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Abstract

Present chapter describes recent advances in the field of development of ionic liquids as
green and sustainable corrosion inhibitors for metals and alloys. The present chapter has
been divided into several sections and subsections. Recently, development of the green
and sustainable technologies for the corrosion prevention is highly desirable due to
increasing ecological awareness and strict environmental regulations. In the last two
decades, corrosion inhibition using ionic liquids has attracted considerable attention due
to its interesting properties such as low volatility, non-inflammability, non-toxic nature,
high thermal and chemical stability and high adorability. Several types of ionic liquids
have been developed as “green corrosion inhibitors” for different metals and alloys such
as mild steel, aluminum, copper, zinc, and magnesium in several electrolytic media. The
ionic liquids are promising, noble, green and sustainable candidates to replace the
traditional volatile corrosion inhibitors.

Keywords: ionic liquids, corrosion, adsorption, green corrosion inhibitors, designer
solvents, ferrous and non-ferrous metals

1. Introduction

1.1. Corrosion and its economic impact

Corrosion is an irreversible and spontaneous deterioration of metal or alloy through chemical

or electrochemical reaction with the environment [1, 2]. Corrosion causes enormous wastes of

metallic materials which lead to enormous economic losses all over the world. Therefore,

corrosion has drawn considerable academic and industrial attention [1–4]. According to highly

cited study carried out by the National Association of Corrosion Engineers (NACE), in 1998,

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
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the total annual direct cost (estimated) of corrosion in U.S.A. was US $276 billion, equating

approximately around 3.1% Gross Domestic Product (GDP; NACE 2002) [5]. In 2011, the total

cost of corrosion in U.S.A. became more than US $2.2 trillion. As for as the corrosion cost in

India is concern, it was around Rs. 2 lackscrores (US $45 billion) as proposed by 1st Global

Corrosion Summit held in New Delhi, India in 2011 [6]. However, these estimated data are

outdated and recently closer investigation of the NACE on the cost of corrosion is available

according to which the annual global cost of corrosion is approximately US $2.5 trillion,

equating 3.4% of the global GDP [7, 8]. In India, the annual corrosion cost is more than US

$100 billion, while in South Africa, the direct corrosion cost is estimated to be around R130

billion (i.e. about US $ 9.6 billion) [7, 8]. There are several methods of corrosion protection have

been developed such as coating, anodic and cathodic protections, alloying and de-alloying and

use of synthetic corrosion inhibitors by suitably applying them we can reduce this cost of

corrosion from 15% (US $375 billion) to 35% (US $ 875 billion).

1.2. Causes of corrosion

Pure metals are chemically unstable and undergo chemical and/or electrochemical reactions

with their environments to form more stable oxides. The chemical reactivity of pure metals is

related to their natural tendency of oxidation (except gold, silver and platinum), as they have

tendency to return their natural state by chemical reactions with the constituents of environ-

ment [9–12]. Since corrosion is a spontaneous process, relative rate of corrosion among a

given series of metals is related to the change in standard Gibb’s free energy (ΔGᴼ). As more

negative value of ΔGᴼ as high spontaneity of reaction and consequently higher corrosion

rate [9–12]. When metals and alloys exposed to environment and particularly in acid solution

during several industrial processes like acid pickling, acid descaling, etc., corrosion will

undergo forming stable oxides [13–15]. Therefore, these processes required some additives

known as corrosion inhibitors that form protective covering over the metallic surface and

isolate metals from the environment and thereby inhibit the corrosive degradation [13–17].

The corrosion products such as rust and scale can also act as corrosion inhibitors by accu-

mulation on the surface and act as physical protective barrier. The natural tendency of

metallic corrosion can be affected by several factors, however, the relative rate of corrosion

of any particular metal is depending upon the Pilling—Bedworth ratio which is defined as

Md/nmD, where m and d are the atomic weight and density of the metal, respectively and M

and D are the molecular weight and density of scale (corrosion product) accumulated on the

metallic surface, and n denotes the number of metallic atoms in the molecular formula of

corrosion product (rust or scale); for example for Fe2O3 and Al2O3, n = 2 [18, 19]. The

magnitude of Pilling – Bedworth ratio can be used to explain where the surface film will be

protective or not. The volume of corrosion product will be small than the volume of metal

from which it was formed for Md/nmD < 1, in this situation it is expected that surface film of

corrosion product contains pores and cracks that would be relatively non-protective. On the

other hand, volume of corrosion product will be larger than the volume of metal for Md/

nmD > 1, in that situation it is expected that surface film of corrosion product is relatively

more compressed and compact and consequently the metal would be relatively more

protected.
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1.3. Corrosion prevention methods and corrosion inhibitors

There are several methods of corrosion protection have been developed among which, syn-

thetic corrosion inhibitors are one of the best methods due to its advantages such as cost

effectiveness and ease of application in industry [20–23]. The flow diagram of the available

corrosion protection measures is shown in Figure 1. The passivating inhibitors are also known

as anodic inhibitors because they general inhibit the metallic corrosion by forming the surface

oxide (passive) film and causes the large anodic shift corrosion potential (Ecorr) [24]. The

passivating inhibitors can be further classified into oxidizing anions that passivate the metallic

surface in the absence of oxygen such as chromate, nitrite and nitrate and non-oxidizing anions

that can passivate the metallic surface only in the presence of oxygen such as phosphate,

tungstate and molybdate. The cathodic inhibitors either decrease the rate of cathodic reactions

or precipitate on the cathodic areas to increase the surface impedance that decrease the

diffusion of reducible species to these areas [24]. The cathodic inhibitors act by three different

mechanisms namely, cathodic poisons, cathodic precipitates and oxygen scavengers. Gener-

ally, arsenic and antimony make the association of hydrogen more difficult and act as cathodic

poisons, calcium, zinc and magnesium precipitates in their oxide forms and act as cathodic

precipitates and sodium sulfite and hydrazine react with surrounding oxygen and act as

oxygen scavengers [25–28].

Figure 1. Available methods of metallic corrosion protection.
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Organic compounds are also known as filming inhibitors; generally inhibit metallic corrosion

by forming the protective surface film that isolates the metal form the surrounding (corrosive)

environments. Most of the well know organic inhibitors are heterocyclic compounds contain-

ing polar functional groups such as -NO2, -OH, -OCH3, -CH3, -NH2, -COOC2H5, -CONH2,

-COOH, etc. [29–31]. These polar functional groups and conjugated π-electrons of multiple

bonds (double and triple) act as adsorption centers during metal-inhibitor interactions. This

type of adsorption results into blocking of anodic and cathodic reactions indirectly. The adsorp-

tion of these inhibitors is affected by several factors such as nature and magnitude of charge

present on metal, nature of electrolyte, electronic structure of inhibitor molecules, nature of

substituents, solution temperature, exposure time etc. [29–34].

1.4. Ionic liquids as green corrosion inhibitors

“Green chemistry”which is a relatively new and rapidly growing area of chemistry that involves

designing of products and processes that reduce the use and production of toxic substances [35–

38]. Recently, worldwide growing ecological awareness and strict environmental protocols do

not permit the synthesis and utilization of hazardous traditional volatile corrosion inhibitors.

Therefore, there is vital need for improvement in the synthetic and engineering chemistry either

by environmental friendly starting materials or proper designing for synthesis using non-

classical energy sources such as ultrasound and microwave heating. In this regard use of multi

component reactions (MCRs) in combination with ultrasonic (sonochemical) and microwave

irradiation is one of the best alternative synthetic strategies toward “green synthesis.” Recently,

scientists are trying to develop plant extracts and drugs as green corrosion inhibitors due to their

natural and/or biological origins and non-toxic nature [39–41]. However, extraction and purifi-

cation of plant extracts is very tedious, laborious, extremely expensive, time consuming and

requires large amount of organic solvents [42, 43]. Therefore, there is need to develop “green

inhibitors” by proper designing of the synthesis that can be achieved either by using cheap and

environmental friendly starting materials or by synthesizing them from one step MCR reactions.

Toward, “green chemistry,” utilization of ionic liquids has immersed as new strategy due to

its several fascinating properties such as low melting point (lower that 100�C), high polarity,

low toxicity, low vapor pressure, very high thermal and chemical stability, less hazardous

influence on environment and living being [44–48]. By definition, ionic liquids are materials

that mainly composed of ions with melting point below than 100�C. The properties of ionic

liquids could be modified according to the need by proper selection of cations and anions,

which is the greatest advantage for designing ionic liquids of specific properties [49–51]. Due

to this reason ionic liquids are also known as “designer chemicals” that have potential to

consume as solvent or catalysis for various chemical transformations [44–51]. The rapid

utilization of ionic liquids in almost all fields of chemistry and chemical engineering is

resulted to their above mentioned fascinating properties which enable them as “green and

sustainable chemicals” having tendency to dissolve wide range of inorganic and organic

compounds. The ionic liquids follow the principals of “green chemistry” proposed by Paul

Anastas and John Warner [52–54].
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1.4.1. Properties and applications of ionic liquids

The ionic liquids have several fascinating properties such as low volatility (low vapour pres-

sure), very high stability over wide range of pH and temperature, capability to dissolve a wide

range of organic and inorganic compounds as they generally exist in their ionic forms through

which they easily dissolve in polar solvents like H2O, HCl, etc., moreover, their cationic

counterparts generally contain large organic moieties through which they are capable to

dissolve non-polar organic compounds, capability to solubilize gases like H2, CO, CO2 etc.,

dependency of solubility on the nature of cations and anions, acceleration of reaction rate for

chemical transformation under microwave heating, long time stability without decomposition

and their high selectivity [55–62]. These fascinating properties of ionic liquids make them good

candidature to replace conventional organic volatile solvents with non-conventional ionic

liquids that have been employed in variety of chemical transformations such as solvents for

synthesis of nanomaterials and nanostructure, biochemical transformations, nucleophilic sub-

stitution reactions, electrodeposition of metals and semiconductors and solvent extraction,

separation of petrochemical relevance mobile phase converter in HPLC, catalyst in various

chemical and biochemical transformations, dye sensitizer for solar cells, oil shale processing,

etc. (Figure 2) [55–62].

Figure 2. Applications of ionic liquids.
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1.4.2. Classification of ionic liquids

The ionic liquids can be classified into several categories based on various bases. Hajipour

and Refiee [63] have classified the ionic liquids into eleven classes namely, neutral ionic

liquids, acid ionic liquids, basic ionic liquids, ionic liquids with amphoteric anions,

functionalized ionic liquids, protic ionic liquids, chiral ionic liquids, supported ionic liquids,

bio-ionic liquids, poly-ionic liquids, and energetic ionic liquids and also have described

common features and properties of these ionic liquids. However, Suresh and Sandhu [62, 63]

classified ionic liquids into only two classes namely, cationic and anionic ionic liquids. They

were further subdivided anionic ionic liquids into several subclasses namely, borates,

dicyanamide (DCN), Halide, Bis(trifluoromethylsulfonyl)imide (NTF), nonaflate (NON),

phosphate, sulfate, sulfonate, thiocyanate (SCN), tricyanomethide (TCC) based anionic liq-

uids. Some common classes of ionic liquids with examples and their salient features are

described in Table 1.

SN Types of ionic liquids (classes) Some typical examples Remark

1 Neutral ionic liquids

, 

, , 

Anions are associated with cations

with weal electrostatic interaction,

low melting point, low viscosity,

used as inert solvent, good thermal

and electrochemical stability

2 Acidic ionic liquids

,  

,  

Anions=  (HSO4
-
, H2PO4

-
, M3Cl7

-
; Zn, Fe, 

Al) 

Ionic liquids with acidic cations or

acidic anion, enhanced solubility in

water, possess good catalytic

efficiency

3 Basic ionic liquids These ionic liquids are basic in

nature due to presence of one or

more amine group (1ᴼ, 2ᴼ or 3ᴼ

amine)

4 Functionalized ionic liquids Ionic liquids that has a covalently

bound functional group on the

cation and/or anion

5 Supported ionic liquids

, 

Table 1. Classification of ionic liquids and their common features.
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1.5. Comparison between organic inhibitors and ionic liquids

Over past two decades corrosion inhibition using ionic liquids (ILs) has experienced an out-

standing growth and abundant examples on corrosion inhibitions are available that have been

effectively carried out in different corrosive media. Although, traditional volatile compounds

have been most extensively used as corrosion inhibitors in several industries. However, most

of them are toxic for living being and environment [64–66]. In view of this, ionic liquids (ILs)

have been used extensively in recent years. Ionic liquids have several advantageous

physiochemical properties including non-toxic, high conductivity, non-flammability, as well

as high thermal and chemical stability [35–63]. One of the most significant characteristics of

ionic liquids is their environmental friendly and non-hazardous nature due to their non-

negligible vapour pressure. Unlike to traditional volatile corrosion inhibitors, due to their

extremely low vapour pressure these compounds will not evaporate and will not contaminate

the surrounding environment [67, 68]. Additionally, sometimes the use of organic inhibitors

particularly polymeric and high molecular weighted organic compounds is limited due to

their extremely low solubility in the polar corrosive media [69–72]. However, ionic liquids are

highly soluble in the polar corrosive environments due to their ionic nature [73]. Furthermore,

there is limit less prospect of suitably modifying the structure of the anion and cation of any

given ionic liquids delivers an unlimited amount of potential derivatives having numerous

physiochemical properties, while this type of modification is not possible with volatile corro-

sion inhibitors. In summary, the use of ionic liquids as corrosion inhibitors is preferred as

compared to traditional volatile (toxic) corrosion inhibitors due to their several advantageous

physiochemical properties including their high solubility, non-toxic, high conductivity, non-

flammability, less volatility as well as high chemical stability and more importantly due to their

“green and sustainable” nature.

2. Applications of ionic liquids as corrosion inhibitors

Several fascinating properties of the ionic liquids make them ideal candidates to replace the

traditional corrosion inhibitors that have several adverse effects on environment and living

beings. Recently, a large number of works have been reported describing the use of ionic

liquids as corrosion inhibitors.

2.1. Ionic liquids as corrosion inhibitors for mild steel

Mild steel is most frequently used as constructional material for several industries due to its

high mechanical strength and low cost [74, 75]. However, these materials are highly reactive

and undergo corrosive degradation during various industrial processes like acid cleaning, acid

descaling, acid etching, and acid pickling processes that require use of additives in order to

increase the lifespan of metal/alloy has used [76]. The use of organic compounds containing

heterocyclic rings and polar fictional groups such as amino, hydroxyl, methyl, methoxy, nitro,

nitrile, etc., as additive is one of the most important alterative to protect metals and alloys from

these unsolicited reactions [74, 75]. These compounds inhibit corrosion by adsorbing over the

metallic surface [74–77]. However, the use of these highly volatile traditional toxic corrosion
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inhibitors is limited due to increasing ecological awareness and strict environmental regulations.

In this regards consumption of “ionic liquids” as corrosion inhibitors has become an important

green alternative methods of corrosion protection. Literature survey reveals that several syn-

thetic ionic liquids have been used as effective corrosion inhibitors for mild steel (or carbon steel)

in various electrolytic media. Likhanova et al. [78] synthesized two ionic liquids namely, 1,3-

dioctadecylimidazolium bromide (ImDC18Br) and N-Octadecylpyridiniumbromide (PyC18Br)

using conventional and microwave heating methods, respectively and investigated their inhibi-

tion performance on mild steel corrosion in 1M H2SO4 using several experimental techniques.

They were observed that studied ionic liquids acted as good corrosion inhibitors for mild steel in

aqueous acid solution. The adsorption on metallic surface takes place via chemisorption mecha-

nism which obeyed the Langmuir adsorption isotherm. Potentiodynamic polarization results

revealed that applied ionic liquids behaved as mixed type inhibitors. These authors were pro-

posed a mechanism of corrosion inhibition on the basis of results obtained from SEM-EDX, XRD

and Mossbauer analyses. The inhibition performance of the 1-ethyl-3-methylimidazolium

dicyanamide (EMID) on mild steel corrosion in 0.1M H2SO4 using several experimental tech-

niques [79] has been tested. Results showed that EMID inhabits metallic corrosion by adsorption

on the metallic surface which was confirmed by decreased values of Cdl and increased surface

coverage in presence of the inhibitor. The adsorption of the EMID over metallic surface obeyed

the Langmuir adsorption isotherm. The inhibition performance of two ionic liquids namely 1-

butyl-3-methylimidazolium chlorides (BMIC) and 1-butyl-3-methylimidazolium hydrogen sul-

fate ([BMIM]HSO4) on mild steel corrosion in 1MHCl have been studied by Zhang andHua [80]

using electrochemical and weight loss experiments. Results showed that the inhibition efficiency

of both ionic liquids obeyed the order: ([BMIM]HSO4) > (BMIC). They were found that adsorp-

tion of these compounds on mild steel surface obeyed the Langmuir adsorption isotherm.

Potentiodynamic study suggested that both ionic liquids acted as mixed type inhibitors. The

effect of temperature (303–333 K) was also investigated on both the ionic liquids. Finally, several

activation and thermodynamic parameters such as energy of activation (Ea), enthalpy of activa-

tion (ΔH), entropy of activation (ΔS), adsorption constant (Kads) and Gibb’s standard free energy

(ΔGᴼ) were calculated in order to explain the mechanism of adsorption and corrosion inhibition

of both the ionic liquids.

The inhibition performance of 1-octyl-3-methylimidazolium bromide ([OMIM]Br) and 1-allyl-

3-octylimidazolium bromide ([AOIM]Br) on mild steel corrosion in 0.5 M H2SO4 using weight

loss, electrochemical, scanning electron microscopy (SEM) and Quantum chemical calculations

techniques showed that both the ionic liquids acted as good corrosion inhibitors and their

adsorption on the metallic surface obeyed the El-Awady thermodynamic–kinetic model and

acted as slightly cathodic type inhibitors [81].

Table 2 represents the corrosion inhibition properties of several other ionic liquids that have

been employed as inhibitors for mild steel corrosion in electrolytic media [82–116]. The

chitosan-based ionic liquid was synthesized using oleic acid and p-toluene sulfonic acid and

its corrosion inhibition efficiency was determined using several electrochemical measure-

ments [117]. Results of the investigated study revealed that presence of the ionic liquid in the

chloride containing corrosive medium decreased the rate of metallic dissolution as well as

hydrogen evolution. Adsorption of the ionic liquid followed the Langmuir adsorption
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Synthetic scheme and/or chemical structure of

ionic liquids

Techniques Nature of adsorption Electrolytic media Ref.

Electrochemical and scanning electron

microscopy

Langmuir adsorption isotherm, mixed

type

3.5% NaCl [82]

, ,
[EMIM]+[BF4 ]−, [BDMIM]+[BF4]  −,   [C10MIM]+[BF4]−

Experimental, quantum chemical,

Monte Carlo simulation

Langmuir adsorption isotherm, mixed

type

1M HCl [83, 84]

 
(CPEPB) 

Gravimetric, electrochemical, quantum

chemical calculations

Langmuir adsorption isotherm, mixed

type

1M HCl [85]

(G2IL): n = 2; (G3IL): n = 3; (G6IL): n = 6

Scheme 1 Gravimetric, electrochemical Langmuir adsorption isotherm, mixed

type

1M HCl [86]

Scheme 2 Electrochemical, Quantum chemical

calculations (DFT)

Langmuir adsorption isotherm, mixed

type

1M HCl [87]

,  

               (CTAB)                                               (SDS) 

Electrochemical, Scanning electron

microscopy

Flory–Huggins adsorption isotherm,

mixed type

3.5% NaCl [88]
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Synthetic scheme and/or chemical structure of

ionic liquids

Techniques Nature of adsorption Electrolytic media Ref.

(TSIL)

Weight loss, electrochemical, SEM,

AFM, contact angle method

Langmuir adsorption isotherm, mixed

type

1M HCl [89]

([C4C1im][FeCl4])

Weight loss, electrochemical, SEM,

DFT methods

– Open and controlled

environments

[90]

[BMIM]Br

Weight loss, electrochemical Langmuir adsorption isotherm, mixed

type

1M HCl [91, 92]

,

(DBImL)                                       (DBImA)

Electrochemical, SEM Langmuir adsorption isotherm, mixed

type

1M HCl, 1M H2SO4 [93]

, , , , 

[EMIM] + [EtSO4 ] - , [EMIM] + [Ac] −, [BMIM] + [SCN] 

−, [BMIM] + [Ac] −, [BMIM] + [DCA] −

Electrochemical, spectroscopic, SEM,

DFT, QSAR and Monte Carlo

simulation

Langmuir adsorption isotherm, mixed

type

1M HCl, [94]

Electrochemical, Immersion, SEM – 0.01M NaCl [95]
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Synthetic scheme and/or chemical structure of

ionic liquids

Techniques Nature of adsorption Electrolytic media Ref.

, 

([BsMIM]-[HSO4])                 ([BsMIM][BF4]),

Gravimetric, electrochemical, SEM Langmuir adsorption isotherm 1M H2SO4 [96]

Weight loss and polarization

techniques

Langmuir adsorption isotherm, mixed Production water [97]

, , 

[EMIM][BF4], [BMIM][Otf], [EMIM][Otf]

Electrochemical techniques – CO2 [98]

, , , , , 

(EMIm Cl), (BMIm Cl), (BMIm PF6), (BMIm BF4), (BMIm 

Br), (HMIm Cl)

Electrochemical), AFM, dynamic light

scattering (DLS), FT-IR and DFT

Langmuir adsorption isotherm, mixed

type

2 M HCl [99]

(DMICL)

Electrochemical, surface analysis

techniques

– NaCl (pH 3.8 and pH

6.8)

[100]

, (TOMABr) (MTABr)

Electrochemical measurements Flory-Huggins adsorption isotherm,

mixed type

2M H2SO4 [101]

Ionic Liquids as G
reen Corrosion Inhibitors for Industrial M

etals and A
lloys

http://dx.doi.org/10.5772/intechopen.70421
113



Synthetic scheme and/or chemical structure of

ionic liquids

Techniques Nature of adsorption Electrolytic media Ref.

, , , 

Weight loss, electrochemical

measurements, QSAR, quantum

chemical calculations

Langmuir adsorption isotherm, mixed

type

1M HCl [102]

, , ,, 

[emim]-[Otf], [emim]-[DCA], [emim][acetate], 

[emim][tosylate])

Electrochemical – CO2 capture system [103]

, 

(CTAB )                                                         (SDS)

Electrochemical and surface analysis Flory � Hugginsadsortion isotherm,

mixed type

2 M HCl [104]

Weight loss, electrochemical, SEM, and

quantum chemical calculation

Flory � Huggins isotherm, mixed type 0.5 M H2SO4 [105]

R= IL1:C4H9; IL2:C8H17; IL3:C12H25; IL4:C18H37; IL5: 

C22H45

Scheme 5 Weight loss, electrochemical, SEM,

AFm

Langmuir isotherm, mixed type but IL3

behave as cathodic type

1M H2SO4 [106]
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Synthetic scheme and/or chemical structure of

ionic liquids

Techniques Nature of adsorption Electrolytic media Ref.

, , 

(DDI), (TMA) (TML)

Weight loss, electrochemical, SEM Langmuir isotherm, mixed type 1M H2SO4 [107]

R= -CH3 (I); -C4H8 (II); -C8H9 (III)

Electrochemical polarization test, SEM – Ethanol solution [108]

, 

[HMIM][TfO]                                         [HMIM][BF4],

, 

[HMIM][PF6]                                    [HMIM][I]

Electrochemical, spectroscopic

analyses, quantum chemical

calculations

Langmuir isotherm, mixed type 1M HCl [109]

, 

([EMIm]Cl)                         ([Py1,4]Cl)

Weight loss, electrochemical – Arabian Gulf Sea-

water

[110]

(BMIC)

Weight loss, electrochemical Langmuir adsorption isotherm, mixed

type

2M H2SO4 and 3.5%

NaCl

[111]
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Synthetic scheme and/or chemical structure of

ionic liquids

Techniques Nature of adsorption Electrolytic media Ref.

, 

(I) (II)

, 

(III) (IV)

Potentiodynamic polarization, linear

polarization and weight loss

Langmuir adsorption isotherm, mixed

type

1M HCl [112]

(ODA-TS) (OA-TS)

Electrochemical, SEM, EDX, contact

angle measurement

Langmuir adsorption isotherm, mixed

type

1M HCl [113]

(PPIB1)                          (PPIB4) 

Weight loss and electrochemical

methods

Langmuir adsorption isotherm, mixed

type

1M HCl [114]

(MA1)                                   (MA2)

Weight loss and DFT studies Langmuir adsorption isotherm 1M HCl [115]

Weight loss and electrochemical

methods

Langmuir adsorption isotherm, mixed

type

1M HCl/1M H2SO4 [116]
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Synthetic scheme and/or chemical structure of

ionic liquids

Techniques Nature of adsorption Electrolytic media Ref.

Electrochemical, Quantum, surface

analysis methods

Mixed type 1M HCl [121]

(EOPC)

Weight loss, electrochemical methods Langmuir adsorption isotherm, mixed

type

0.5M H2SO4 [122]

(VImC4PF6)                           (VImC8PF6)

(VImC12PF6)                   (VImC18PF6)

(VImC22PF6)

Weight loss and electrochemical

polarization methods

Langmuir adsorption isotherm, mixed

type

1M H2SO4 [123]

Table 2. Ionic liquids as corrosion inhibitors for mild steel in different electrolytic media, their mode of adsorption and techniques used for evaluation of the inhibition

performance.
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isotherm. Polarization study suggested that investigated ionic liquid acted as mixed type

inhibitor. Tseng and coworkers [118] investigated the corrosion characteristics of carbon steel,

304 stainless steel (304 SS) and pure titanium (Ti) in aluminum chloride–1-ethyl-3-methylimi-

dazolium chloride ionic liquid for the first time. These authors reported the active-to-passive

transition behavior for CS sample. Among the tested materials 304 SS exhibited the maximum

stability in the high chloride environment. The most peculiar finding was that Ti was severally

corroded in the ionic liquid because it does not undergo passivation. The ionic liquid in non-

aqueous, low-oxygen and high halogen containing showed different corrosion behavior and

mechanism. Similar observation has been reported by other authors for different metals

including copper, nickel and stainless steel [119]. Recently, the inhibition behavior of 1,4-di [1-

methylene-3-methyl imidazolium bromide]- benzene on mild steel corrosion in 1M H2SO4

have been studied using electrochemical and surface analysis methods [120]. The ionic liquid

under taken in the study inhibits metallic corrosion by adsorbing on the surface which mech-

anism obeyed the Langmuir adsorption isotherm. The adsorption mechanism was supported

by SEM, EDX and AFM analyses. Polarization study reveals that studied ionic liquid acted as

mixed type inhibitor. The ongoing discussion reveals that although, several classes of ionic

liquids have been used as effective inhibitors for mild steel corrosion in various aggressive

media, however, imidazole based ionic liquids have been used most extensively [78–84,

89–96, 98–112, 114–116, 123].

2.2. Ionic liquids as corrosion inhibitors for aluminum

Aluminum is the second most commonly used metal due to its several fascinating properties

like its low atomic mass and negligible standard electrode potential. Several traditional organic

and inorganic compounds have been used previously in order to protect dissolution of protec-

tive surface oxide film and ultimately decrease the corrosion rate. However, employment of

the ionic liquids as corrosion inhibitors is limited as literature survey reveals that only few

works are available describing the corrosion inhibition performance of ionic liquids. The

inhibition performance of 1-butyl-3-methylimidazoliumchlorides (BMIC), 1-hexyl-3-

methylimidazolium chlorides (HMIC) and 1-octyl-3-methylimidazoliumchlorides (OMIC) on

aluminum corrosion in 1M HCl using electrochemical and weight loss methods showed that

inhibition efficiencies of these ionic liquids increase with increasing their concentration and

obeyed the order: OMIC > HMIC > BMIC [124]. Potentiodynamic study revealed that all ionic

liquids acted as mixed type inhibitors and their adsorption on aluminum surface followed the

Langmuir adsorption isotherm. The inhibition efficiency of an ecofriendly ionic liquid, 1,3-bis

(2-oxo-2-phenylethyl)-1H-imidazol-3-ium bromide (OPEIB) on 6061 Al-15 alloy in 0.1 M

H2SO4 solution using electrochemical impedance spectroscopy and potentiodynamic polariza-

tion, scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectroscopic

methods revealed that it is a good corrosion inhibitor and its adsorption on aluminum surface

obeyed the Temkin adsorption isotherm [125]. The three synthesized ILs, namely poly(ionic

liquid)s (PILs), namely (poly(1-vinyl-3-dodecyl-imidazolium) (PImC12), poly(1-vinyl-3-

octylimidazolium) (PImC8) and poly(1-vinyl-3-butylimidazolium) (PImC4) hexafluoro-

phosphate) tested as inhibitor for aluminum alloy AA6061 in 0.1-1.0 M H2SO4 solution [126].

Results showed that they act as mixed type inhibitor and their inhibition efficiencies obeyed
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the order: (PImC12 > PImC8 > PImC4). Adsorption of these ionic liquids followed the Lang-

muir adsorption isotherm. Four newly synthesized quaternary ammonium based surfactants

in the series of hexanediyl-1,6-bis-(diethyl alkyl ammonium bromide), designated as

CmC6Cm(Et) �2Br (m = 10, 12, 14, 16), were synthesized and evaluated as inhibitors for alumi-

num corrosion in 1M HCl solution [127]. Results showed that all investigated surfactants act as

good inhibitors and inhibit corrosion by becoming adsorbate at metal/electrolyte interfaces

and their adsorption on metallic surface obeyed the Langmuir adsorption isotherm. Trombetta

et al. [128] studied the stability of the aluminum in 1-butyl-3methylimidazolium tetrafluro-

borate ionic liquid and ethylene glycol mixtures using electrochemical impedance spectro-

scope (EIS). These authors observed decrease in polarization resistance and increase in the

capacitance related with the passive oxide dielectric properties on increasing the ethylene

glycol and/or water content in the mixtures. Presence of salts namely Na2B4O7.7H2O and

NaH2PO4 in the mixtures, stabilize the oxide payer form over the metallic surface and thereby

reduce the changes of metallic corrosion. The inhibition behavior of 1,3-bis(2-oxo-2-

phenylethyl)-1H-imidazol-3-ium bromide (OPEIB) on 6061 Al-15 vol. pct. SiC(p) composite in

0.1M H2SO4 solution was studied by Shetty and Shetty [125] using electrochemical (EIS and

PDP), SEM and EDX methods. The investigated ionic liquid exhibits the maximum efficiencies

of 96.7 and 94% using PDP and EIS methods, respectively. Potentiodynamic polarization study

further reveals that studied ionic liquid behaves as cathodic type inhibitor and its adsorption

on the composite surface followed the Temkin adsorption. Li et al. [129] study the inhibition

behavior of tetradecylpyridinium bromide (TDPB) on aluminum corrosion in 1M HCl solu-

tion using weight loss and electrochemical methods. Results of the investigation showed that

TDPB inhibits the aluminum corrosion by adsorbing on the metallic surface. The adsorption

of the TDPB followed the Langmuir adsorption isotherm. Polarization study suggested that

TDPB acts as cathodic type inhibitor for acidic aluminum corrosion. Bermudez and

coworkers [130] investigated the surface interactions of seven alkylimidazolium ionic liquids

with aluminum alloy Al 2011 using immersion test. The immersion experiments for alumi-

num corrosion was carried out in 1 and 5 wt.% of 1-ethyl,3-methylimidazolium

tetrafluoroborate (IL1) in water. Results showed that neat solution of ionic liquids did not

cause any corrosion. The inhibition behavior was discussed on the basis of SEM, EDX, XPS

and XRD techniques.

2.3. Ionic liquids as corrosion inhibitors for copper and zinc

Copper and its alloys have been extensively employed in industries for various applications such

as building construction, electricity, electronics, coinages, ornamental and formation of industrial

equipment due to their relatively good thermal, electrical, mechanical and corrosion resistance

properties [131]. However, in presence of aggressive anions like chloride, sulphate and nitrate

these materials undergo sever attack resulting into loss of these materials due to corrosion

occurs [132, 133]. Similar to the aluminum the use of ionic liquids as corrosion inhibitors for

copper and zinc is also limited as literature survey revealed that only few ionic liquids have been

used as corrosion inhibitors for these materials. Qi-Bo and Yi-Xin [134] newly synthesized three

ionic liquids namely 1-butyl-3-methylimidazolium hydrogen sulfate ([BMIM]HSO4), 1-hexyl-

3-methylimidazolium hydrogen sulfate ([HMIM]HSO4), and 1-octyl-3-methylimidazolium
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hydrogen sulfate ([OMIM]HSO4) and studied their inhibition efficiency on copper corrosion

in 0.5 M H2SO4 using electrochemical impedance spectroscopy and potentiodynamic polariza-

tion techniques. The inhibition efficiency of the ionic liquids follows the order: [OMIM]

HSO4 > [HMIM]HSO4 > [BMIM]HSO4. Results obtained by these authors showed that adsorp-

tion of the studied ionic liquids followed the Langmuir adsorption isotherm. Polarization study

revealed that these ionic liquids behaved as mixed type inhibitors. Gabler et al. [135] studied the

inhibition performance of two ionic liquids namely (2-hydroxyethyl)-trimethyl-ammonium (IL1)

and Butyl-trimethyl-ammonium (IL2) with identical anions; bis(trifluoromethyl-sulfonyl)imide

on CuSn8P and steel 100Cr6, purchased from Metal Supermarkets (Brunn am Gebirge, Austria)

using inductively coupled plasma optical emission spectrometry (ICP-OES), scanning electron

microscopy (SEM) with energy dispersive X-ray spectrometry (EDX) and X-ray photoelectron

spectroscopy (XPS) in water in the absence and presence of 1.5% of the ionic liquids. Manamela

et al. [136] studied the inhibition performance of two ionic liquids; 1-butyl-3-methylimidazolium

tetrafluoroborate [BMIM][BF4
�] and 1-decyl-3-methylimidazolium tetrafluoroborate [DMIM]

[BF4
�] on corrosion of zinc in 1M HCl using gravimetric analysis and theoretical Density

Functional Theory (DFT) approach, using the B3LYP functional. Results showed that both the

ionic liquids acted as good corrosion inhibitors and their inhibition efficiencies increase with

increasing their concentrations. The inhibition efficiencies of the ionic liquids obeyed the order:

[DMIM][BF4
�] > [BMIM][BF4

�]. Values of activation energy (Ea) and enthalpy of activation (ΔH)

suggested that both the ionic liquids adsorbed over the surface through physisorption mecha-

nism. Adsorption of these ionic liquids on metallic surface followed the Langmuir adsorption

isotherm.

2.4. Ionic liquids as corrosion inhibitors for magnesium

Unlike active light metals such as aluminum and titanium, magnesium based alloys do not form

protective passivating film. Moreover, these alloys easily react with the components of environ-

ment to from hydroxides, oxides, carbonates films that are highly porous, inhomogeneous and

poorly bonded that cannot provide satisfactory protection to the metals against corrosion.

Among the availablemethods of corrosion protection, organic coating is one of the best methods.

Huanga et al. [137] has presented an early review on the corrosion protection of magnesium

by some ionic liquids. However, present chapter is describing the few recent advances in

the utilization of ionic liquids as corrosion inhibitors. Suna et al. [138] have investigated the

inhibition effect of six phosphonium cation based ionic liquids (ILs) namely, tetradecyltrihe-

xylphosphonium diphenylphosphate (1), tetradecyltrihexylphosphoniumdibutylphosphate (2),

tetradecyltrihexylphosphonium bis(2-ethylhexyl) phosphate (3), tetradecyltrihexyl phospho-

nium diisobutyldithiophosphinate (4), tetradecyltrihexylphosphoniumbis(2,4,4-trimethyl pentyl)

phosphonate (5), and tetradecyltrihexyl phosphonium O,O-diethyl dithiophosphate on magne-

sium alloys using electrochemical and surface investigation methods.

3. Ionic liquids as corrosion inhibitors: DFT study

Nowadays, several computational methods particularly, DFT (Density Functional Theory)

based quantum chemical calculations have been emerged as potential tools for studying the
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interactions between inhibitors and metallic surface. The DFT calculations provide several

important parameters such as energies of highest occupied molecular orbital (EHOMO), lowest

unoccupied molecular orbital (ELUMO), energy band gap (ELUMO � EHOMO = ΔE), global

electronegativity (χ), global hardness (η) and softness (σ), fraction of electron transfer (ΔN)

and dipole moment (μ). In general, value of EHOMO is related with electron donating ability,

while the value of ELUMO related with the electron accepting ability of the inhibitor mole-

cules [74–77]. A higher value of EHOMO and lower value of ELUMO associated with high

inhibition performance. The inhibition efficiency of inhibitor increases with decreasing the

energy band gap (ΔE). A high value of global electronegativity (χ) is related with lower

electron donating ability and therefore, the value of electronegativity (χ) inversely related with

the inhibition efficiency order [74–77]. Inhibition efficiency of the inhibitor molecules decreases

with increasing the hardness (η) and decreasing the softness (σ). Generally, inhibition perfor-

mance of the inhibitor molecules increases with increasing their dipole moment (μ), however,

negative trends of the inhibition efficiency is also reported by several authors [74–77]. Lastly,

the value of electron transfer gives direct information about the relative extent of metal-

inhibitor interactions. A high value of ΔN is associated with high charge transfer and therefore

high inhibition efficiency [74–77, 102].

The DFT based quantum chemical calculations have also been employed to describe the adsorp-

tion behavior of some ionic liquids on the metallic surface. Our research group [102] studied the

adsorption behavior of four imidazolium-based ionic liquids, namely 1-propyl-3-methylimi-

dazolium bis(trifluoromethyl-sulfonyl) imide ([PMIM][NTf2), 1-butyl-3-methylimidazoli-

umbis(trifluoromethyl-sulfonyl) imide ([BMIM][NTf2), 1-hexyl-3-methylimidazolium bis

(trifluoromethyl-sulfonyl) imide([HMIM][NTf2]), and 1-propyl-2,3-methylimidazolium bis

(trifluoromethyl-sulfonyl) imide ([PDMIM][NTf2]) on mild steel corrosion in 1M HCl using

experimental and quantum chemical calculations. The inhibition efficiencies of these ionic

liquids follow the experimental trend: [PDMIM][NTf2] > [HMIM][NTf2] > [BMIM][NTf2] >

[PMIM][NTf2]. The values of EHOMO and ELUMO are well satisfied the experimental order of

inhibition efficiency. Results showed that [PDMIM][NTf2] exhibited the lowest value of ΔE and

therefore related with the highest chemical reactivity and inhibition efficiency. The values of

dipole moment (μ) and the molecular volume (MV) did not show any regular trends. However,

the values of global softness (σ) again show that the [PDMIM][NTf2] is most soft molecule

among the tested compounds thereby associated with highest chemical reactivity and inhibi-

tion efficiency. The quantum chemical calculations provide good insight about the inhibition

mechanism and well supported the experimental order of inhibition efficiency. Similar obser-

vations were reported for few other metals and alloys in several corrosive media [82, 139–143].

4. Mechanism of corrosion inhibition

Similar to most of the organic corrosion inhibitors, ionic liquids (ILs) inhibit metallic corro-

sion by blocking the anodic and cathodic sites present over the metallic surface [78, 144, 145].

Therefore, inhibition of metallic corrosion in presence of ionic liquids involves blocking

of anodic oxidative metallic dissolution as well as cathodic hydrogen evolution reac-

tions [78, 144]. The mechanism of metallic (M) corrosion inhibition by ionic liquids in
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sulphuric acid has been described below. The inhibition mechanism of metallic corrosion by

ionic liquids in other protic acidic solutions such as in HCl and HNO3 will be similar because

of their similar nature. The only difference in their nature is that they possess different

counter ions (Cl�, NO3
�) rather than sulphate ion of sulphuric acid. According to Likhanova

et al. [78], anodic dissolution of metals (M) in aqueous acidic solution (e.g. H2SO4) can be

represented as follows [78]:

Mþ nH2O !M H2Oð Þnads (1)

M H2Oð Þnads þ SO4
2�  !M H2Oð Þ

n
SO

2�
4
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ads
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M H2Oð Þ
n
SO

2�
4
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�!M H2Oð Þ
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� �
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þ 2e� (3)

M H2Oð Þ
n
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� �
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�!M

2þ þOH
� þ SO

2�
4 þH

þ (4)

However, in presence of ionic liquids, anodic reactions can be represented as follows:

Mþ nH2O !M H2Oð Þnads (5)
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where, ILsC+ and X� represent the cationic counter part of the ionic liquids (mostly organic)

and anionic counter part of the ionic liquid, respectively. It is important to mention that the

concentration of sulphate ions is much higher as comared to the concentration of anionic

counter part of the ionic liquids (X�) that results into formation of [M(H2O) SO2�
4]ads in larger

proporsion than [MX�]ads. Nevertheless, these both anionic charged species attracted posi-

tively charged cationic counter part of the ionic liquids (ILsC+) by electrostatic force of attrac-

tion (physisoprtion) and forms monomolecular layer as an insoluble complex on the metallic

surface [78, 145]. The adsortion of the ILsC+ on metallic surface causes change in the surface

polarity which induces the adsorption of the sulphate and X� ions again which results into

multimolecular layer [78, 146]. The multimolecular layers are stabilized by Vanderwaal’s

cohesion force acting beteween organic moeity of the ionic liquids which causes a more closely

adsorbed film at metal/electrolyte interfaces. Generally, the cationic part (ILsC+) interacts with

the metallic surface and forms the multimolecular layers while rest of the part of the ionic

liquids form hydrophobic hemi-micelles, ad-micelles and/or surface aggregation [78, 147]. The

adsorbed multimolecular layers of the ILs isolate the metal (M) from corrosive enviroment and

protect from corrosive dissolution.
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The cathodic hydrogen evolution reaction (HER) can be represented by following simple

stoichimmetry equation [148]:

H2Oþ 2e�  ! H2 gð Þ þ 2OH� (11)

Generally, the hydrogen evolution reaction (HER) follows two very commonmechanisms that is,

Volmer-Heyrovskymechanism represented by Eqs. (12) and (13) or according to the Tafel hydro-

gen evolution mechanism represented by Eq. (14). In acidic medium, the Volmer-Heyrovsky and

Volmer-Tafel hydrogen evolution mechanisms have been shown below [148–150]:

MþH3O
þ þ e�  !MHads þH2O Volmer, Vð Þ (12)

MHads þH3O
þ þ e�  ! H2 þMþH2O Heyrovsky, H

� �

(13)

MHads þMHads  ! H2 þ 2M Tafel, Tð Þ (14)

During the first step of cathodic reactions hydrogen ions (or hydronium ions) first adsorbed on

the metallic surface by Volmer mechanism followed by discharge of hydrogen gas by Heyrovsky

and Tafel mechanism represented by Eqs. (13-14). All these reactions do not occur with the same

rate. Generally, a slow reaction step is followed by a fast reaction step [151]. If the Volmer reaction

is fast, then Heyrovsky and/or Tafel reactions occur with slower rate and vice versa. Presence of

the organic corrosion inhibitors (ILs) in the corrosive solution may retards or slow down the

formation of MHads or retards the electron transfer to the hydronium ions and suppresses the

Heyrovsky reactions (13). In general, in corrosive medium, the adsorbed hydrogen on metallic

surface recombined and evolved as the bubbles of hydrogen gas. The formation of bubble and its

evolution is the second step in the HER. The formation of hydrogen gas either occurs through

hydrogen atom-atom combination as denoted by Volmer-Tafel Eq. (14) or may results through

hydrogen atom-hydrogen ion combination as represented by Volmer-Heyrovsky Eq. (13) [151].

In the presence of inhibitors (ILs), cathodic can be represented as follows:

Mþ ILsCþ þ e�  !M ILsCð Þads (15)

Initially, adsorption of hydronium ions and evolution of hydrogen gas occur at cathodic sites,

simultaneously. At cathode, the cationic part of ionic liquids (ILsC+) starts competing with

hydrogen ions for electrons [78, 152]. In general, ILsC+ has large molecular size and therefore

replaces greater number of water molecules from the metallic surface. After their adsorption,

cationic part of the ILs accepts electrons from the metal (M) which results into the formation of

electrically neutral ionic liquids (inhibitors). The neutral species transfer (donation) their non-

bonding (of heteroatoms) and π-electrons into the d-orbitals of the surface metallic atoms

resulting into the formation of co-ordinate bonds between metal and ILs (chemisorption) as

reported for several organic conventional inhibitors [78, 146, 153–156]. However, metals are

already electron rich species; this type of donation causes inter electronic repulsion which

interns resulted into transfer of electrons from d-orbitals of the surface metallic atoms to

antibonding molecular orbitals of the ILs (retro-donation). Both donation and retro-donation

strengthen each other through synergism [153–160].
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5. Conclusions and future perspectives

On the basis of ongoing discussion it can be concluded that ionic liquids are green and

sustainable inhibitors for corrosion of metals and alloys. The superiority of the use of ionic

liquids as corrosion inhibitors compared to traditional volatile (toxic) corrosion inhibitors is

based on the fact that they possess several fascinating properties such lower volatility, non-

inflammability, non-toxic nature, chemical stability, high solubility in the polar solvents and

their ability to easily adsorb on the metallic surface. Adsorption of the ionic liquids over the

metallic surface results into formation of protective film which isolates the metals (alloys) from

the corrosive environment and thereby inhibits corrosion. Among several available ionic

liquids, imidazole based ionic liquids have been most extensively used. Some reports described

the adsorption behavior of ionic liquids on metallic surface using DFT based quantum chem-

ical calculations. However, the use of this technique should be further explored owing to its

green nature to understand the mechanistic aspects of corrosion inhibition. The use of ionic

liquids as corrosion inhibitors is preferred comparing with traditional inhibitors due to several

physiochemical properties advantageous including their high solubility, non-toxic, high con-

ductivity, and non-flammability, less volatility as well as high chemical stability and more

importantly due to their “green and sustainable” nature.
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