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Abstract

Sustainable production of chemicals is of increasing importance, due to depletion of 
petroleum and environmental concerns. In addition to its importance in basic research as 
a simple, eukaryotic model organism, Saccharomyces cerevisiae has long been exploited in 
industry because of its physiological properties. And today, the development in genetic 
engineering toolbox and genome-scale metabolic models of S. cerevisiae has extended its 
application range to new products and bioprocesses. In addition, evolutionary engineer-
ing strategies have been useful in improving cellular properties of S. cerevisiae, such as 
tolerance to product toxicity and inhibitors. In this chapter, recent metabolic and evolu-
tionary engineering studies that involve S. cerevisiae for the production of bulk chemicals 
and fine chemicals including flavours and pharmaceuticals are reviewed. It was shown 
that metabolic engineering particularly allowed the improvement of pharmaceuticals 
production, which will enable economic and large-scale production of many valuable 
pharmaceuticals. It is clear that S. cerevisiae will continue to be an important host for 
future metabolic engineering and metabolic pathway engineering applications to pro-
duce a variety of industrially and clinically important chemicals.

Keywords: pharmaceuticals, adaptive evolution, bulk chemicals, evolutionary engineering, 
flavours, fine chemicals, glutathione, metabolic engineering, organic acids, 
Saccharomyces cerevisiae

1. Introduction

Metabolic engineering was defined by Bailey [1] as ‘the improvement of cellular activities 

by manipulation of enzymatic, transport and regulatory functions of the cell with the use of 
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recombinant DNA technology’. More than 20 years after this first definition as a new scientific 
discipline, metabolic engineering has become an increasingly important research field of bio-

technology. Today, metabolic engineering requires interdisciplinary work that includes molec-

ular biology, applied microbiology, biochemical reaction engineering, biomedical research 

with the aid of high-throughput analytical tools in ‘omics’ research and bioinformatics [2].

There are two major approaches in metabolic engineering, as described by Bailey et al. [3], 

the rational metabolic engineering and inverse metabolic engineering. In rational metabolic 

engineering, extensive genetic and biochemical information is required on the metabolism 

or metabolic pathway of interest to make defined genetic manipulations. The cellular physi-
ological responses are also complex. Thus, trying to re-engineer a cellular machine that is 

too complex and about which there is limited information is a major limitation in rational 

metabolic engineering. Difficulties in cloning in industrial strains due to the lack of relevant 
genetic tools, and GMO-concerns of the public regarding food industry are additional issues 

[2]. The inverse metabolic engineering approach was designed to avoid the above-mentioned 

limitations. Here, the desired phenotype is identified first, as a ‘bottom-up’ approach, and 
then its genetic and/or environmental basis is determined which is the most challenging step. 

However, owing to the powerful high-throughput analytical technologies in genomics, tran-

scriptomics, proteomics and metabolomics, this step is becoming easier [2, 4]. Thus, without 

any need for extensive initial information on biochemistry, genetics and regulation on the 

organism of interest, the desired phenotype can be obtained. Adaptive evolution or evolu-

tionary engineering, which is based on random mutation and selection by systematic cultiva-

tion of an initial microbial culture in the presence of a selective pressure to obtain desirable 

phenotypes [5], is a common inverse metabolic engineering strategy [2].

Metabolic engineering is a key strategy for harnessing microorganisms’ ability to produce 

chemicals from renewable carbon sources. Microbial processes are attractive since they have 
significantly lower environmental impacts than the petroleum-based processes. However, the 
former is primarily an economic challenge. Therefore, it is vital to develop superior strains 

with improved yield, titer and productivity by engineering microbial physiology, stress 

response and metabolism [6]. Considering the market value of chemical products based on 

petroleum, the cost-competitive bio-based products, once achieved, would have significant 
economic value as replacements. It is estimated that the global market share of bio-based 

chemicals will rise from 2% in 2008 to 22% in 2025 [7].

In this chapter, we focused on the recent metabolic engineering studies that involve the bak-

er’s yeast, Saccharomyces cerevisiae, for the production of industrially and clinically important 

compounds. S. cerevisiae has many advantages to be used in metabolic engineering studies: 

it has ‘Generally Recognized as Safe’ (GRAS) status, and there is extensive information on its 

genetics, physiology and biochemistry. Besides being a common industrial microorganism 
for ethanol fermentation, baking, brewing, etc., S. cerevisiae has been regarded as a versatile 

cell factory for the production of a wide range of natural compounds by manipulation of the 

endogenous pathways and/or integration of heterologous pathways. In this review, metabolic 
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engineering studies with S. cerevisiae are divided into two major categories: production of 

bulk chemicals, and production of fine chemicals including flavours and pharmaceuticals. 
Regarding the production of bulk chemicals, examples of organic acids that have potentials 

to be produced by fermentation at large-scale were discussed. As fine chemicals, glutathione 
and a variety of secondary metabolites used in food, cosmetic and health industries were 

discussed.

2. Production of bulk chemicals

The oil refinery is currently the major source of bulk chemicals such as solvents and polymer 
precursors. A significant portion of petroleum is used in the chemical catalysis for the produc-

tion of chemicals and plastics [8]. However, in recent years, microbial production of chemicals 

based on renewable sources, such as biomass, has become important as a part of the efforts 
to reduce demand on diminishing petroleum and to reduce hazardous wastes. In addition, 

biotechnology makes new chemical monomers accessible, which are otherwise inaccessible 

due to high production cost [9].

In bio-refineries, the biomass is the first converted into simple sugars and then to valuable 
chemicals. Microorganisms are the main players of the latter conversion. Therefore, the devel-
opment of a suitable strain for the particular process is needed. As a model yeast, S. cerevisiae 

has been a focus of metabolic engineering studies for the bio-based production of chemicals. 

1,4-Diacids (succinic, fumaric and malic), itaconic acid, 3-hydroxypropionic acid and lactic 

acid are organic acids listed among the high-potential targets for industrial biotechnology 

[10]. Representative examples for the production of these bulk chemicals by metabolically 

engineered S. cerevisiae are summarized in Table 1.

Succinic acid is used in a wide range of industries from food to agriculture. Also, it has been 

considered as a generic intermediate for the bio-based polymers and can be a substitute of 

petroleum-derived maleic anhydride, which has a huge market [11]. Therefore, an increas-

ing demand of succinic acid is expected in the future. Currently, it is mainly produced by 

chemical syntheses, which are based on petrochemical precursors. Biotechnological routes 
are pursued to achieve a sustainable production of succinic acid. Anaerobiospirillum succinici-

producens and Actinobacillus succinogenes are natural succinic acid producers. However, these 

organisms are prokaryotes that favour neutral pH for growth and require neutralization and 

a cost-additive product recovery process. In addition, there is a lack of suitable genetic tools 

for these organisms [12]. Although S. cerevisiae is not a natural producer of succinic acid as 

an end product, there have been efforts to metabolically engineer S. cerevisiae, since it has 

favourable properties such as the ability to operate at low pH values [13]. In general, the 

tricarboxylic acid (TCA) cycle and glyoxylate shunt are the focus of these studies. In order 

to redirect oxidative TCA pathway, elimination of succinate and isocitrate dehydrogenases 

has been proposed as a strategy. A yeast strain with disturbed TCA cycle due to deletions of 

SDH1, SDH2, IDH1, IDP1, produced succinic acid at a yield of 0.11 mol/mol glucose in shake 
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flask cultures [14]. A computational pathway prediction algorithm has been utilized to iden-

tify multiple gene deletion targets to redirect carbon fluxes towards succinic acid [15]. Three 

deletion targets, SDH3, SER3 and SER33, were identified to couple succinic acid production 
to biomass formation. This strategy was based on the elimination of succinic acid consump-

tion by the deletion of SDH3 encoding cytochrome b subunit of succinate dehydrogenase. The 

serine biosynthesis was also disrupted by the deletions of SER3 and SER33, which are para-

logs encoding 3-phosphoglycerate dehydrogenase. Therefore, serine and glycine production 

were linked to succinic acid production via glyoxylate pathway. However, the engineered 

strain required glycine to be supplemented in the medium. Further, two successive labora-

tory evolution experiments for glycine prototrophy and faster growth were performed with 

this strain. Finally, overexpression of isocitrate lyase, Icl1p, in the evolved strain, resulted 

Bulk chemical produced Representative studies and their strain improvement strategy [reference no]

Succinic acid Disturbance of the citric acid cycle by deleting SDH1, SDH2, IDH1, IDP1 [14]

Disabled serine synthesis from glycolysis through a triple deletion of SDH1, SER3 and 

SER33 [15]

Enhanced succinic acid export via heterologous expression of MAE1 from 

Schizosaccharomyces pombe in Saccharomyces cerevisiae SDH1- and SDH2-disrupted strains 

[16]

Itaconic acid Overexpression of CAD with a synthetic hybrid promoter and enhancement of flux 
towards the citric acid cycle by the sequential deletion of the ADE3, BNA2 and TES1 

genes [19]

3-Hydroxypropionic acid Reconstruction of malonyl-CoA to 3-HP pathway via expression of MCR from 

Sulfolobus tokodaii and HPDH from Metallosphaera sedula and increased precursor and 

cofactor availability [23]

Reconstruction of β-alanine to 3-HP pathway via coexpression of BAPAT from Bacillus 

cereus and HPDH from Escherichia coli and redirection of flux towards β-alanine by 
overexpressing PAND from Tribolium castaneum [24]

Reconstruction of malonyl-CoA to 3-HP pathway via coexpression of MCR from 

Chloroflexus aurantiacus and an inhibition-deficient ACC1 and optimization of acetyl-

CoA supply by overexpressing native PDC1, ALD6, and ACS from Salmonella enterica 

[25]

Adaptive laboratory evolution for improved tolerance to 3-HP at pH 3.5 [45]

Lactic acid Expression of genome-integrated L-LDH from bovine under PDC1 promoter and 

inactivation of PDC1 [28]

Expression of genome-integrated D-LDH from Leuconostoc mesenteroides subsp. 

mesenteroides under PDC1 promoter and inactivation of PDC1 [29]

Deletion of PDC1 and expression of multiple copies of L-LDH from bovine [30]

Inhibition of L-LDH consumption by deletion of DLD1 and JEN1, elimination of ethanol 

and glycerol production by deleting PDC1, ADH1, GPD1 and GPD2, and improvement 

of lactic acid tolerance by adaptive evolution and overexpression of HAA1 [31]

Overexpression of HXT1 and HXT7 hexose transporters [32]

Repression of ethanol production by deleting PDC1 and ADH1 and enhanced acetyl-

CoA supply by the introduction of the genes encoding acetylating acetaldehyde 

dehydrogenase enzyme from Escherichia coli [33]

Enhancement of lactic acid transport by expressing JEN1 and ADY1 [34]

Expression of ESBP6, a novel target isolated by screening a multi-copy yeast genomic 

DNA library [35]

Table 1. Bulk chemical production by metabolically engineered S. cerevisiae.
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in a succinic acid yield of 0.07 mol/mol glucose under aerobic conditions without glycine 

addition. Metabolic profiling analysis of a succinic acid-producing recombinant S. cerevisiae 

hinted a metabolic engineering strategy involving expression of a malic acid transporter from 

Schizosaccharomyces pombe (MAE1) to export succinic acid out of cells [16].

Itaconic acid has currently application in the manufacture of pharmaceuticals, adhesives 

and resins. In addition, its polymerized form (polyitaconic acid) has potentials as a replace-

ment of acrylic acid in the development of superabsorbents [17], and can be used in contact 

lenses, detergents and cleaners [18]. Aspergillus terreus is the present organism of choice for 

the industrial fermentation of itaconic acid. However, the process bears some constraints due 

to inherent characteristics of A. terreus, such as inhibition in the media and sensitivity to shear 

stress [19]. Kanamasa et al. isolated cis-aconitic acid decarboxylase (CAD), which is the key 

enzyme in the conversion of cis-aconitate to itaconic acid in A. terreus, and its heterologous 

expression in S. cerevisiae showed the possibility of itaconic acid production in yeast [20]. 

Blazeck et al. utilized a synthetic hybrid promoter carrying an enhancer and a core promoter 

module to optimize CAD expression in S. cerevisiae [19, 21]. A genome-wide metabolic model 

of the yeast was used to identify gene deletion targets to further increase the itaconic acid 

titer. Three sequential rounds of genome scan in silico highlighted three deletion targets; cyto-

plasmic trifunctional C1-tetrahydrofolate (THF) synthase, a putative tryptophan 2,3-dioxy-

genase or indoleamine 2,3-dioxygenase and a peroxisomal acyl-CoA thioesterase, encoded 

by ADE3, BNA2 and TES1, respectively. The deletions rewired metabolic flux towards TCA 
cycle and enhanced itaconic acid titer (168 mg/L). However, further efforts are necessary to 
redirect carbon flux towards itaconic acid production in the yeast to approach titers obtained 
in Aspergillus species (>80 g/L).

3-Hydroxypropionic acid (3-HP) is another important platform chemical which can be pro-

duced from either sugars or glycerol and can be converted to 1,3-propanediol, acrylic acid, 

malonic acid, and acrylamide. 3-HP derivatives have a variety of applications in super absor-

bent polymers, surface coatings, adhesives and paints [11]. Although there are biological 

pathways to 3-HP via either glycerol, lactate, malonyl-CoA or β-alanine intermediates, no 
organism is known to produce it as an end product [22]. The pathways based on malonyl-CoA 

and β-alanine have been constructed in S. cerevisiae [23, 24]. Chen et al. evaluated different 
malonyl-CoA reductases. Malonyl-CoA reductase (MCR

Ca
) from Chloroflexus aurantiacus was 

expressed in the yeast for the conversion of malonyl-CoA to 3-HP in a two-step reduction 

reaction. Further, carbon flux was redirected towards 3-HP through increasing the levels of 
malonyl-CoA and its immediate precursor, acetyl-CoA. For this purpose, native ADH2 (alco-

hol dehydrogenase) and ALD6 (NADP-dependent aldehyde dehydrogenase), and synthetic 

acsL641P
SE

 (acetylation-insensitive acetyl-CoA synthetase from Salmonella enterica) were over-

expressed to increase the level of acetyl-CoA. The cellular concentration of malonyl-CoA was 

increased by over-expression of ACC1 (acetyl-CoA carboxylase), which is the sole enzyme in 

the conversion of acetyl-CoA to malonyl-CoA. Finally, 3-HP was produced at a titer of 463 

mg/L when the production was coupled with enhanced supply of electron donor of MCR
Ca

 

(NADPH) by heterologous expression of GAPNp (a non-phosphorylating glyceraldehyde-

3-phosphate dehydrogenase from Streptococcus mutans) [23]. In another study, a significant 
improvement of 3-HP production was achieved when multiple copies of MCR were integrated 
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into the yeast genome and a modified ACCp with phosphorylation deficiency was expressed. 
Finally, engineering of the redox metabolism of this strain produced 3-HP at a titer of 9.8 g/L 

in a glucose-limited, fed-batch system [25]. Borodina et al. utilized genome-scale modelling 

to compare the two biosynthetic routes in terms of maximum theoretical yields and identified 
β-alanine pathway as a more favourable route. They implemented the biosynthesis of 3-HP 
from glucose via β-alanine through coexpression of β-alanine-pyruvate aminotransferase 
from Bacillus cereus and 3-hydroxypropanoate dehydrogenase from Escherichia coli. Further, 

carbon-flux was redirected towards β-alanine by the supply of L-aspartate, the immediate 
precursor of β-alanine. The final strain yielded 3-HP at a titer of 13.7 g/L in glucose-limited 
fed-batch cultivation. In a similar fashion, production of 3-HP via both malonyl-CoA and 

β-alanine pathway was reported in a xylose-utilizing S. cerevisiae [24].

Lactic acid is a well-known fermentation product which is already widely used in food, cos-

metics and pharmaceutical industries. Lactic acid derived from biomass is also valued as a 

monomer in the development of bioplastics [26]. Lactic acid bacteria, especially, Lactobacillus 

species, are often employed in lactic acid production. For large-scale lactic acid production, 

fermenting microorganisms with high acid tolerance, simple nutritional requirements and 

capability of growth at high cell density are pursued [27]. To this end, S. cerevisiae was engi-

neered for lactic acid production by integrating lactate dehydrogenase (LDH) gene into its 

genome [28, 29]. Reduction in ethanol and glycerol production is desirable to direct metabo-

lite fluxes to lactic acid production. Therefore, deletions of PDH encoding pyruvate dehy-

drogenase, ADH encoding alcohol dehydrogenase and GPD1 encoding glycerol-3-phosphate 

dehydrogenase were reported to improve lactic acid production in LDH-expressing yeast 

strains [30, 31]. Another approach was the improvement of cell growth either by an increased 

glucose uptake via overexpression of hexose transporters (HXT1 and HXT7) or an enhanced 

acetyl-CoA supply through implementing an acetyl-CoA synthesis pathway from E. coli in 

lactic acid-producing S. cerevisiae [32, 33]. In addition, elimination of NADH-consuming 

reactions through deletions of NDE1 and NDE2 encoding mitochondrial external NADH 

dehydrogenases was shown to improve lactic acid production due to increased cofactor avail-

ability. The yeast strains that expressed JEN1 and ADY2 encoding monocarboxylate perme-

ases constitutively had improved lactic acid production due to higher efflux of lactic acid [34]. 

Recently, screening of a multi-copy genomic DNA library revealed a novel protein (ESBP6) 
involved in lactic acid adaptation response, although having a low similarity to monocar-

boxylate permeases [35]. Lactic acid accumulation under low pH conditions has detrimental 

effects on yeast cells. Therefore, tolerance to weak acids is another target to achieve high levels 
of organic acids like lactic acid. A recombinant LDH-expressing yeast strain was subjected to 

adaptive laboratory evolution in the presence of gradually increased D-lactic acid levels. A 

lactate over-producing strain was obtained with additional copies of LDH and HAA1, encod-

ing a transcription activator involved in lactic acid stress, and a titer of 112 g/L was achieved 

in fed-batch cultivation [31].

Product toxicity is a major obstacle for achieving high titers of the target chemicals such as 

organic acids, aromatic substances and antibiotics [36]. There is limited knowledge about the 

molecular basis of the product toxicity and tolerance to enable a rational prediction of genetic 

changes [37]. David et al. developed, for the first time, a hierarchical dynamic pathway control  
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system involving a two-stage fermentation concept and the use of a metabolic sensor in  

S. cerevisiae [38]. The growth and production phases were decoupled to allow sufficient bio-

mass formation before accumulation of the product beyond toxic levels. In addition, they 

designed a metabolite sensor based on prokaryotic fapR-fapO system to regulate expression 

of pathway enzymes in relation to availability of metabolite pools during the production 

phase. Efficiency of this concept was demonstrated in 3-HP production, which was increased 
by 10-fold in titers. A more common, alternative approach used against product toxicity or 

toxic/inhibitory compounds is evolutionary engineering. It is particularly useful for obtaining 

genetically complex microbial phenotypes such as tolerance to inhibitors/toxic compounds or 

various stress types [39]. Successful results were obtained by our research group, regarding 

evolutionary engineering of multi-stress resistant [40], cobalt-resistant [41, 42], nickel-resis-

tant [43], and ethanol-tolerant [44] S. cerevisiae. Another example for the use of evolutionary 

engineering against product toxicity involves adaptive evolution for lactic acid tolerance in 

S. cerevisiae [31]. Similarly, Kildegaard et al. isolated S. cerevisiae strains with resistance to 

3-HP through laboratory evolution. Genome sequencing of the evolved strains and subse-

quent functional analyses identified a relevant mutation in SFA1 gene (S-(hydroxymethyl) 

glutathione dehydrogenase) related to 3-HP tolerance [45].

3. Production of fine chemicals

Plant secondary metabolites hold the potential to be used as pharmaceuticals, cosmetic and 

food ingredients. However, the yield of these molecules when extracted from natural produc-

ers is not in sufficient amounts to meet industrial demands. In addition, chemical synthesis 
of these complex structures often requires multiple reaction steps and is not a commercially 

attractive route due to low product yields [46]. Currently, advances in metabolic engineer-

ing allowed commercial-scale microbial production of a number of fine chemicals [47–49]. 

Besides, there is an ongoing academic interest for reconstitution of biosynthetic pathways of 
several natural products, including complex pathways, in S. cerevisiae. Discovery of gene clus-

ters involved in the biosynthesis of secondary metabolites have enhanced progress in micro-

bial production of these molecules [50]. Computational studies have also been conducted to 

optimize heterologous production in a variety of industrial host microorganisms including 

S. cerevisiae, which involved application of flux balance analysis on genome-scale models for 
different hosts to identify the optimum host for production [51].

3.1. Flavours

Compounds belonging to isoprenoid and phenolics type of secondary metabolites are valued 

as natural fragrances and flavours. Flavour compounds can be produced from sugars (de novo 

synthesis) or from specific precursors (bioconversion) by using microorganisms.

Vanillin, a phenolic aldehyde, is one of the first flavour compounds produced in microbial 
hosts at commercial-scale. Current state of the microbial production of vanillin based on vari-

ous precursors and the available production hosts have been recently reviewed by Gallage 
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and Møller [52]. De novo biosynthesis of vanillin from glucose in S. cerevisiae has also been 

reported [53]. A multi-step conversion of a shikimate pathway intermediate (3-dehydroshi-

kimate) to vanillin has been achieved through heterologous expression of four genes from 

Podospora pauciseta, Nocardia iowensis, Corynebacterium glutamicum and Homo sapiens. Once the 

vanillin biosynthesis was established, genome-scale metabolic modelling was used to identify 

gene deletion targets to improve vanillin production in S. cerevisiae. PDC1 and GDH1 dele-

tions resulted in a five-fold increase in production (500 mg/L) [47].

p-Coumaric acid, a hydroxyl derivative of cinnamic acid, is a commercially attractive end-
product and a platform compound for flavonoids, polyphenols and polyketides, as well. 
Rodriguez et al. achieved high titers (2 g/L) of p-coumaric acid as the end-product in S. cere-

visiae, through optimization of native aromatic amino acid biosynthesis [54]. The competing 

pathways were eliminated while enhancing production pathways by the expression of feed-

back resistant enzymes in combination with gene deletions and overexpression of analogue 

enzymes from E. coli.

β-Ionone is an apocarotenoid that is naturally present in raspberries. In S. cerevisiae, de novo 

synthesis of β-ionone was reported [55]. Beekwilder et al. constructed a β-carotene synthe-

sis pathway via farnesyl diphosphate (FPP) intermediate through polycistronic expression 

of genes from Xanthophyllomyces dendrorhous. The pathway was further extended, for the first 
time, to produce β-ionone by the expression of a carotenoid-cleavage dioxygenase (CCD1) 

from raspberry.

2-Phenyl ethanol (2-PE) is another economically attractive flavour compound with a rose-like 
scent. Ehrlich pathway is involved in the bioconversion of phenylalanine to 2-phenyl ethanol 

within S. cerevisiae. Elimination of allosteric feedback regulation on the aromatic amino acid 

biosynthesis resulted in an increase of up to 200-fold in the production of aromatic com-

pounds, including 2-PE. Romagnoli et al. constructed a deletion library of non-essential genes 

in S. cerevisiae by Synthetic Genetic Array (SGA) technology and identified that ARO8 encod-

ing an aromatic amino acid transaminase is a target to improve phenylethanol production 

from glucose [56]. Recently, Shen et al. identified AAT2 encoding a cytosolic aspartate amino-

transferase as another deletion target [57]. Deletion of these two genes in combination with 

the overexpression of Ehrlich pathway enzymes resulted in a significant improvement in 2-PE 
production from glucose, at a titer of 96 mg/L.

3.2. Pharmaceuticals

Another major area of metabolic engineering research is the production of clinically impor-

tant compounds. In this section, examples will be given for the production of a variety of such 

compounds by metabolically engineered yeast. Representative examples for the production 

of pharmaceuticals by metabolically engineered S. cerevisiae are summarized in Table 2.

Glutathione, a naturally occurring tripeptide, is an important compound used in health and 

cosmetic industries. It is produced by using S. cerevisiae at commercial-scale. There has been 

a remarkable progress in glutathione production by metabolic engineering studies over 

the last few decades. Improved levels of glutathione production were achieved by YAP1  
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Pharmaceutical 

produced

Representative studies and their strain improvement strategy [reference no]

Glutathione Overexpression of YAP1 [58]

Manipulation of the sulphate assimilation pathway by overexpressing MET14 and MET16 

[59]

Improved oxidized glutathione production by overexpression of GSH1, GSH2, and ERV1 

and the deletion of GLR1 [60]

Adaptive laboratory evolution in the presence of increasing levels of acrolein and screening 

for enhanced glutathione production [61]

Whole-genome engineering via genome shuffling and screening for enhanced glutathione 
production [62]

Artemisinin/artemisinic 

acid

Reconstruction of the complete biosynthetic pathway of artemisinic acid, including the 

three-step oxidation of amorphadiene to artemisinic acid by expression of CYP71AV1, 

CPR1, CYB5, ADH1 and ALDH1 from Artemisia annua [48]

Taxol/taxadiene Expression of a truncated version of the endogenous tHMG1 and GGPPS from Taxus 
chinensis or Sulfolobus acidocaldarius together with TDC1 from T. chinensis [66]

Prediction of the efficiency of different GGPPS enzymes via computer aided protein 
modelling [67]

Forskolin Expression of a promiscuous cytochrome P450 from Salvia pomifera [68]

Polyketides Heterologous expression of 6-MSA synthase gene from Penicillium patulum together with 

PPTases from either Bacillus subtilis or Aspergillus nidulans [69]

Construction of polyketide precursor pathways by expressing prpE from Salmonella 

typhimurium and PCC pathway from Streptomyces coelicolor [70]

Enhanced cofactor supply by expressing 2-PS from Gerbera hybrida [71]

Resveratrol Reconstruction of a de novo pathway by expressing TAL from Herpetosiphon aurantiacus, 

4-CL1 from Arabidopsis thaliana and VST1 from Vitis vinifera [49]

Expression of 4CL1 from A. thaliana and STS from Arachis hypogaea [73]

Expression of PAL from Rhodosporidium toruloides, C4H and 4-CL1 from A. thaliana, and STS 

from A. hypogaea [74]

Expression of 4-coumaroyl-coenzyme A ligase (4CL1) from A. thaliana and stilbene 

synthase (STS) from V. vinifera [75]

Overexpression of the resveratrol biosynthesis pathway, enhancement of P450 activity, 

increasing the precursor supply for resveratrol synthesis via phenylalanine pathway [76]

Dihydrochalcones Expression of the heterologous pathway genes in a TSC13-overexpressing S. cerevisiae 

strain [78]

Alkaloids Expression of 14 monoterpene indole alkaloid pathway genes from Catharanthus roseus and 

enhanced secondary metabolism to produce strictosidine de novo [79]

Construction of the complete de novo biosynthetic pathway to norcoclaurine by expressing 

a mammalian TyrH enzyme and DODC from Pseudomonas putida, along with four genes 

required for biosynthesis of its electron carrier cosubstrate [80]

Expression of AdoMet-dependent methyltransferase enzymes (6-OMT, CNMT and 

4’-OMT) from plant and human origin to produce reticuline from norlaudanosoline [81]

Reconstruction of berberine biosynthetic pathway from reticuline by expressing seven 

relevant heterologous genes [82]

Reconstruction of a 10-gene biosynthetic pathway from plant to produce sanguinarine 

from norlaudanosoline [83]

Expression of 16 heterologous plant enzymes to produce noscapine from canadine [84]

Reconstruction of a seven-gene pathway for the production of codeine and morphine from 

(R)-reticuline [85]

Reconstruction of a de novo biosynthetic pathway for thebaine by expression of 21 genes 

from plants, mammals, bacteria and the yeast [86]

Table 2. Production of pharmaceuticals by metabolically engineered S. cerevisiae.
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overexpression [58], metabolic engineering of the yeast sulphate assimilation pathway and 

glutathione biosynthetic pathway [59], overexpression of a novel glutathione export ABC 
protein (Adp1p, Gxa1p) and the engineered thiol redox metabolism [60]. Also, the inverse 

metabolic engineering approach was used to increase glutathione production in S. cerevisiae 

[61, 62]. In an evolutionary engineering study, acrolein, a toxic α,β-unsaturated aldehyde, 
was used as a selection agent. Two rounds of adaptive evolution in the presence of increasing 

levels of acrolein resulted in evolved strains with acrolein tolerance and up-to 3.3-fold higher 

glutathione accumulation in comparison to the parental strain [61]. Genome shuffling has 
also been applied to obtain yeast strains with increased glutathione content. Two rounds of 

recursive protoplast fusion were performed with the improved strains initially obtained from 

ultraviolet irradiation and chemical mutagenesis. The strain with highest glutathione content 

showed 9.9-fold transcriptional up-regulation of glutathione synthetase gene (GSH-I) [62].

Terpene derivatives are economically viable molecules that are used in the synthesis of drugs 

such as the antimalarial agent artemisinin, and the anticancer agent taxol [63]. Several ter-

penoids have been produced in S. cerevisiae by reconstitution of the relevant biosynthetic 

pathways. As part of efforts to establish a solid source of artemisinin, S. cerevisiae was meta-

bolically engineered to produce artemisinic acid, which is an artemisinin precursor [48]. As 

the microbially produced artemisinic acid was converted to artemisinin by synthetic chemis-

try methods, that study was reported as a good example for combining biological production 

by metabolic engineering with production by synthetic chemistry [64]. Paddon et al. have, for 

the first time, designed a S. cerevisiae strain with the complete biosynthetic pathway of arte-

misinic acid, involving overexpression of the mevalonate pathway enzymes, and achieved 

commercial-scale titers (25 g/L) [48].

The well-known diterpenoid taxol is an anti-cancer agent [63, 65]. As a first step towards 
taxol production, S. cerevisiae was metabolically engineered for taxadiene biosynthesis [66]. 

For this purpose, heterologous genes encoding enzymes from the early steps of the taxoid 

biosynthesis pathway, isoprenoid pathway, were introduced, along with a regulatory factor 

to inhibit competing pathways. The results were promising enough for taxol production in 

recombinant microorganisms [66]. By using protein modelling and substrate docking, dif-
ferent geranylgeranyl diphosphate synthases were screened and expressed in a recombinant 

taxadiene-producing yeast. The yeast strains were compared in terms of their metabolism 

using metabolomics approach to identify an efficient host for taxadiene production [67].

Forskolin is a labdene diterpene with potentials to be used in the treatment of blood pressure, 

in weight-loss supplements and in the protection against congestive heart failure. Ignea et 

al. constructed a yeast platform to produce 11β-hydroxy-manoyl oxide, forskolin precursor. 
Although the forskolin biosynthetic pathway has not been completely discovered yet, a pro-

miscuous cytochrome P450 from Salvia pomifera was identified as a replacement to achieve 
the synthesis of the forskolin precursor. This study can provide a basis for the biosynthesis of 

various tricyclic (8,13)-epoxy-labdanes [68].

Polyketides are also a major group of natural products with a wide range of applications as 

antibiotics, immunosuppressors, cholesterol lowering agents and other drugs [69]. S. cerevisiae 

is known as a suitable production host for simple polyketides. An earlier study demonstrated 
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the production of a simple polyketide, 6-methylsalicylic acid, by heterologous expression of 

6-methylsalicylic acid synthase in S. cerevisiae [69]. However, the major challenge in the syn-

thesis of complex polyketides was the lack of polyketide precursor pathways in S. cerevisiae. 

To overcome this, a relevant pathway was introduced into S. cerevisiae to produce a precur-

sor for complex polyketides, methylmalonyl-coenzyme A (CoA). This engineered yeast strain 

had the capability of the production of a triketide lactone, when supplemented with propyl-

diketide thioester [70]. Since polyketides are derived from acetyl-CoA and malonyl-CoA pre-

cursors, an increase in the acetyl-CoA and the cofactor (NADPH) in a yeast strain expressing 

2-pyrone synthase (2-PS) from Gerbera hybrida led to 6.4-fold higher triacetic acid lactone pro-

duction, compared to the reference strain [71].

The strategy of engineered precursor pools has also been applied in the production of res-

veratrol. Resveratrol is a polyketide derivative with potent antioxidant properties and it has 

been recently brought to market as a bio-product [72]. Earlier reports on the production of 

resveratrol were based on bioconversion of aromatic precursors such as p-coumaric acid and 

tyrosine by engineered S. cerevisiae strains [73, 74]. The highest resveratrol titer achieved by 

using this approach was obtained by an engineered industrial Brazilian S. cerevisiae strain, at 

a titer of 391 mg/L resveratrol on complex medium supplemented with p-coumaric acid [75]. 

Recently, in order to produce resveratrol from cheaper carbon sources, de novo biosynthesis 

of resveratrol via tyrosine intermediate in S. cerevisiae has been established by constructing 

an engineered pathway, involving tyrosine ammonia-lyase from Herpetosiphon aurantiacus, 

4-coumaryl-CoA ligase from Arabidopsis thaliana and resveratrol synthase from Vitis vinifera 

[49]. To direct flux towards tyrosine, feedback-insensitive ARO4 encoding 3-deoxy-D-ara-

bino-heptulosonate-7-phosphate synthase and ARO7 encoding a chorismate mutase were 

overexpressed. To increase the precursor malonyl-CoA, an inactivation-sensitive acetyl-CoA 

carboxylase was overexpressed. Resveratrol production was further improved by integration 

of multiple copies of pathway genes, and finally, a titer of 415.65 and 531.41 mg/L resveratrol 
was obtained in a fed-batch cultivation with glucose or ethanol as the carbon source, respec-

tively [76]. Koopman et al. also focused on deregulation of feedback mechanism of aromatic 

amino acid biosynthesis for de novo production of naringenin, which is an important platform 

molecule for the production of flavonoids [77].

Dihydrochalcones (DHCs) such as nothofagin, phlorizin and naringin dihydrochalcone are 

another group of polyketide derivatives with commercial value as antioxidants, antidiabet-

ics or sweeteners. Recently, de novo synthesis of DHCs via phloretin intermediate has been 

reported in S. cerevisiae [78]. First, phloretin biosynthesis was achieved with the aid of a side 

activity of an endogenous double-bond reductase, in combination with heterologous pathway 

enzymes. To eliminate by-product formation, a chalcone synthase with high substrate speci-

ficity was expressed from Hordeum vulgare. Commencing with phloretin, several DHC deriva-

tives with antioxidant, antidiabetic and sweetener properties have been obtained through an 

extension pathway involving methylation or glycosylation by previously known enzymes.

Recently, there have also been many reports on the reconstitution of biosynthetic pathways 

of alkaloids in yeast. Alkaloids are nitrogen-containing complex molecules with potent bio-

logical activity. Currently, there are around 50 alkaloid-based drugs, including the anticancer 
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drug vincristine, the antitussive agent noscapine and the analgesic codeine. Strictosidine was 

the first reported plant-derived alkaloid produced de novo in S. cerevisiae [79]. Strictosidine is 

a common intermediate of a list of alkaloids derived from tryptophan in plants, including the 

antimalarial quinine and anticancer agent vincristine [79]. Brown et al. reconstituted its bio-

synthetic pathway in S. cerevisiae. To enable strictosidine production in yeast, 14 genes from 

Catharanthus roseus were expressed [79]. The flux through the pathway was further improved 
by integration of additional copies of the relevant endogenous genes and three gene deletions 

that eliminated competing pathways. S. cerevisiae has also been engineered for the production 

of (S)-reticuline, which is a key branch point intermediate in the biosynthesis of a variety of 

alkaloids, including well-known opioids such as morphine and thebaine [80]. Bioconversion 
of a commercial substrate norlaudanosoline to reticuline was reported in an engineered yeast 

strain expressing three different AdoMet-dependent methyltransferase enzymes (6-OMT, 
CNMT and 4’-OMT) from plant and human origin [81]. Trenchard et al. constructed a route 

to reticuline which enabled de novo synthesis of this molecule via norcoclaurine intermediate, 

the actual intermediate in plants. The pathway comprised of a modified yeast amino acid 
biosynthesis pathway, in combination with a heterologous pathway involving seven relevant 

enzymes [80]. In other studies, S. cerevisiae strains were engineered to produce berberine, dihy-

drosanguinarine and noscapine from norlaudanosoline via reticuline intermediate, through a 

7-, 10- and 14-step pathway involving heterologous expression of plant enzymes, respectively 

[82–84]. Also, the production of codeine and morphine from (R)-reticuline was reported by 

reconstitution of a seven-gene pathway in S. cerevisiae [85]. These studies provided a basis 

towards designing yeast cell factories for de novo production of reticuline-derived molecules. 

Recently, a complete pathway of biosynthesis of opioid thebaine from sugar has been estab-

lished in S. cerevisiae [86]. This work involved a combination of enzyme discovery, protein 

engineering of a key cytochrome P450 and pathway optimization. The thebaine-producing 

yeast strains required expression of 21 heterologous genes from plants, mammals, bacteria 

and yeast. The pathway was also extended through expression of two additional genes from 

bacteria and plant to produce hydrocodone, a widely prescribed opioid drug.

4. Summary and outlook

For fine chemicals such as amino acids, vitamins, flavours, nutraceuticals, organic acids and 
fragrances, profit margins are usually not high and could be affected by substrate availabil-
ity and cost. However, metabolic engineering enabled improvements in production of both 

pharmaceuticals and fine chemicals which will allow economic and large-scale production of 
many valuable compounds in near future.

It is obvious that S. cerevisiae will continue to be an important host for future metabolic 

engineering applications. There will be more comprehensive future studies on the produc-

tion of chemicals by metabolic engineering of S. cerevisiae. These metabolic engineering 

strategies will most likely involve combinations of rational and inverse metabolic engineer-

ing approaches by adaptive evolution of recombinant S. cerevisiae with engineered meta-

bolic pathways for various substrate utilization. Additionally, more studies on adaptive 
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evolution and molecular characterization of tolerance to toxic end-products are expected 

in the future. Similarly, metabolic pathway engineering of S. cerevisiae will allow efficient 
production of more clinically important compounds and fine chemicals. It can be predicted 
that the advances in systems biology and bioinformatics will make a significant contribu-

tion to yeast metabolic engineering.
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