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Abstract

Since the mid-1950s, there has been a clear predominance of the Frequentist approach to
hypothesis testing, both in psychology and in social sciences. Despite its popularity in
the field of statistics, Bayesian inference is barely known and used in psychology.
Frequentist inference, and its null hypothesis significance testing (NHST), has been
hegemonic through most of the history of scientific psychology. However, the NHST
has not been exempt of criticisms. Therefore, the aim of this chapter is to introduce a
Bayesian approach to hypothesis testing that may represent a useful complement, or
even an alternative, to the current NHST. The advantages of this Bayesian approach over
Frequentist NHST will be presented, providing examples that support its use in psy-
chology and social sciences. Conclusions are outlined.
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1. Introduction

“Scientific honesty then requires less than had been thought: it consists in

uttering only highly probable theories: or even in merely specifying, for

each scientific theory, the evidence, and the probability of the theory in

the light of this evidence”. Lakatos [1, p. 208].

The nature and role of experimentation in science found its origins in the rise of natural

sciences during the sixteenth and seventeenth centuries [2]. Since then, knowledge meant that

theories have to be corroborated either by the power of the intellect or by the evidence of the

senses [1]. However, until the mid-late 1800s, “psychological experiments had been performed,

but the science was not yet experimental” [3, p. 158]. It was not until 1875 that—either at

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
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Wundt laboratory in Leipzig or at James’ laboratory in Harvard—experimental procedures

were introduced and contributed to the development of psychology as an independent sci-

ence [3]. From almost one and a half centuries, scientific research mostly relies on empirical

findings to provide support to their hypotheses, models, or theories. From this point of view,

psychology and social sciences must take distance from rhetorical speculations, desist from

unproven statements and build its knowledge on the basis of empirical evidence [1, 4]. Almost

a decade ago, Curran reemphasized that the aim of any empirical science is to pursue the

construction of a cumulative base of knowledge [5]. However, it has also been emphasized that

such a cumulative knowledge—for a true psychological science—is not possible through the

current and widespread paradigm of hypothesis testing [5–9]. Since approximately two

decades ago, some explicit claims have appeared in peer review articles, such as “Psychology

will be a much better science when we change the way we analyze data”[7], “We need statistical

thinking, not statistical rituals” [10], “Why most research findings are false” [11] or “Yes, psycholo-

gists must change the way they analyze their data…” [12]. Most critiques have been directed

toward the current—and still predominant—approach to hypothesis testing (i.e., NHST) and

its overreliance on p-values and significance levels [6, 11, 13], emphasizing its pervasive conse-

quences against the construction of a cumulative base of knowledge in psychological sci-

ence [8]. Despite all warnings, they seem not to have generated a noteworthy echo in the

scientific community, even though “it is evident that the current practice of focusing exclu-

sively on a … decision strategy of null hypothesis testing can actually impede scientific

progress” [14, p. 100]. Therefore, it seems reasonable to suggest that there is a need to make

considerable changes to how we usually carry out research, especially if the goal is to ensure

research integrity [6]. Regarding this matter, a frequently proposed alternative has been mov-

ing from the exclusive focus on p-values to incorporate other existing techniques such as

“power analysis” [15] and “meta-analysis” [16], or to report and interpret “effect sizes” and

“confidence intervals” [7]. However, in our view, a sounder alternative would be to move from

a Frequentist paradigm to a Bayesian approach, which allows us not only to provide evidence

against the null hypothesis but also in favor of it [17]. Furthermore, Bayesian analysis allows

us to compare two (or more) competing models in light of the existent data and not only based

in “theoretical probability distributions,” as in the Frequentist approach to hypothesis

testing [18].

A Bayesian approach would offer some interesting possibilities for both individual psychology

researchers and the research endeavor in general. First, Bayesian analysis allows us to move

from a dichotomous way of reasoning about results (e.g., either an effect exists of it does not) to

a less artificial view that interprets results in terms of magnitude of evidence (e.g., the data are

more likely under H0 than Ha), and therefore, allows us to better depict to which extent a

phenomenon may occur. Second, a Bayesian approach naturally allows us to directly test the

plausibility of both the null and the alternative hypothesis, but the current NHST paradigm

does not. In fact, when a researcher does not reach a desired p-value oftentimes it is—falsely—

assumed that the effect “does not exist.” As a consequence, the researcher’s chances of getting

his or her results published decrease dramatically, which moves us to our third argument. As

broadly known, the most scientific peer-reviewed journals do not show much interest in

results, which are “non-statistically significant.” This common practice—or scientific standard

—sadly reinforces the idea of thinking in terms of relevant or irrelevant findings. In our view,
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such standards do not promote scientific advance and quickly lead us to ignore some promis-

ing but “non-significant” findings that may be further explored, fed into meta-analysis, of just

be considered by other researchers in the field. Of course, systematically ignoring a portion of

the research undermines the primary goal of scientific inquiry that is to collect evidence and

not only to reject hypothesis. The facts and ideas exposed in this introductory section set forth

the necessity to reanalyze the way in which scientific evidence has been conceived during the

NHST era.

The following sections will: (a) concisely address the NHST procedure, (b) introduce a Bayes-

ian framework to hypothesis testing, (c) provide an example that highlights the advantages of

a Bayesian approach over the current NHST in terms of the way in which scientific evidence is

quantified, and (d) briefly summarize and discuss the benefits of a Bayesian approach to

hypothesis testing.

2. Null hypothesis significance testing (NHST)

“Never use the unfortunate expression: accept the null hypothesis.” Wilkin-

son and the Task Force on Statistical Inference APA Board of Scientific

Affairs [19, p. 602].

The most influential methods to modern null hypothesis significance testing (NHST) were

developed by Fisher, and by Neyman and Pearson in the early and mid-1900s [20]. Since then,

the NHST has been broadly used to provide an association between empirical evidence and

models or theories [21]. In the traditional NHST procedure, two hypotheses are postulated: a null

hypothesis (i.e., H0) and a research hypothesis, also called alternative (i.e., Ha), which describe

two contrasting conceptions about some phenomenon [22]. When conducting a NHST,

researchers usually pursue to reject the null hypothesis (H0) on the basis of a p-value. When the

observed p-value is lower than a predetermined significance level (i.e., alpha, usually

corresponding to α = 0.05), the conclusion is that such p-value constitutes supporting evidence

that favors the plausibility of the alternative hypothesis [23]. However, a more important feature

of this procedure that remains unknown for most scientists, including psychology researchers, is

that the NHST constitutes an amalgamation of two irreconcilable schools of thought in modern

statistics: the Fisher test of significance, and the Neyman and Pearson hypothesis test [24, 25]. To

this respect, Goodman stated that “it is not generally appreciated that the p-value, as conceived

by Fisher, is not compatible with the Neyman and Pearson hypothesis in which it has become

embedded” [25, p. 485]. In this synthesized NHST, the Fisherian approach includes a test of

significance of p-values obtained from the data, whereas the Neyman and Pearson method

incorporates the notion of error probabilities from the test (i.e., Type I and Type II).

2.1. Origins and rationale of NHST

First, in the early 1900s, Fisher [26, 27] developed a method that tested a single hypothesis (i.e.,

null or H0), which has been mainly referred to as a hypothesis of “no effect” between variables

(e.g., relationship, difference). The null hypothesis, as conceived by Fisher, has a known
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distribution of the test statistic t. Thus, as the test statistic moves away from its expected value,

then the null hypothesis becomes progressively less plausible. In other words, it appears less

likely to occur by chance. Then, if H0 achieves a probability of occurrence sufficiently lower

than the significance level (i.e., a small p-value) then it should be rejected. Otherwise, no

conclusion can be reached. Subsequently, the question that logically arises is: what p-value is

sufficiently small to reject H0? The answer to this question was clearly addressed by Fisher

when he stated that this threshold should be determined by the context of the problem, and it

was not until the 1950s that Fisher presented the first significance tables to establishing

rejection thresholds [22]. However, Fisher [28] refused the idea of establishing a conventional

significance level and, in its place, recommended reporting the exact p-value instead of a

significance level (e.g., p = 0.019, but not p < 0.05; see [10]). Similarly, May et al. indicated that

the choice of a significance level should depend on the consequences of rejecting or failing to

reject the null hypothesis [29]. Despite these recommendations about threshold determination,

most scientists from different research fields adopted standard significance levels (i.e., α = 0.05

or α = 0.01), which have been used—or misused—regardless of the hypotheses being tested.

Later, in 1933, Neyman and Pearson proposed a procedure in which two explicitly stated rival

hypotheses were contrasted, being one of them still considered as the “null” hypothesis, as in

the Fisher test [30]. Neyman and Pearson rejected Fisher’s idea of only testing the null hypoth-

esis. In this scenario, there are now two hypotheses (i.e., the null and the alternative), and

based on the observed p-value, the researcher has to decide whether to reject or not to reject the

null hypothesis. This decision rule faces the researcher with the probability of committing two

kinds of errors: Type I and Type II. As defined by Neyman and Pearson, the Type I error is the

probability of falsely rejecting H0 (i.e., null) when H0 is true [30]. Conversely, the probability of

failing to reject H0 when H0 is false is the Type II error. For the sake of simplicity, an analogy of

both kinds of errors can be found in the classic fairy tale “The boy who cried wolf!” When the

young shepherd, called Peter, shouted out: “Help! the wolf is coming!” The village’s people

believed the young boy warning and quickly came to help him. However, when they found

out that all was a joke, they got angry. To believe in the boy’s false, alarm can be considered as a

Type I error. Peter repeated the same joke a couple of times and, when the wolf actually

appeared, the villagers did not believe the young shepherd’s desperate calls. This situation is

analogous to be engaged in a Type II error [31].

Within this NHST framework, the Fisher’s p-value is then used to dichotomize effects into two

categories: significant and non-significant results [21]. Consequently, on one hand, obtaining

significant results led us to assume that the phenomenon under investigation can be consid-

ered as “existing” and, therefore, can be used as supporting evidence for a particular model or

theory. On the other hand, non-significant results are usually (and erroneously) considered as

“noise,” implicating the nonexistence of an effect [21]. In this last case, there are no findings

that could be reported. From this view, the evidence in favor of a research finding is then solely

judged on the ability to reject H0 when a sufficiently low p-value is observed. This simple and

appealing decision rule may constitute a very seductive way of thinking about results, that is:

A phenomenon either exists or it does not. However, thinking in this fashion is fallacious, led

to misinterpretations of results and findings, and more importantly “it can distract us from a

higher goal of scientific inquiry. That is, to determine if the results of a test have any practical

value or not” [32, p. 7].
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2.2. NHST: Common misconceptions and criticisms

As previously stated, most problems and criticisms to the current NHST paradigm appear as a

result of the mismatch of these essentially incompatible statistical approaches [10, 33, 34]. In

this line, Nickerson stated that “A major concern expressed by critics is that such testing is

misunderstood by many of those who use it” [35, p. 241]. Some of these misconceptions are

common among researchers and are interpretative in nature. As a matter of fact, Badenes-

Ribera et al. recently reported the results of a survey conducted to 164 academic psychologists

who were questioned about the meaning of p-values [36]. Results confirmed previous findings

regarding the occurrence of wrongful interpretations of p-values. For instance, the false belief

that the p-value indicates the conditional probability of the null hypothesis given certain data

(i.e., p (H0|D)), instead of the probability of witnessing a given result, assuming that the null

hypothesis is true [37]. This wrong interpretation of a p-value is known as “the inverse proba-

bility” fallacy. Another common misconception regarding p-values is that they provide direct

information about the magnitude of an effect, that is, a p-value of 0.00001 represents evidence

of a bigger effect than a p-value of 0.01. This conclusion is wrong because the only way to

estimate the magnitude of an effect is to calculate the value of the effect size with the appro-

priate statistic and its confidence interval (e.g., Cohen’s d; see [38]). This erroneous interpreta-

tion of a p-value is known as “the effect size” fallacy. A comprehensive review of these and

other common misconceptions is out of the scope of this chapter, but several resources on these

topics are available for the interested readers (see [14, 35, 37–40]).

Likewise, the rationale under the NHST has been largely criticized. Most criticisms against

NHST are focused on the way in which data are (unsoundly) analyzed and interpreted, for

example:

a. NHST only provides evidence against the plausibility of H0, but does not provide

probabilistic evidence in favor of the plausibility of Ha.

b. NHST uses inference procedures based on hypothetical data distributions, instead of

being based on actual data.

c. NHST does not provide clear rules for stopping data collection; therefore, as long as

sample size increases any H0 can be rejected (see [9, 18]).

However, an issue that is of particular interest for this chapter is related to the use of p-values as

a way to quantify statistical evidence [13, 41]. As previously stated in this chapter, rejecting H0

does not provide evidence in favor of the plausibility of Ha, and all that can be concluded is

that H0 is unlikely [9]. Conversely, failing to reject H0 simply allows us to state that—given the

evidence at hand—one cannot make an assertion about the existence of some effect or phe-

nomenon [42]. Hence, rejecting H0 is not a valid indicator of the magnitude of evidence of a

result [43]. In Schmidt’s words: “… reliance on statistical significance testing in psychology and

the other social sciences has led to frequent serious errors in interpreting the meaning of data,

errors that have systematically retarded the growth of cumulative knowledge” [16, p. 120].

Despite the existence of scientific literature that highlights the weaknesses of NHST [9, 16, 21, 22,

39, 43–46], it is still considered as the: “sine qua non of the scientific method” [10, p. 199].

Moreover, NHST is arguably the most widely used method of data analysis in psychology

since the mid-1950s and still governs the interpretation of quantitative data in social science
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research [35, 47]. In Krueger’s words: “NHST is the researcher’s workhorse for making induc-

tive inferences” [45, p. 16]. An immediate matter of concern is that most of scientific discover-

ies, in a wide range of research fields, are based on a procedure that still generates controversy

(see [12, 48–50]). Since the focus of research should be on what data tell us about the magni-

tude of effects, it seems necessary to shift from our reliance on NHST to more robust alterna-

tives [14]. Some recommended practices include estimates based on effect sizes, confidence

intervals, and meta-analysis [6]. However, a sounder alternative comes from the Bayesian

paradigm through the use of a simple estimate of the magnitude of evidence called Bayes

factor (BF) [17]. This approach to hypothesis testing has shown several benefits. First, it is not

oriented to pursue the rejection of H0; on the contrary, it provides a way to obtain evidence for

and against H0. Second, it does not use arbitrary thresholds (i.e., significance levels) to reach

dichotomous decisions about the plausibility or implausibility ofH0; on the contrary, it directly

contrasts the magnitude of evidence for and against both H0 and Ha. Third, it permits the

continuous update of evidence as long as new data are available, which is in line with the

nature of scientific inquiry. Bayesian methods have been largely suggested as a practical

alternative to NHST [9, 17, 23, 51], but—until now—they have not received enough attention

from researchers in psychology and social sciences.

3. Bayesian hypothesis testing: An alternative to NHST

“(…) prior and posterior are relative terms, referring to the data. Today’s

posterior is tomorrow’s prior.” Lindley [52, p. 301].

In the field of statistics, probabilities can be interpreted under two predominant paradigms:

Frequentist inference and Bayesian inference. The former makes predictions about experi-

ments whose outcomes depend basically upon random processes [53]. The latter assigns

probabilities to any statement, even when a random process is not involved [54]. In a Bayesian

framework, a probability is a way to embody an individual’s degree of belief in a statement.

Since the mid-1950s, there has been a clear predominance of the Frequentist approach to

hypothesis testing, both in psychology and social sciences. The hegemony of Frequentist

inference and its null hypothesis significance testing (NHST) might be partially attributed to

the massive incorporation of such approaches in psychology undergraduate programs [9] and

also to the fact that the Neyman and Pearson approach had the most well-developed compu-

tational software to conduct statistical inference [18]. However, the current scenario has dras-

tically changed, and the development of sampling techniques like Markov-Chain Monte Carlo

(MCMC; see [55, 56]) along with the availability and improvement of specifically developed

software (e.g., WinBUGS, see [57, 58]; JAGS, see [59, 60]; JASP, see [61]) makes exact Bayesian

inferences possible even in very complex models. As a result, “Bayesian applications have

found their way into most social science fields” [22, p. 665], and psychologists can now easily

implement Bayesian analysis for many common experimental situations (see for example JASP

Statistics: https://jasp-stats.org/).
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3.1. Bayes in a nutshell

In Bayesian inference, our degrees of belief about a set of hypotheses are quantified by proba-

bility distributions over those hypotheses [47, 62], which makes the Bayesian approach funda-

mentally different from the Frequentist approach, which relies on sampling distributions of

data [47]. A Bayesian analysis usually implicates the updating of prior knowledge or informa-

tion in light of newly available experimental data [63]. The latter clearly reflects the aim of any

empirical science, which is to strive for the elaboration of a cumulative base of knowledge. Any

Bayesian analysis implies the combination of three sources of information as follows:

a. a model that specifies how latent parameters (e.g., θ) generate data (e.g., D);

b. prior information about those parameters (i.e., prior distribution); and

c. the observed data (i.e., likelihood).

This prior information, represented by p(θ), represents our degree of uncertainty about the

parameters included in the model. Conversely, this prior distribution may also represent our

degree of knowledge about the same parameters. Then, the more informative is our prior

distribution, the less will be our degree of uncertainty about the parameters. The likelihood is

the conditional probability of observing the data under some latent parameter (i.e., p(D|θ)).

Following the Bayes theorem [64], the combination of these three elements produces an updated

knowledge about the model parameters after the data have been observed, which is also known

as the posterior distribution. The change from the prior to the posterior distribution reflects what

has been learned from the data (see Figure 1). Thus, within a Bayesian framework, a researcher

can invest more effort in the specification of prior distributions by translating existing knowl-

edge about the phenomenon under study into prior distributions [65]. As suggested by Lee and

Wagenmakers “such knowledge may be obtained by eliciting prior beliefs from experts, or by

consulting the literature for earlier work on similar problems” [65, p. 110].

As shown in Figure 1, the strength of each source of information is indicated by the narrow-

ness of its curve. A narrower curve is more informative about the value of parameters, whereas

a wider one is less informative.

Bayes’ rule specifies how the prior information p(θ) and the likelihood p(D|θ) are combined to

arrive at the posterior distribution denoted by p(θ |D), in Eq. (1):

p θjDð Þ ¼
p Djθð Þp θð Þ

p Dð Þ
(1)

Eq. (1) is usually paraphrased as:

p θjDð Þ∝ p Djθð Þp θð Þ (2)

which means, “the posterior is proportional (i.e.,∝) to the likelihood times the prior.” In other

words, the observed data (i.e., likelihood) increases our previous degree of knowledge (i.e.,
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prior) in a proportional way to its informative strength, producing a new state of knowledge

about the parameters of the model (i.e., posterior). One of the benefits of the Bayesian

approach is that the prior (i.e., p(θ); our present knowledge about the model parameters

moderates the influence provided by the data (i.e., p(D|θ)). This compromise leads to less

pessimism when data are unexpectedly bad and less optimism when it is unexpectedly

good [66]. Both influences are beneficial and help us to make more realistic inferences and take

better decisions. For more detailed information on Bayesian inference, see, for instance,

O’Hagan and Forster [54], Kruschke [59], and Jackman [67].

3.2. Bayes factor

Bayesian approaches for hypothesis testing are comparative in nature. Different models often

represent competing theories or hypotheses, and the focus of interest is on which one is more

plausible and better supported by the data [65]. Therefore, the Bayesian approach allows to

quantify the plausibility of a given model or hypothesis (i.e., H0) against that of an alternative

model (i.e., Ha). For any comparison of two competing models or hypotheses (e.g., Ha vs. H0),

we can rely on an estimate of evidence known as the Bayes factor [52]. One of the attractive

features of the Bayes factor is that it follows the principle of parsimony: When two models fit

the data equally well, the Bayes factor prefers the simple model over the more complex

one [68]. Nonetheless, in contrast to the NHSTapproach, “Bayesian statistics assigns no special

Figure 1. Prior, likelihood and posterior probability distributions.
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status to the null hypothesis, which means that Bayes factors can be used to quantify evidence

for the null hypothesis just as for any other hypothesis” [65, p. 108].

Before observing the data, the prior odds of Ha over, e.g., H0, are p(Ha)/p(H0), and after having

observed the data we have the posterior odds p(Ha|D)/p(H0|D). Therefore, the ratio of the

posterior odds and the prior odds is defined as the Bayes factor:

BFHaH0
¼

DjHað Þ

DjH0ð Þ
¼

p Ha jDð Þf g
p H0jDð Þf g

p Hað Þf g
p H0ð Þf g

¼
posterior odds

priorodds
(3)

Eq. (3) shows the Bayes factor for given data D and two competing hypotheses (i.e., H0 vs. Ha),

which is a measure of the evidence for Ha against H0 provided by the data. In other words, the

Bayes factor is the probability of the data under one hypothesis relative to the other. For instance,

a BFHaH0
= 3 indicates that Ha is three times more plausible relative to H0 than it was a priori.

From this view, the Bayes factor may be considered as analogous to the Frequentist likelihood

ratio. Nevertheless, in the Bayesian context there is no reference at all to theoretical probability

distributions as it is customary in a Frequentist approach. In a Bayesian framework, all inferences

are made conditional on the observed data, and therefore, the Bayes factor has to be interpreted

as a summary measure of the information provided by the data about the relative plausibility of

two models or hypotheses (e.g., Ha vs. H0). Jeffreys [52] suggests the following scale for

interpreting the Bayes factor (Table 1), although some people argue against the use of thresholds,

least we fall in a different version of the old p < 0.05 ritual (see, for instance, [69]).

Bayes factor Interpretation

> 100 Extreme evidence for Ha

30 – 100 Very strong evidence for Ha

10 – 30 Strong evidence for Ha

3 – 10 Moderate evidence for Ha

1 – 3 Anecdotal evidence for Ha

1 No evidence

1/3 – 1 Anecdotal evidence for H0

1/10 – 1/3 Moderate evidence for H0

1/30 – 1/10 Strong evidence for H0

1/100 – 1/30 Very strong evidence forH0

< 1/100 Extreme evidence for H0

Adapted from Jeffreys [52, p. 433], and Lee and Wagenmakers [65, p. 105].

Table 1. Evidence categories for the Bayes factor.1
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4. Bayesian vs. Frequentist approaches to hypothesis testing: An example

Bayes factors to evaluate the amount of evidence in favor or against H0 and Ha are one of the

big selling points of the Bayesian framework.1 As stated in the previous section, the core idea is

that the magnitude of evidence in favor of the null hypothesis compared to that of the

alternative hypothesis can be estimated (or vice-versa). As we have seen, this approach has

multiple advantages, such as departing from a hit-or-miss approach to results reporting, or

being able to show evidence in favor of the null. The possibility of providing evidence in favor

of both the null and the alternative hypotheses has some important advantages. One of them is

that it helps to overcome one of the most common issues behind the well-known file-drawer

effect, in that results do not suddenly become meaningless when the p-value is over certain

threshold. Another advantage is that it gives us more freedom when establishing hypothesis,

particularly in topics where hypothesizing the absence of differences may be necessary for

theoretical advance.

In this section, an example from a field known as Bayesian reasoning will be presented, which

deals with how people update their beliefs when new evidence is available (e.g., when receiv-

ing a positive result in a medical test, how likely it is that I have a disease?). There is a long

standing debate in the field about why people are unable to solve medical screening problems

such as the one shown in Table 2 when the information is shown in a standard probability

format (i.e., single-event probabilities; for instance, 1% have cancer), but have a comparatively

better time when the same information is shown in a standard frequency format (i.e., natural

frequencies; for instance, 10 in 1000 have cancer). As it is often the case, the debate about these

issues is very complex (for a review, see [71]), and the present example will focus on a single

unnuanced aspect with the goal of showing the usefulness of the Bayesian statistics paradigm.

Standard probability format

The probability of breast cancer is 1% for women at age 40 who participate in routine screening. If a woman has breast

cancer, the probability is 80% that she will get a positive mammography. If a woman does not have breast cancer, the

probability is 9.6% that she will also get a positive mammography.

Awoman in this age group had a positive mammography in a routine screening. What is the probability that she actually

has breast cancer? _____%

Standard frequency format

Ten out of every 1000 women at age 40 who participate in routine screening have breast cancer. Eight of every 10 women

with breast cancer will get a positive mammography. Ninety-five out of every 990 women without breast cancer will also

get a positive mammography.

Here is a new representative sample of women at age 40 who got a positive mammography in routine screening. How

many of these women do you expect to actually have breast cancer? ____out of____

Table 2. Standard probability and standard frequency format problems, as shown by Gigerenzer and Hoffrage [72].

1However, we recommend the interested reader to revise a recent paper by Lakens [70], which describes an approach to

test for equivalence within a Frequentist framework.
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Some authors [73, 74] argue that the crucial factor explaining the differences between the two

versions is not the representation format (i.e., probabilities or natural frequencies), but the

reference class or more specifically the computational complexity is caused by the reference

class of the problems [75]. In brief, as the probability version has a relative reference class, and

all the numbers refer to the group above them (e.g., 80% from the 1% who have breast cancer

will get a positive mammography). To solve the problem, we need to use the base-rates (in this

example, percentage of women with and without breast cancer; 1 and 99%), and the percent-

age of women who got a positive mammography amongst those two groups (e.g., 80 and 9.6%;

see Eq. (4)). In the frequency version, as the reference class is absolute, and all numbers can be

seen as referring to the 1000 women, we can ignore the base-rates and directly use the positive

mammographies for women with and without cancer (8 and 95; see Eq. (5)). The above-

mentioned authors hypothesized that when reference class and computational complexity are

taken into account, there is no difference between probabilities and natural frequencies. In

other words, they expect the null hypothesis to be true (Figure 2).

p HjDð Þ ¼
1%� 80%

1%� 80%þ 99%� 9:6%
¼ 0:077 (4)

p HjDð Þ ¼
8

8þ 95
¼ 0:077 (5)

Now, imagine two PhD students, a Frequentist (i.e., Student 1) and a Bayesian (i.e., Student 2).

After reading a critical but often ignored Fiedler’s paper [73], they had the idea that computa-

tional complexity class (and not representation format) is the key issue when trying to under-

stand how people solve Bayesian reasoning problems. They devise a very simple experiment

where two different groups of people will be asked to solve one Bayesian reasoning problem

that will be shown either in single-event probabilities or in natural frequencies. In both cases,

the arithmetic complexity (i.e., number of arithmetic steps required to solve the problem) will

be exactly 2. That is, to solve the problems, participants would need to do two arithmetic

operations, a sum and a division. They used a test with a 100% sensitivity and 0% specificity,

which could not have any clinical application, but it is useful to get a few arithmetic steps out

of the probability format and check if computational complexity underlies Bayesian reasoning.

With this manipulation, the algorithms to solve the probability and frequency versions become

Figure 2. Relative and absolute reference classes represented by the reference of the last row (test results). In the Relative

reference class, the information about the test, for example, 80% positive (+) and 20% negative results (�) refers to the 1%

women with BC, but not to the 100% of the women (it is not an 80% of the 100%!). However, in the absolute reference

class, the same information, 8+ and 2�, refers to the women with BC, but also to the 1000 women directly. This translates

in the need to use Eq. (4) for relative probabilities and Eq. (5) for absolute frequencies.
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Eqs. (6) and (7), respectively. It is easy to see how both have become roughly equivalent now in

terms of arithmetic complexity.

p HjDð Þ ¼
10%� 100%

10%� 100%þ 90%� 100%
¼

10%

10%þ 90%
¼ 0:1 (6)

p HjDð Þ ¼
10

10þ 90
¼ 0:1 (7)

As it can be deduced, Student 1 would have a Fisherian approach to statistics and Student 2 a

Bayesian approach. Both run an experiment with a total of 62 participants (31 per group),2 and

have the following results:

4.1. PhD Student 1—Frequentist

Student 1, as the most good NHST practitioners would do, conducts a Chi-square test and

reports that he did not obtain a significant effect of representation format when arithmetic

steps were equal (χ2 = 0.088, p = 0.767). He is happy, because this is congruent with his

hypothesis. He then writes a brief report detailing his idea and experimental results and sends

the manuscript draft to his advisor. A few days later, he receives his advisor feedback, telling

him that his non-significant results could be caused by a number of reasons, and as a conse-

quence, the non-significant results are hard to interpret.

Contingency tables

Representation format

Accuracy Natural frequencies Probabilities Total

0 23 24 47

1 8 7 15

Total 31 31 62

Chi-square tests

Value df p

χ
2 0.088 1 0.767

N 62

2Of course, the sample size and manipulation for this experiment is more congruent with a pilot experiment than a real

one that could be sent to a journal on its own. As a side note, take into account that one of the advantages of the Bayesian

framework some authors propose is a sequential sampling rule, where sampling stops when the evidence (BF) is over a

predetermined threshold (e.g., BF10 >10 | <0.1), see Lindley [76].
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His advisor suggests carrying out a few more experiments using variations of the task and

decent sample-sizes, to be able to perform a meta-analysis that could convince the editorial

board of a journal that their endeavor is noteworthy, as they would probably have a hard time

publishing those non-significant results by themselves.

4.2. PhD Student 2—Bayesian

Student 2, instead of performing a Chi-square test, prefers to use a well-known analysis among

Bayesian statisticians called Bayes factor (BF; see [17, 65]). He uses a very simple to use

software called JASP [61], that incorporates Bayesian contingency tables, and outputs BF

results in ready to use APA formatted tables. He finds that when arithmetic steps are equal,

there is a BF01 of 4.656, that is, there is 4.6 times more evidence in favor of the null-hypothesis

than the alternative-hypothesis. Along his advisor, they send the manuscript to a journal,

pushing for the relative importance of arithmetic complexity over representation format. In

practical terms, it is more likely that the editor will be willing to publish this interesting result,

although the amount of evidence in favor of the null would be considered moderate by some

standards (see [53]).

As the evidence for the null effect is not very strong, they would need to run a few more

studies with variations to replicate the finding and show, using BF, how much more evidence

there is for the null hypothesis compared to the alternative hypothesis. Alternatively, they

could increase the sample size in their experiment until the stopping rule threshold (e.g., BF10
< 0.1) is reached.

This example was aimed to describe (in a very simplified manner) one of the practical advan-

tages of the Bayesian framework, that is, being able to present the amount of evidence for and

against both the null and alternative-hypotheses. This, combined with the incremental nature

of the Bayesian inference process, allows us to move further from the hit-or-miss approach

generally reinforced by the NHST framework, in which significant results are seen as more

valuable than non-significant ones.

5. Conclusion

During the past 70 years, the NHST has dominated the way in which knowledge is produced

and interpreted and still governs the way in which researchers analyze their data, reach

Bayesian contingency tables tests

Value

BF0+ independent multinomial 4.656

N 62

Note: For all tests, the alternative hypothesis specifies that group Natural-Frequencies is greater than group Probabilities.
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conclusions, and report results [10, 45]. This approach has been largely criticized [9, 16, 21, 22,

39, 43–46], and “a major concern expressed by critics is that such testing is misunderstood by

many of those who use it” [35, p. 241]. Some authors [9, 13] emphasized that one of the most

pervasive influences of the NHST approach has been its over reliance on p-values, and in

particular, in the way that p-values have been interpreted (see, for instance [35, 36, 77]). One of

the most common misinterpretations of p-values it has been to consider a p-value as a valid

indicator of the magnitude of evidence of a result (i.e., effect size fallacy). Regarding this point,

Cohen emphasized that the only way to estimate the magnitude of an effect is to calculate the

value of the effect size with the appropriate statistic and its confidence interval [38]. The correct

way to interpret p-values is two-fold. On one hand, to rejectH0 only allows us to conclude thatH0

is unlikely. On the other hand, failing to reject H0 simply allows us to state that—given the

evidence at hand—one cannot make an assertion about the existence of some effect or phenom-

enon [42]. An immediate consequence of the wrong way in which a big number of researchers

interpret p-values is that null results have been usually considered as the absence of evidence of

the existence of an effect. This perspective regarding the decisions made when a given p-value

threshold is not reached (i.e., p < 0.05) do not promote scientific advance and quickly leads us to

a systematic bias toward ignoring promising but “non-significant” findings that may be further

explored, fed into meta-analysis, of just be considered by other researchers in the field. This fact

is against the pursue of any empirical science and may be harmful to the construction of a

cumulative base of knowledge [5].

As a way to provide a complementary (or alternative) method to deal with the current NHST

practice, we described here a Bayesian approach to hypothesis testing. A Bayesian approach

allows us to think about phenomena in terms of the magnitude of evidence that supports the

existence of an effect, instead of a dichotomous and artificial way of thinking in which an effect

either exists or does not exist [21]. As described in previous sections, a Bayesian approach

provides us a measure of evidence for and against both the null and the alternative hypotheses

(i.e., Bayes factor, BF; see [17]). The use of Bayes factors helps to overcome one of the most

common issues behind the well-known file-drawer effect, reducing the existent bias through

which results suddenly become meaningless when the p-value is over certain threshold (e.g., p

> 0.05). A straightforward feature of this approach is that “Bayesian statistics assigns no

special status to the null hypothesis, which means that Bayes factors can be used to quantify

evidence for the null hypothesis just as for any other hypothesis” [65, p. 108]. Therefore, a

Bayesian approach gives us more freedom when establishing hypothesis, for example in topics

where hypothesizing the absence of differences may be necessary for theoretical advance.

However, a major problem with Bayesian statistics has historically been that they require

complex and intricate mathematical calculations that were analytically intractable, at least

without the required techniques and specialized software. However, this scenario changed

dramatically during the 1990s with the development of sampling techniques like Markov-

Chain Monte Carlo (MCMC; see [55]) along with the availability and improvement of specifi-

cally developed software (e.g., WinBUGS, see [57, 58]; JAGS, see [59, 60]) that makes exact

Bayesian inferences possible even in very complex models. Nowadays, the relatively recent

implementation and availability of Bayesian analysis in “easy-to-use” and open software such

as JASP [61], R toolboxes such as Bayes factor [78], or more specialized ones like WinBUGS,
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JAGS, or Stan (http://mc-stan.org/) makes Bayesian statistics more accessible to all researchers,

academics and students. This widespread availability, paired with the advantages of the

Bayesian approach described in this chapter, and several times elsewhere [79–82], should help

establish the Bayesian paradigm as a viable and popular alternative to NHST.

Despite all the important Bayesian paradigm advantages, as always, there is potential for

misuse. As pointed out by Morey, Bayes factor interpretation is very natural (i.e., as the

amount of evidence in favor of one hypothesis in comparison to another), and does not need

specific decision thresholds, as it is the case of p-values [83]. However, some standards that

could help to communicate BF results have been proposed (see [53]) and may be helpful to

people that are not familiar with them. Nonetheless, the introduction of these labels also

creates an opportunity for misuse, as they could be misinterpreted as decision boundaries. It

is very important to be aware of this fact, and be careful when using them, to avoid making

“BF > 3” the new “p < 0.05.”

To sum up, the main goal of this chapter has been to increase the degree of awareness

regarding the limitations of the NHST approach and highlight the advantages of the Bayesian

approach. We expect that the inclusion of an easy-to-understand example of a specific case

where a Bayesian paradigm shows its practical utility may offer the newborn readers on this

matter a glimpse to the usefulness of this alternative to the way in which they can analyze and

interpret their data. As a final remark, we would like to point an often-heard recommendation

for people interested in starting to use BF, which is to introduce them alongside p-values and

effect size measures, to ease the transition to the new paradigm, and make them comprehen-

sible to people not yet familiarized with them.
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