-D printing/

inkjet
• Versatile in terms of usable materials

• No support is necessary for overhang or com-

plex structures

• Potential toxicity (incompletely removed binders)

• Low mechanical strength prints compared to laser 

sintering

• Time consuming (post-processing)

• (Rat/bone)

• (Rabbit/bone)

• (Mouse/bone)

W/electrospinning • (Mouse/cartilage)

Bioplotting • Prints viable cells

• Soft tissue applications

• Limitation on nozzle size* (*Must not be cytotoxic dur-

ing processing)

• Requires support structure for printing complex shapes

• (Rabbit/trachea)

• (Rabbit/cartilage)

• (Rat/cartilage)

• (Mouse/cartilage)

• (Mouse/tooth 

regeneration)

• (Mouse/skin)

Fused deposition 
modeling

• Low cytotoxicity vs direct 3-D printing

• Relatively inexpensive (printers and materials)

• Limitation on materials (often requires thermoplastics)

• Materials used are nonbiodegradable

• Requires support structure for overhangs and complex 

shapes

• Post-processing may be necessary

• Low Resolution

• (Swine/bone)

• (Rat/bone)

Selective laser sintering • Provides scaffolds with high mechanical 
strength

• Powder bed provides support for complex 

structures

• Fine resolution

• Limitation on materials (must be shrinkage and heat 

resistant)

• Very high temp required (up to 1400°C)

• Expensive and time consuming (processing and post 
processing)

• (Mouse/bone)

• (Rat/heart)

• (Rat/bone)

• (Mouse/skin)

• (Mouse/heart)

A
pplication of 3-D

 Printing for Tissue Regeneration in O
ral and M

axillofacial...
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Printing method Advantages Disadvantages Preclinical progress

Stereolithography • Very high resolution

• Speed of fabrication

• Smooth surface finish

• Materials must be photopolymers

• Expensive (two photon printers)

• Support system is necessary for overhang and intricate 

objects

• (Rat/bone)

• (Rabbit/trachea)

• (Pig/tendon)

Electrospinning • Speed of fabrication

• Cell printing

• Soft tissue engineering

• Low shear stress (bioelectrospraying)

• Random orientation of fibers

• Nonuniform pore sizes

• High voltage (1–30 kV) requirements

• (Mouse/

biocompatibility)

• (Rat/bone)

• (Rabbit/vascular 

tissue)

Indirect 3-D printing • Good for prototyping/preproduction

• Material versatility casting once mold is 

obtained

• Requires proprietary waxes for biocompatibility (wax 

printing)

• Low accuracies/resolution

• Mold required for casting

• Long production times (mold → cast → processing → 

product)

• (Rat/bone)

• (Mouse/tooth 

regeneration)

Table 3. Preclinical researches on various 3-D printing techniques for manufacturing scaffolds for tissue engineering [52].
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As a result, researchers created a few methods of printing with the goal of finding a solution 
to the given problems for optimal tissue biofabrication [48, 68, 69]. Thermal inkjet bioprinting 
with bioink and direct-write bioprinting both make use of modified inkjet printers but with 
varied application techniques. Organ printing with tissue spheroids is the recent achievement 

of researches which seems promising to fabricate tissues directly. Table 4 review advantages 

and disadvantages of all three common methods “Thermal Inkjet Bioprinting,” “Direct-Write 
Bioprinting,” and “Spheroid Organ Printing.” Organ printing, otherwise known as the biomedical  

Type of 

bioprinting

Method Tissue characteristics Note

Thermal inkjet 
bioprinting

• Bottom up

• Layer-by-layer

• Avascular

• Aneural

• Alymphatic

• Thin

• Only nourishable via 

diffusion

“Bioink,” which is a water-based 

liquid consisting of proteins, 

enzymes, and cells suspended in 

a media or saline.

Direct-write 

bioprinting

• Digital control of print.

• Several printing units 

simultaneously.

• Application of variety of 
materials simultaneously.

• Faster turnaround time for 
printed products.

Possibility of printing tissues 

with different compositions.
• The bioink of direct-write 

printers may consist of hydro-

gels of varying consistencies 

that are composed of agarose, 

alginate, collagen type I, and 

Pluronic F127.

• This method categorized in 

pneumatic, mechanical, and 

a pneumatic-mechanical 

hybrid. It was concluded that 

the pneumatic systems work 

better with high viscosity 
materials, while mechanical 

systems are better suited in 
working with materials of 

low viscosity.

Spheroid 

organ printing

Spheroids are punched into 

“biopaper” which is a sprayed 

layer of hydrogel. Each spheroid 
is made of living cells, thereby 

creating a ball of “living 

materials” capable of self-

assembly and self-fusion.

Alternatively, the spheroids can 
be digitally placed, undergo self-

assembly, and fuse without the 

use of hydrogel.

• Self-organization is 

defined as, “a process in 
which patterning at the 
global level of a system 

emerges solely from 

numerous interactions 

among the lower-level 

components of the 

system.”

• Self-assembly is defined 
to be, “the autonomous 

organization of com-

ponents into patterns 
or structures without 

human intervention.”

Researchers fabricated three 

types of spheroids to create 

a vascular tree: solid or 

nonlumenized spheroids, 

spheroids with one big lumen 

(mono-lumenized spheroids), 

and microvascularized tissue 

spheroids.

Table 4. 3-D bioprinting technique advantages and properties[67].
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application of rapid prototyping, may be defined as additive layer-by-layer biomanufacturing 
of cells. Advantages of organ printing include its automated approach offering a pathway for a 
scalable and reproducible mass production of tissue-engineered products. This also allows the 

precise simultaneous 3-D positioning of several cell types, hence enabling the creation of tissue 

with a high level of cell density. Organ printing may be used to solve the problem of vasculariza-

tion in thick tissue constructs, and moreover, this technology may be done in situ. Therefore, this 

emerging transforming technology has potential for surpassing traditional solid scaffold-based 
tissue engineering [72].

6. Current limitations

6.1. Vascularization

In order to create a complete and functional organ, the researchers must be able to create thick 

complex tissues with full vascularization containing lumens of various sizes, large vascular struc-

tures to microstructures, in order to sustain the surrounding organ tissue. The best way to achieve 

this type of vascularization is to fabricate the vascular system and tissue simultaneously, of which 

is easier said than done [48]. Thorough vascularization remains a common theme for current 

bioprinting limitations. Without a functional circulatory system, tissue constructs are limited to 

a means of diffusion for nutrition, which in itself is limited to just a few hundred microns [69].

Current methods of vascularization call for the infiltration of host microvessels into an 
implanted construct [67, 73, 74].

Yet, this strategy is lacking in control and specificity for the developing microvessels. The invad-

ing microvessels have a limited penetration depth which prevents the successful incorporation 

of the microvessels into larger layered constructs. Additionally, the penetration of the vascular 
system itself may result in a distortion of the region penetrated or in the destruction of the 

fabricated tissue altogether. For these reasons, it would be ideal to construct tissues with direct 
vessel in-growth, or vascularization created within the tissue itself, all before implantation.

6.2. Tissue components and costs

In addition to vascularization, native tissues contain unique cellular combinations and orga-

nizations. There is a need to develop techniques that mimic the complexity of native tissues 

in order to drive tissue recovery and replacement for medical applications [69]. With the pro-

duction of organs such as kidneys, for example, at least one million glomeruli and nephrons 

would need to be generated. Not only would the fabrication be a massive undertaking but 

also the fabricated tissue would need to be scalable. Scalability of biofabricated tissues is 

not presently a reality. Yet, spheroids have shown promise toward being scalable with fur-

ther development. Finally, another major limitation for the development of natural-like, fully 
functioning fabricated human tissue is economic [68]. This challenge must definitely be over-

come if biofabrication technology is to allow the creation of a functional living human organ.
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7. Future aspects of 3-D printing for regenerative medicine

In this chapter, we have illustrated current guiding principles for 3-D bioprinting in tis-

sue fabrication, as well as recent advances and technological developments. The speed at 

which our knowledge has advanced with additive manufacturing and automated printing 

systems shows a promise to expand our basic science and engineering capabilities toward 

addressing health care problems. One of the significant developments in 3-D bioprinting is 
to manufacture cell microenvironments from molecular to macroscopic scales, which are 

requested and suitable for tissue engineering and regenerative medicine. As novel meth-

ods and technologies introduced in recent years for 3-D printing of biomaterials, promis-

ing overview of future appears to manufacture scaffolds for tissue engineering that reach 
the gold standards and also better comprehensions of stem cells microenvironments and 
interactions. By aid of various novel technologies, such as microfluidic systems [75, 76], 

biopatterning [77], and layer-by-layer assembly [76, 78], researchers are now able to bio-

manufacture microtissue constructs within scaffolds and even also within scaffold-free 
environments. Considering the great and enormous improvements of biomaterial for tis-

sue engineering, in contrast, there are still certain challenges and difficulties that need more 
attention. Vascularization is one of the limitations which receive most of attentions [79, 80] 

due to the fact that this challenge leads to hypoxia, apoptosis, and immediate cell death. For 
resolving this issue and  providing sufficient space for vascularization, researchers attempts 
to fabricate porous scaffolds [81], to provide sufficient space for vascularization. However, 
this approach cannot overcome the vascularization challenge completely due to the diffu-

sion of cells and other materials into these porous structures [82]. Forming interconnected, 
well-defined vascular structures during biomanufacturing process seems to lead to resolv-

ing this difficulty and providing better results during process. Other issues that have to 
be noticed are mechanical strength and stability in 3-D tissue engineering which is one of 

the key requirements [83]. To be clear in regeneration of hard (e.g., bone) and soft (e.g., 

vascular grafts) tissues, modulus of elasticity is a crucial parameter that desires improve-

ment [84–86]. Furthermore, the development of a totally closed bioprinting system that 
integrates printing and post-printing processes such as in-vitro culture and maturation of 

tissue constructs continues to be a challenge.

With advances in near future, which help finding solutions for the challenges mentioned 
above, bioprinting technologies will potentially help improvements of rapid clinical solu-

tions and advances in medical implants. Further, we envision that the integration of cells 
and biomaterials through bioprinting with microfluidic technologies are likely to create 
unique microenvironments for various applications in cancer biology, tissue engineering, 

and regenerative medicine [87–91]. Additionally, developments on high-throughput bio-

manufacturing of 3-D architectures will pave the way for further advancements of in vitro 

screening and diagnostic applications, potentially enabling complex organ constructs. In 

the meantime, it is only the effective interplay of engineering concepts in combination with 
the well-established fundamentals of biology that will realize the true potential of this 

exciting area.
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